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Abstract

We analyze the transition from the nonlinear elastic behavior to the elasto-plastic
one. A specific class of what we call hyperbolic elasticity arises from theoretical con-
siderations as a straight consequence of the yield criterion invariance on plasticity
level. The latter property of fixed yield residual plasticity is observed experimentally
for many geomaterials. We superimpose this nonlinear elastic (or hyperelastic) hy-
pothesis on the plastic constitutive relation. Curiously, we found that the hyperbolic
nonlinearity, introduced through the Standard Generalized Material formalism, affects
the residual yield surface shape. In particular, the initially linear surface curves to a
quadratic one, establishing correspondence between Mohr–Coulomb and Hoek–Brown
(or alternatively between Drucker–Prager and Pan–Hudson) criteria. Our first con-
clusion is that one possible justification of the empirical fitted Hoek–Brown criterion
widely used in geoscience is the material’s hyperelastic nature. We compare further
elasto-plastic responses of standard tests for Drucker–Prager constitutive relation with
both linear and nonlinear elastic phases. Most notably, the nonlinear case distinguishes
itself by the dilatancy saturation and accommodation phenomena during cyclic load-
ing in the triaxial compression test. This rather complex experimentally observed
behavior emerges straight from the nonlinear unloading property in the elasto-plastic
description.

Keywords: hyperelasticity, elasto-plastic model, hyperbolic elasticity, Hoek–Brown and
Drucker–Prager criteria, Pan–Hudson criteria, small rotations

MSC2020 classification: 74B20, 74C05

1 Introduction

One of the key points in the accurate description of rocks is the precise identification of
their elastic domain (or yield surface/criterion). Due to the softening behavior, not only
rocks but also all analogous materials like concrete, clay, soil or even ice [43] are commonly
classified by their resistance to various mixed-mode loading. This approach is closely
related to the basic safety rules in industrial applications, where it is often considered that
geomaterials could exhibit unstable failure once the critical loading is reached [17].

Throughout the last century, specific testing machines and corresponding measurement
protocols were established by national and international committees in order to harmonize
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and standardize the experimental characterization of the above-cited brittle materials. To
mention only a few, the Brazilian tensile [3], oedometric, uni- and tri-axial compression are
all well-documented experiments that are routinely executed to catalog material strength
by spotting just some points of their multidimensional yield surface. This reduced “single
point” vision of material resistance is increasingly scrutinized in recent times, and multiple
evolutions have been adopted. For instance, constant improvements of finite element
software enable new kinds of modeling, with loadings going beyond the elastic domain
to explore a more subtle post-peak behavior. In the corresponding mechanical tests, the
response of the material subjected to a set of pre-established loadings is analyzed during
both the elastic and softening phase, enabling the full model parameter fitting. Some
more sophisticated hybrid measurement techniques are also proposed, where the loading
path is adapted during the test execution. A single, all-in-one experiment replaces the
classical set with the same goal of full model identification [22]. While the complexity
of post-peak description could be reached through various theoretical formalisms, most of
them still rely on the initial yield surface definition, and the question of this elastic domain
shape remains the cornerstone of any nonlinear model identification. Even if considerable
progress was made in recent decades, this precise identification of the yield surface remains
nowadays a rather challenging task [26].

A common feature of geomaterials is their strong resistance to compressive loading. For
some large-scale structures, like hydraulic dams or underground tunnel excavations, the
construction material is naturally submitted to high levels of compression. For others, like
nuclear confinement buildings or bridges, civil engineering constitutive concrete parts are
preloaded to reach artificially an initial compression state by supplementary constraint
of tension reinforcing steel tendons. In both cases, the property of higher compressive
resistance is exploited on the industrial level with the aim of increasing global structure
robustness.

According to the physical origin of geomaterials, a large variety of criteria defining the
elastic domain are employed in order to model their mechanical behavior. The simplest
surface, admitting infinite resistance in hydrostatic compression, is the linear cone-shaped
one. It was first introduced more than a century ago [31] as the combination of Coulomb’s
friction hypothesis [5] with Galileo–Rankine’s tension cut-off principle. The initial prin-
cipal stress description, which is commonly called the Mohr–Coulomb shape, was later
generalized in the work of Drucker and Prager to a more smooth deviator-trace relation
[7]. The straight relation between shear and compressive loadings, which is the main signa-
ture of these linear criteria, has allowed the development of various constitutive relations
based on the same simplified dependence [1, 24].

In the middle of the last century, with numerous large infrastructural projects ongo-
ing, more complex criteria emerged as further experimental data became available. For
wider ranges of loadings, the friction-type shear dependency seemed to be deflecting from
the linear curve. Logically, a quadratic relation was to be explored first. Back in 1924,
assuming the hypothesis of crack propagation via rapid growth of randomly distributed
micro-flaws, Griffith had already obtained a theoretical justification of the parabolic yield
shape [13]. Inspired by Griffith’s model, Fairhurst proposed its empirical extension vali-
dated on the tensile Brazilian test [10]. In this spirit, in 1980 Evert Hoek and Edwin T.
Brown [16] came up with a new particular shape of quadratic nonlinear criterion. It repro-
duced the Mohr–Coulomb-type singularity for weak tensile loading simultaneously taking
into account the reduction of shear resistance for high compression. Purely empirical, the
Hoek–Brown criterion was originally obtained for intact rocks by two parameters fitting
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the results of triaxial tests. Validated during the following years on a wider experimental
database, the criterion was used extensively in the design of underground excavations [17].

It should be underlined that not only previously cited [13, 10, 16], but many other
authors (e.g. Pan–Hudson [34]) kept the number of model parameters reduced so that
a better fit was obtained by the new curve’s form itself, rather than by the addition of
supplementary fitting variables. Consequently, the final expression of the failure criteria,
being the pure result of the trial-error process, appears quite artificial at first glance.
In this article, we try to establish a possible hyperelastic link between the whole class
of quadratic Hoek–Brown (Pan–Hudson) type criteria and their linear Mohr–Coulomb
(Drucker–Prager) counterparts. The single hypothesis of the existence of a stable fail-
ure surface under free-energy based description generates a subclass of quadratic yield
surfaces from the linear relation of the generalized plastic force. The Hoek–Brown rela-
tion is seen then as a consequence of the simultaneous presence of both plasticity and
nonlinear elasticity phenomena in the geomaterial under investigation. We argue, finally,
that the cyclic triaxial compression test plays a particular role in the material classification
as it reveals the eventual presence of nonlinear elasticity.

2 Hyperelasticity coupled to plasticity

In this section, we summarize the main idea of the article, reducing as far as possible
technical details and complex notation that are required for a rigorous theoretical descrip-
tion of so-called “simple materials” [40, Chapter IV]. Our main aim is to establish an
isothermal homogeneous isotropic constitutive relation for rock-like materials satisfying
some basic thermodynamic principles. A more detailed description of the formalism and
notations can be found in [38, Chapter 2], [39, Chapter 7], or [20].

Plasticity is known to be one of the main sources of nonlinearity. For high compression
levels, nonlinearity is observed for elastic unloading as well. In geoscience applications,
both processes influence the resulting material nonlinearity. From the modeling side, the
most common approaches are treating both sources of nonlinearity in a separate way:
either the plasticity is introduced in infinitesimal strain models admitting trivial linear
unloading, or alternatively the nonlinearity is seen to be of pure hyperelastic origin and
is taken into account with help of finite strain description. While hyperelasticity was
extensively studied for large strains in the past, its extension to coupled elasto-plasticity
is anything but trivial (see some classical books [40, 33]). In the current paper, we propose
a simple formalism particularly adapted for geomaterials establishing a link between these
two physical phenomena. We will focus mainly on the yield surface modification generated
by the presence of nonlinear elasticity. In particular, we found that the supplementary
hypothesis of non-evolving with plasticity reversible stress domain leads to some specific
hyperelastic behavior and shows how it can be revealed experimentally.

In what follows we discuss first the phenomenological justification of chosen theoretical
description, for readers familiar with the topic we advise to skip straight to section 2.3.

2.1 Internal variable choice

If classical mechanics aims to associate the body kinematic to the applied forces, in its
quasi-static extension for the continuum media the body deformation represented by the
displacement field is connected to the density of forces. Two physical quantities naturally
arise: the first is the Cauchy stress tensor σ, which characterizes the state of internal
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forces; the second is the strain tensor ε, which measures the level of deformation up to
some reference configuration [21] (also called placement [40]). For instance, in the absence
of residual stresses, it is implicitly assumed that the reference configuration can be obtained
by complete mechanical unloading, mapping the initial state to a zero strain. The existence
of this “placement at ease” in general is not guaranteed [40, Chapter IV.5], but if it is
known, both of the quantities (i.e. strain and stress) are objective and experimentally
measurable. Consequently, one of the goals of continuum mechanics is to establish a link
between these two second-order tensors, which is named material constitutive relation (see
[40, 21, 38]).

The Cauchy elasticity, in the most simple way, postulates that the stress is some
function of the strain: σ = σ(ε), [40]. For isotropic materials the most general relation
is derived by applying Rivlin–Ericksen representation theorem, which gives for three-
dimensional space:

σ = c0I2 + c1ε+ c2ε
2, (2.1)

where I2 is the identity tensor and ci are some scalar functions of the eigenvalues of the
strain tensor ε, or equivalently of its rotational invariants. Up until now, we had no need
to specify which particular expression for strain is to be taken (Green–Lagrange, Euler–
Almansi, infinitesimal strain, etc.), but once the small deformation hypothesis is applied
the strain expression is linearized, so that it becomes equal to the symmetric part of the
gradient of the displacement field. Under this assumption all the higher order terms are
neglected resulting in well known Hooke’s stress-strain relation: σ = λTrε I2 +2µε ≡ Eε,
where λ, µ are the two constant Lamé parameters, that characterize linear elasticity.

For geomaterials, even within the elastic phase, we need to go beyond this trivial
linear constitutive relation by introducing some nonlinearity in the stress-strain relation
[21]. A very common approach consists of the analysis of initial quadratic Rivlin–Ericksen
expression making use of finite strain (Green–Lagrange, Euler–Almansi, etc.) or finite
deformation tensors (Cauchy–Green, Finger, etc.). A description relying exclusively on
infinitesimal strain ε becomes physically questionable, as it generates non-zero stresses for
pure rigid body rotation (consider, for example, unstretched central inversion transforma-
tion with infinitesimal strain ε ∼ I2 ̸= 0). The second-order contributions (∼ ε2) reappear
in the perturbation theory, but the exclusive infinitesimal strain dependence (σ = σ(ε))
imposes important constraints on the elastic constitutive relation as a whole [40, Chapter
IX.6].

Regardless of all these limitations, the infinitesimal strain ε is still of widespread use
in experimental geoscience, even for its values going up to 20%− 30%. One of the reasons
for this is that, in most tests or studies, specific boundaries are applied reducing rotation
influence. In the case of infinitesimal rotations, one can still rely on the symmetric gradient
of displacement as an objective deformation measure even for finite stretching: while the
tensors of Green–Lagrange and symmetric gradient stresses are equal up to the first order
of infinitesimal rotations, all of their rotational invariant (hydrostatic parts Trε, deviator,
determinant) are equivalent even up to the second order, see the Appendix B. Provided
that the rotations are small, the elastic nonlinearity of the constitutive relation can be
incorporated into the model description through an infinitesimal strain dependence and
this is without alternating its objectivity. This approach was already used in the past
theoretical works for soils and clays [21, 32] and it will be adopted throughout the current
paper as well. It sounds coherent for geoscience applications in general as, first, we do not
expect the underground tunnel or hydraulic dam to rotate significantly before failure and,
second, the material’s nonlinearity is more easily revealed by a high level of hydrostatic
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compression common to this industry.
In order to shorten our notations, up from now ε will be referred to as the symmetric

part of the gradient of displacement field u, i.e., we consider the classical infinitesimal
strain expression: ε = (∇u+ (∇u)†)/2.

In principle, the general Rivlin–Ericksen stress-strain relation presented earlier is recov-
ered. But it should be noted, that not any kind of stress-strain relation is admissible from
a thermodynamical point of view. For instance, the work of internal forces for constitutive
relations with non-symmetric tangent operator ∂σ/∂ε is dependent on the loading path,
which is physically inadmissible for a fully reversible elastic process (consider for example
σ ∼ Tr(ε) ε). The hyperelasticity restricts this stress-strain relationship by admitting
the existence of a scalar strain energy density function ϕ from which the stress is derived:
σ = ∂ϕ/∂ε, [38, 39]. Mechanical loading of a hyperelastic material is considered as a zero
dissipation reversible process with the sole state variable being strain ε. In this sense, the
hyperelastic formalism is conservative and is compatible with a general thermodynamical
description [12]. If the equivalence between strain and stress description is not necessar-
ily satisfied for finite transformations (see [40, Chapter VII.3]), it is usually admitted for
small ones. For smooth convex strain energy density function, the bijective nature of the
stress-strain relation is automatically satisfied and realized via Legendre transformation.

In order to take properly into account the energy dissipation process, which is definitely
present for geomaterials, at least one supplementary state variable needs to be introduced.
It is usually done through the plastic strain tensor p, which is supposed to decompose the
strain into elastic and plastic contributions, i.e., ε = εel + p (for sake of clarity, from
now on ε will be called total strain). This notion of strain shift appears naturally for
infinitesimal deformations, as the reference configuration change engenders an additive
translation of actual strain value: ε ⇒ ε+ εref , where εref is the strain compatible with
the “old to new” reference configuration displacement. Therefore, even for a purely elastic
model, a supplementary state variable εref can be introduced with the aim of describing
a “placement at ease”. If the latter is unachievable through simple elastic unloading (i.e.,
is incompatible with a continuous displacement field), the plastic strain p can be seen as
a history variable tracing the anelastic reference configuration transformation: εref ⇒ p.
The sole hypothesis made at this level is that tensor p is eventually incompatible with
any kind of displacement field. Then, the plastic strain has a clear physical meaning of an
incompatible part of the residual strain that cannot be suppressed by a suitable reference
configuration choice or a total system unloading. The plastic strain p is generally not
directly observable, which is why it is also called an internal (hidden or memory) state
variable. Some authors suppose further that the Cauchy stress depends only on the elastic
strain, which allows its indirect measurement: σ ⇒ εel = ε− p. In this sense, the elastic
strain εel becomes an observable (in general a hidden one), and the couple of state variables
(ε,p) can be replaced by the following pair (εel,p). The stress invariance to reference
configuration choice implies necessarily an induced shift of plastic strain by εref: ε →
ε+ εref ⇒ p → p+ εref. For the situation where the observation of the material starts at
the point with a non-negligible initial plastification level, any constitutive relation becomes
ill-defined in the sense of simple media [40]. Indeed, the plastic strain does depend on εref,
violating then the history-independence hypothesis, unless the at-ease configuration can
be somehow back-traced from the current state. In particular, for commonly used elasto-
plastic models with linear elastic phase, the initial state is unrecoverable. There is no way
to distinguish a boundary compatible transformation of the at-ease configuration εcomp

ref

from equivalent modification of the plastic strain: ε− p ≡ (ε+ εcomp
ref )− (p+ εcomp

ref ). The
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ambiguity of total and plastic strain definition up to an unmeasurable arbitrary shift in the
reference state can be lifted for a bijective constitutive relation (see full discussion in [37]).
For pure plasticity (i.e. plasticity being a single internal variable), the choice of elastic
strain instead of total strain as state variable can be assimilated with the simple strain to
stress variable change, as both are related via unchanged elastic moduli: (εel,p) ⇒ (σ,p).
This leads to the well-known Gibbs-like description in thermodynamics. Nevertheless,
the presence of elastic nonlinearity or of any kind of additional irreversible dissipative
phenomena makes the internal variable choice less trivial and highly impactful, especially
when thermodynamic considerations are taken into account.

As we will show later in this paper, for geomaterials that exhibit a nonlinear reversible
elastic phase (i.e., the presence of hyperelasticity), the choice of total and plastic strains as
state variables seems to be particularly adapted. Not only it allows labeling the reference
configuration due to nonlinearity at any given plasticity level, but also opens the way
for various model extensions either by enriching its complexity through a new internal
variable introduction, such as damage-plasticity coupling [25, 30], or by regularizing its
deformation in the critical state [11].

2.2 Simplified thermodynamics

The thermodynamical description of continuum mechanics relies either on the Helmholtz
free energy density definition [12] or alternatively on Gibbs free energy [4, 20]. The exis-
tence of such energy function state may be derived from the more basic Work Principle
introduced in [29] that appears naturally for any continuum mechanical system. For
isothermal evolution in the presence of plasticity, this function depends on at least two
state variables. We make the choice of Helmholtz description with the total strain ε and
the plastic strain p as state variables, i.e., ϕ(ε,p) represents the free energy. The Cauchy
stress tensor is then the dual conjugate to the total strain σ = ∂ϕ/∂ε, while the energy
response of the system to plastic strain evolution is captured through the generalized plas-
tic force X = −∂ϕ/∂p. As it was mentioned above, most of the elasto-plastic models
admit additive separation of elastic and plastic strains, resulting in the simplest quadratic
expression for the free energy of the residual plastic state:

ϕ(ε,p) =
1

2
E(ε− p)2, (2.2)

where E is the constant elastic modulus which depends on the Lamé parameters λ and
µ. Notice that for simplicity we adopt the abridged notations for tensor operations. In
particular, in this linear elastic case, the generalized plastic force and Cauchy stress are
equal:

σ = X = E(ε− p). (2.3)

The reversible elastic domain, characterized by the absence of plasticity evolution, is de-
fined in the observable stress space: p = const ⇒ σ ∈ Kσ. In addition, thermodynami-
cally, one needs to ensure that the material dissipation rate, or alternatively called interior
work [29], is positive:

D = σε̇− ϕ̇(ε,p) ≥ 0, (2.4)

where the dot corresponds to the temporal derivative, i.e., ε̇ ≡ dε/dt. Considering elastic
unloading first, we obtain the σ = ∂ϕ/∂ε relation as consequence of zero dissipation
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process D(p = const) = 0, reducing then the second thermodynamic principle (2.4) to the
following straight inequality:

D = −∂ϕ

∂p
ṗ = Xṗ ≥ 0. (2.5)

As we have mentioned in the introduction, considerable experimental efforts are fo-
cused on the identification of the elastic domain. In the perfect plasticity hypothe-
sis, the domain is fixed during evolution and its shape can consequently be consid-
ered one of the main material properties. It is clear that, for the linear case described
above (i.e., E constant), the stress domain is identical to the generalized force domain:
p = const ⇒ σ ∈ Kσ or equivalently X ∈ KX . Even if for experimental scientists it may
be more convenient to analyze elastic domain shape through the observable stress tensor
σ, the generalized force X portrayal has one conceptual advantage in thermodynamics.
Indeed, as we have seen in (2.5), the generalized force appears to be a natural variable in
the dissipation rate function.

It is clear that to get a complete material description, the plastic variable evolution ṗ
needs to be introduced. This is commonly done either through a dissipation potential [14],
a plastic potential [41] or directly via an explicit flow rule. For an arbitrary flow rule, the
proof of the positiveness of the dissipation rate (2.5) is a rather challenging task. But if the
plastic strain rate depends exclusively on generalized plastic force (ṗ ⇔ X), the material
dissipation rate becomes an exclusive function of generalized force D = D(X). This is
some supplementary restrictive hypothesis, but in this case, the positivity of dissipation
is automatically independent of the loading path: it is a combination of the geometrical
properties of the elastic domain shape and the functional properties of a flow rule. The
whole model can be then analyzed in the generalized forces space, which is the basis
of Standard Generalized Material formalism [14]. We adopt the latter formalism in the
current paper in order to detail an example of complete constitutive relation (section 3)
derived from the main considerations presented in the next subsection.

2.3 Main idea in the nutshell

Among the many possible extensions of the basic perfect plasticity constitutive model, we
are interested in plastic-to-hyperelastic coupling. To derive the main conclusions we need
four assumptions that have been discussed earlier in this section, i.e., we suppose that:

• the current state is defined by two state variables: the total infinitesimal strain ε
and the plastic strain p;

• the evolution relies on Helmholtz free energy ϕ(ε,p), i.e. σ = ∂ϕ/∂ε and X =
−∂ϕ/∂p;

• the elastic domain is defined in the space of generalized plastic force X;

• the strain-stress relation is nonlinear during unloading;

Remark 1 (Flow rule choice). At this stage, as we have no intention to analyze the full
model response, it is not necessary to make any flow rule choice. This choice will indeed
be crucial in the next section.

We focus first on the yield surface modification generated by the presence of nonlinear
elasticity. For geomaterials (like rocks, clays, soils, etc.), the reversible elastic domain is
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comparatively small and is usually of hysteretical nature, so it is hard to quantify exper-
imentally. With missing experimental data, it is not surprising to find most industrial
modeling admitting linear elastic domain approximation. Nevertheless, some recent well-
documented experiments manage to separate and evaluate the elastic nonlinearity itself.
For example, in [23] the authors conducted local cyclic loadings on sand underlying its
hyperelastic properties. Even if this new experiment sheds light on this longtime neglected
phenomenon, the general hyperelastic coupling term is too complex to be fully identified.
Natural questions arise on how to handle all possible couplings in the multidimensional
tensor relation. In this article, it is shown that the hyperelastic coupling term can be sim-
plified (see (2.8)) enabling its analysis with the currently accessible experimental databases
(e.g. [23]).

Nonlinear elasticity may be introduced in many different ways by alternating the most
simple quadratic free energy form (2.2). We consider here one of its possible extensions,
where the elastic modulus is supposed to be some function of the total strain, i.e., E = E(ε),
while the quadratic term involving ε− p is maintained:

ϕ(ε,p) =
1

2
E(ε)(ε− p)2. (2.6)

The stress-strain relationship becomes as expected nonlinear, but more than that the stress
is no longer equal to the generalized plastic force:

X = E(ε)(ε− p) ̸= σ.

Formal writing of the expression for the stress gives:

σ = E(ε)(ε− p) +
∂E
2∂ε

(ε− p)2 = X +
∂E

2E(ε)2∂ε
X2. (2.7)

In general, if the elastic domain is fixed in the space of generalized force X, in the presence
of hyperelasticity it becomes strain-dependent in the space of stresses σ. They will be
denoted with KX and Kσ, respectively. Notice that this is also what happens in the
case we are considering. Indeed, for small loading (X ≪ 1) the quadratic term ∼ X2

could be considered as a nonlinear kinematic hardening, but in general the equation (2.7)
states the nonlinear modification of the initial elastic domain, i.e., Kσ ̸= KX . For the
cyclic loading, the initial yield surface is modified on each back-and-forth loop creating
a mechanism similar to those introduced earlier by different authors, like the bounding
surface in [6] or parent/child surfaces like in Hujeux constitutive relation [2]. Therefore,
in the current formulation, the presence of nonlinear hyperelasticity in plastic materials
introduces not only a nonlinear stress-strain relationship but also affects the elastic domain
shape making it loading-dependent in stress space. The hyperelasticity is seen as model
enrichment for the whole set of loading and not only for reversible ones. As a consequence,
the post-pic behavior may be used to fit hyperelastic parameters and viceversa, completing
experimental data.

While all previously cited advantages of our particular formalism for nonlinear elasto-
plasticity are up to now hypothetical, the attentive reader may remark that hyperelasticity
coupling function E(ε) is still too complex to be fitted experimentally. Anticipating this
remark, we proceed further and introduce a particular class of hyperelasto-plastic materials
that have fixed yield criterion in the stress space. This yield criterion can be considered
either as initial elastic domain or as residual yield surface, for example for fully damaged
elasto-plastic coupled to damage behavior [30]. As the elastic domain in the space of
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generalized force X is supposed to be fixed, it would also stay fixed in the space of
stresses σ if and only if the coupling term in (2.7) is constant:

∂E
2E2∂ε

= const.

This condition defines one particular class of hyperelastic materials that keep the elastic
domain Kσ fixed. This equation states that the material compliance should be linear with
total strain:

∂E
2E2∂ε

= −∂E−1

2∂ε
= const =⇒ E−1 ∼ ε. (2.8)

This formal writing of a tensor-based expression is certainly over-simplified, but it allows
us to propose a subclass of hyperelastic materials that have a fixed yield surface in the
stress space. We will show in the next section, that this condition can be reached for
instance by setting both Lamé coefficients as hyperbolic functions of the strain trace.

Coming back to the nonlinear relation (2.7) with hyperbolic constrain, we remark that
it simplifies to the straight quadratic mapping: σ = X + βX2, with β = const. If the
subsequent constitutive relation is obtained under the assumptions of Standard General-
ized Materials [14, 9], this last expression may be considered as a transformation of the
thermodynamic reversible domain in the generalized forces space X to the experimen-
tally observable elastic domain in the stress space σ. It is then intuitively clear that
the model constructed starting from a linear plasticity criterion in the generalized force
space (Drucker–Prager type in X) will lead to a nonlinear elastic constitutive law with
a quadratic domain in the stress space (Hoek–Brown type in σ). In some sense, the
Hoek–Brown is nothing else than a nonlinear version of the Drucker–Prager.

3 Hyperelastic enrichment of perfect plasticity

As it was announced shortly above, in this section we display how to derive the elasto-
plastic constitutive relation with a three-dimensional Hoek–Brown type yield surface start-
ing from the model with linear plastic criterion in the case of the hyperbolic elasticity.

Above and throughout this section, we use the usual notation of mechanics: u is the
unknown displacement field, ε ∈ R3×3

sym is the strain tensor, i.e., the symmetric part of the

gradient of u, p ∈ R3×3
sym is the plasticity component of the strain tensor, i.e., p = ε− εel,

σ ∈ R3×3
sym is the stress tensor, and X ∈ R3×3

sym is the thermodynamical force associated
with plasticity, i.e., the plastic dual variable. Strain and plasticity tensors are the state
variables of our model and, for simplicity, they are decomposed into their volumetric and
deviatoric parts:

ε =
1

3
Trε I2 + εD and p =

1

3
Trp I2 + pD.

where, as before, we note I2 as second-order identity tensor. These expressions can be
used as zero trace tensor deviator definition: TrεD = 0 and TrpD = 0. We adopt the
usual convention in Mechanics of Continuous Media for the sign of strain and stress, i.e.,
the stress is positive in traction and negative in compression.

3.1 Brief history of quadratic yield criteria

We start first with a brief description of the history of the introduction of quadratic yield
surfaces, what we call “Hoek–Brown-type” yield surfaces.
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Back in 1924, while studying the mechanical behavior of glasses, Griffith [13] was the
first to derive from theoretical considerations a quadratic multi-axial criterion for fracture:

(σ1 − σ3)
2 ∼ (σ1 + σ3)

where σ1 and σ3 are the major and minor principal stresses, respectively.
Forty years later, Fairhurst [10] attempted to empirically extend the work of Griffith to
the domain of high compression suitable for rock behavior analysis. Finally, in 1980 Hoek
and Brown [16] obtained a criterion shape that convinced many generations of geomaterial
scientists. The original Hoek–Brown criterion is still widely used in rock mechanics and,
for intact rocks, it can be written as:

σ1 = σ3 + C0

√
mi

σ3
C0

+ 1,

where C0 is the uniaxial compressive strength and mi is a material constant for the intact
rock. For more details about these constants, we refer to [18], where a generalized version
of the criterion involving the geological strength index (GSI) is also proposed and analyzed.
Furthermore, the evolution of the Hoek–Brown criterion in the literature is summarized
in the article [19].

Since many papers have exhibited the strong influence of the intermediate principal
stress σ2 (see, e.g., [27, 8] and the references therein), different three-dimensional exten-
sions based on the Hoek–Brown criterion has been developed [35, 42, 36, 27]. In particular,
its generalized form written with the help of rotational invariants was proposed by X. D.
Pan and J. Hudson [34]. For intact rocks, it reads as:

3

2C0

∥∥σD
∥∥2 + √

3mi

2
√
2

∥∥σD
∥∥+miσm − C0 = 0,

where σm and σD are the spherical and deviatoric parts of the stress tensor, respectively,
i.e.,

σ = σm I2 + σD, where σm =
1

3
Trσ, (3.1)

and
∥∥σD

∥∥ :=
√
σD : σD, it is usually called second deviator stress invariant J2 in geotech-

nical industry. Here, the double dot product is simply the double contraction operation
for second-order tensors. All the described criteria are parabolic and can be summarized
as various choices of constants in the general expression:

fσ = A
∥∥σD

∥∥2 +B
∥∥σD

∥∥+ Cσm −D = 0.

In this article, we don’t suppose but derive a quadratic yield criterion of this type under
the assumption of Standard Generalized Materials [14] in a variational framework in the
presence of hyperelasticity. In particular, as we have already mentioned, we will show that
this model can be constructed by starting from an elasto-plastic model with a Drucker–
Prager (linear) plasticity criterion and introducing hyperbolic hyperelastic dependence in
some material parameters. This will lead to a nonlinear elastic constitutive relation with
Hoek–Brown (quadratic) type yield surface.
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3.2 Mapping thermodynamics to observables

In this section, we propose one specific form of the energy density that realized the (2.8)
condition and derive then the stress tensor expression as a function of generalized forces.
We begin our analysis by specifying the free energy density for the perfect elasto-plastic
model (2.2), which corresponds to the non-hardening version of [30, Equation (11)], where
the material is assumed to be isotropic:

ϕ(ε,p) =
1

2
E(ε− p) : (ε− p)

=
1

2
K(Trε− Trp)2 + µ(εD − pD) : (εD − pD).

(3.2)

Here, the action of the fourth order elasticity tensor E is described by Eτ = λTrτ I2+2µτ
for any second order tensor τ , λ > 0 is the Lamé parameter, µ > 0 is the shear modulus,
and K = λ+ 2µ/3 is the compressibility modulus of the material. The dual variables σ and
X can be obtained by deriving the energy density (3.2) with respect to the state variables
ε and p:

σ :=
∂ϕ

∂ε
(ε,p) and X := −∂ϕ

∂p
(ε,p). (3.3)

Within current thermodynamic formalism, this equation may be considered as a definition,
which is why we are using the := sign. In particular, we recall that in this case we simply
obtain (2.3).

Now, we introduce some hyperelasticity dependencies in the elasticity tensor, and, in
particular, we suppose E = E(Trε). If trace dependence is natural, the deviator one is not
obvious, as it wouldn’t be derivable on the hydrostatic axis. Here, we meet the required
condition (2.8) by assuming the following hyperbolic relations:

K(Trε) =
Ki

2KiβmTrε+ 1
and µ(Trε) =

µi

4µiβDTrε+ 1
, (3.4)

where Ki > 0 and µi > 0 are the sound material’s initial compressibility and shear moduli,
βm ≥ 0 and βD ≥ 0 are the hyperelastic parameters of the model. In addition, we restrict
ourselves to the tests in which

Trε > ε0 := max

{
− 1

2Kiβm
,− 1

4µiβD

}
(3.5)

in order to ensure the positivity of K0(Trε) and µ0(Trε). Denoting with Xm and XD

the spherical and deviatoric components of X as we have done for the stress (3.1), the
expression of σ and X can be easily obtained thanks to (3.3):

σm =
Ki

2KiβmTrε+ 1
(Trε− Trp)− K2

i βm
(2KiβmTrε+ 1)2

(Trε− Trp)2

− 4µ2
iβ

D

(4µiβDTrε+ 1)2
(εD − pD) : (εD − pD),

σD =
2µi

4µiβDTrε+ 1
(εD − pD),

(3.6)

and 
Xm =

Ki

2KiβmTrε+ 1
(Trε− Trp),

XD =
2µi

4µiβDTrε+ 1
(εD − pD).

(3.7)
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As a consequence, σ and X are connected through the following relation:

σ = X −
(
βmX2

m + βDXD : XD
)
I2. (3.8)

The hyperbolic nonlinearity (3.4) generates quadratic stress σ to generalized forces X
relation, that does not depend on plastic criterion. It only involves the hyperelastic pa-
rameters βm and βD. The relation is bijective (σ ⇔ X) and easily invertible. If we remark
that XD = σD the implicit relation for the hydrostatic part reads:

Xm − 3βmX2
m = σm + 3βDσD : σD. (3.9)

As expected, equation (3.9) preserves eigenspace decomposition, which allows in prin-
ciple to establish a full continuously derivable relation between all three eigenvalues for
stresses σ and generalized forces X. Some general domain transformation properties can
be claimed:

• all domains may be represented in 3D eigenvalue space

• bounded/unbounded domain property is transformation invariant

• domain boundary singularities are preserved: 2D edge to edge or 1D vertex to vertex

• hydrostatic axis rotational symmetry is transformation invariant

For the particular case of βD = 0 the transformation is equivalent to a quadratic rescaling
of the hydrostatic axis, that preserves deviatoric clipping plane shapes. In this case, it is
clear that Mohr–Coulomb cone with hexagonal cross-section in the deviatoric plane will
be transformed to some extension of the Hoek–Brown criterion characterized by one sin-
gularity on the hydrostatic axis, hexagonal cross-section in the deviatoric plane, quadratic
profile for any hydrostatic plane cut.

Once again, as we have pointed out earlier in the previous section, the nonlinear
relation (3.8) may be considered as a transformation rule of the thermodynamically defined
reversible domain to the experimentally observable elastic domain. In fact, any shape set
in generalized forces X (thermodynamic one) has a one-to-one map to its counterpart
in the observable stress space σ (experimental one). Our general observation is that the
nonlinearity in elasticity influences the thermodynamic-to-experimental mapping of the
reversible domain. Even if in itself it seems to open a vast investigation field, in this paper
we focus mainly on the most simple example of Drucker–Prager criteria transformation,
which is detailed in the following section.

3.3 The plasticity criterion transformation

As it was said just above, we consider here the most simple, the Drucker–Prager criterion
transformation by hyperelastic coupling. In the X–space it reads:

fX(X) :=
1√
6

∥∥XD
∥∥+ aXm − b = 0, (3.10)

where a > 0 and b ≥ 0, and we recall that ∥τ∥ :=
√
τ : τ . The corresponding elastic

domain KX := {X∗ ∈ R3×3
sym : fX(X∗) ≤ 0} is a convex cone with a singular point

at (b/a,0), and the behavior remains elastic while fX(X) < 0. Moreover, in order to
satisfy the positivity of dissipation condition (2.5) [14], consistently with the Standard
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σm

∥σD∥
βm ̸= 0, βD = 0

βm ̸= 0, βD ̸= 0

βm = 0, βD ̸= 0

Figure 1: Transformation of the failure criterion for different values of the hyperelastic
coefficients βm and βD. The black dashed line represents the degenerated case (i.e.βm =
βD = 0) of linear failure criterion (3.14), that is equivalent to the initial one (3.10).

Generalized Materials framework, we consider an associative model, i.e., we assume that
the plasticity evolution follows the normality rule. As a consequence, in the points in
which the boundary is smooth, i.e., where the function fX is differentiable, we have

ṗ = λ̇

(
1√
6

XD

∥XD∥
+

a

3
I2

)
, λ̇ ≥ 0. (3.11)

For further details, we refer the reader to [30, Section 2]. In addition, if b ̸= 0, we assume

βm ≤ a

2b
. (3.12)

Combining (3.10) with (3.8), one can obtain the explicit expression of the plasticity crite-
rion in the stress space:

fσ(σ) :=
1

6

(
βm + 6a2βD

) ∥∥σD
∥∥2 + 1√

6
(a− 2βmb)

∥∥σD
∥∥+ a2σm − b (a− βmb) = 0.

(3.13)

Therefore, starting from the linear failure criterion (3.10) for the generalized force X, we
obtain a quadratic failure criterion for the stress tensor σ. The corresponding reversibility
domain Kσ := {σ∗ ∈ R3×3

sym : fσ(σ
∗) ≤ 0} is a convex cone with parabolic boundary and

a singular point in
(
b(a−βmb)

a2
,0
)
. Notice that, since (3.13) does not depend on ε or p,

Kσ remains fixed for any type of evolution. Figure 1 shows the transformation of the
failure criterion from linear to quadratic for three different choices of the hyperelasticity
parameters (βm, βD).

Remark 2 (Motivations of assumption (3.12)). Assumption (3.12) ensures that the domain
in the stress space is convex and contains the origin 0 of the space. Furthermore, with
this condition, the quadratic failure criterion can be written as

1√
6

∥∥σD
∥∥ =

−(a− 2βmb) + a
√
1− 4σm(βm + 6a2βD) + 24βDb(a− βmb)

2(βm + 6a2βD)
.
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The classical linear Drucker–Prager expression is naturally recovered for vanishing
hyperelastic coupling, i.e. for βm = βD = 0:

1√
6

∥∥σD
∥∥ = b− aσm. (3.14)

We see from Figure 1 that (a, b) plays the role of friction-cohesion coefficient’s pair defining
linear domain that envelopes the final elastic shape (3.13) for any hyperelastic coupling
coefficients βm · βD ̸= 0.

To summarize, we have shown in this section different possible transformations of the
linear Drucker–Prager cone to a quadratic Hoek–Brown’s one generated by the hyperelastic
coupling.

4 Response on typical tests

The aim of this section is to show a panel of examples of evolution using the proposed
hyperelastic model in some typical test cases. In particular, we want to exhibit the influ-
ence of the hyperelastic parameters and provide a comparison with the linear elasto-plastic
model. The results are obtained with the open source code generation tool mfront (see
[15] and also http://tfel.sourceforge.net). For all tests, we start from a natural ref-
erence configuration with p = 0, and we set the Poisson’s ratio ν = 0.3, which corresponds
to the compressibility modulus Ki = 5E/6 and to the shear modulus µi = 5E/13. Apart
from these elastic coefficients, we need to define a pair of linear domain parameters that
are equivalent to the classical frictional and cohesive one a, b and one more pair of the
hyperelastic coefficients βm, and βD.

In the preliminary analysis, one may be interested in the investigation of the elastic
response for small loading. Some relevant information for model parameter identification
can be extracted from (3.6) for Trε ≪ ε0 at the initial stage p = 0. It shows, first, that
Poisson’s ratio and Young modulus preserve their classical meaning, and second, that
the deviatoric hyperelastic coefficient βD couples the volumetric stress σm to deviatoric
strain for pure deviatoric loading, i.e. for Trε = 0. Finally, for the identification of
the hyperelastic coefficient βm one may need to go over the linear elastic response, but
it can be also fitted experimentally straight from the hydrostatic response, for example
from the strain compression limit ε0 (see next subsection). Consequently, all elastic and
hyperelastic parameters can be identified by a subtle analysis of elastic response. We study
quantitatively all the relations in the next subsections.

4.1 Hydrostatic tests

During a hydrostatic test, the stress remains on the hydrostatic axis throughout the load-
ing. This corresponds to the assumption that only the spherical part of the stress evolves,
i.e., σ = σ̄I2, with σ̄ < 0 for compression tests, and σ̄ > 0 for traction tests. We recall
that the compression limit is fixed, either by βm or βD (see (3.5)). Here for simplicity

we suppose that Kiβm ≥ 2µiβ
D so that ε0 = − 1

2Kiβm
. Consequently, it’s a βm that

defines the hydrostatic compression limit. From the second equation of (3.6), we have
immediately that εD = 0. Therefore, using the first equation of (3.6), we recover that for
hydrostatic loading when the behavior is hyperelastic, i.e., σ ∈ IntKσ, the evolution is
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ε0 Trε

−σm/E

Trε

−σm/E

Figure 2: Graphs of hydrostatic triaxial test: compression (left) and traction (right).

simply described by

σ = σmI2 =

[
Ki

2KiβmTrε+ 1
Trε− K2

i βm
(2KiβmTrε+ 1)2

(Trε)2
]
I2, (4.1)

or

ε =
Trε

3
I2 =

[
1

6Kiβm

(
−1 +

1√
1− 4βmσm

)]
I2. (4.2)

This is the case for any value of hydrostatic compression and for the first part of hydrostatic
traction. More in detail, in a traction test, initially the behavior is hyperelastic until σm

reaches its maximum value determined by the plasticity criterion (3.13):
b(a− βmb)

a2
.

Then, the spherical part of the stress remains constant and plasticity evolves. One can
see the corresponding graphs of the evolution of the hydrostatic stress σm as a function
of Trε in Figure 2, in the case of compression (left) and traction (right) with parameters
a = 1, b = E/1000, βm = 200/E, and any βD ≤ 13βm/12. We notice that even if the
plots are shown separately, for all b > 0, the transition between compression/traction is
continuous and differentiable since it is described by the regular in the interval (ε0;∞)
function (4.1).

As we have observed earlier in this section, βm may be fitted experimentally straight
from the hydrostatic compression limit ε0. Provided the βm coefficient is known from
this preliminary elastic analysis in compression, the hydrostatic loading in the opposite
direction gives us access to the tensile strength limit, meaning in practice to experimen-
tally fit the a to b ratio (one of the relations defining the criterion shape). While the
solicitations are mostly elastic, the domain shape cannot be precisely identified and a
second experimental setup is needed. In the next subsection, we propose to study a triax-
ial compression, that allows full model parameter identification by solicitation of another
mixed-loading plasticity limit.

4.2 Triaxial compression test with a confining pressure

A triaxial compression test with a confining pressure is divided into two phases:

- at first, a hydrostatic compression is performed reaching the value of pressure p0 > 0,

- then, we compress along the z–axis maintaining the lateral pressure constant.
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(a) Deviatoric stress q = σx−σz vs. axial strain
εz.
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(b) Volumetric strain Trε vs. axial strain εz.
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(c) Average stress σm vs. volumetric strain Trε.
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(d) Evolution in the stress domain.
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(e) Volumetric plastic strain Trp vs. axial strain
εz.

Figure 3: Graphs of triaxial compression test with a confining pressure. The different
stages of the evolution are shown with different colors: hydrostatic confining (red), hyper-
elastic (green), and plastic (blue) stage.
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As we have already seen in the previous subsection, during the confining phase the behavior
is (nonlinear) elastic, i.e., p = 0, and only the hydrostatic component evolves, i.e., σD =
εD = 0. In addition, the evolution is determined by (4.1). At the end of this stage
σ = −p0 I2 and ε = ε̄ I2, where ε̄ can be found out thank to (4.2):

ε̄ :=
1

6Kiβm

(
−1 +

1√
4βmp0 + 1

)
.

Then, during the second phase of the loading, we prescribe the evolution of εz with ε̇z < 0,
while the lateral pressure stays equal to p0:

σ =

−p0 0 0

0 −p0 0

0 0 σz

 and ε =

εx 0 0

0 εx 0

0 0 εz

 .

In particular, we have

σm =
1

3
(σz − 2p0) and ∥σD∥ =

√
2

3
|p0 + σz|, (4.3)

and we define the deviatoric stress q := p0 + σz. Figure 3 shows the evolution curves for
this kind of test with parameters given by:

a =
1

4
, b =

E

103
, βm =

85

E
, βD =

60

E
, p0 =

E

103
. (4.4)

In more detail, Figure 3a and 3b show the deviatoric stress q and the volumetric strain Trε
as functions of the axial strain εz, respectively, Figure 3c shows the spherical stress σm as
a function of the volumetric strain Trε, and finally Figure 3d shows the evolution of the
stress in the domain Kσ. After an initial elastic phase, the boundary of the reversibility
domain Kσ is reached, and, as a consequence, plasticity starts to evolve following the
normality rule (3.11). The different stages of the evolution are highlighted with different
colors in Figure 3: red for the confining stage, green for the hyperelastic stage, and blue
for the stage with the progression of plasticity.

The nonlinear influence is evident during the hyperelastic phase (in green) in Figures
3b and 3c, whereas, as we can see in Figure 3d, the evolution inside the domain Kσ remains
linear. We can recover the explicit stress evolution expression for this elastic phase from
(4.3):

∥σD∥ = −
√
6 (σm + p0). (4.5)

During the plastic phase, the stress lies on the boundary of the elastic domain Kσ and
remains constant since there is no hardening, see Figure 3d. This point can be identified
combining (4.5) with (3.13):

P 1 := (σ1,m, ∥σD
1 ∥)

=

(−2(βm + 6a2βD)p0 + a− 2βmb− a2 −√
∆1

2(βm + 6a2βD)
,−

√
6
a− 2βmb− a2 −√

∆1

2(βm + 6a2βD)

)
,

(4.6)
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where

∆1 := a2(1− a2) + 4(βm + 6a2βD)(2 + a)a p0 + 4βma2b+ 24βDa2b(a− βmb).

Figures 3a and 3c display the constant evolution of the average stress σm and the deviatoric
stress q.

Finally, Figure 3b displays the presence of dilatancy without saturation, which is a
consequence of the normal flow rule for the evolution of plasticity, see also Figure 3e.
Indeed, during the plastic phase, inserting the first equation of (3.7) and the fact that
XD = σD in (3.10), we have

1√
6
∥σD∥+ a

Ki

2KiβmTrε+ 1
(Trε− Trp)− b = 0, (4.7)

and then we achieve

Trε =

√
6 a

2βm∥σD∥+
√
6(a− 2bβm)

Trp+

√
6 b− ∥σD∥

Ki[2βm∥σD∥+
√
6(a− 2bβm)]

.

We recall that ∥σD∥ is constant when the behavior is plastic.

Remark 3 (Analytical values of dilatancy). Combining the second equation of (3.6) with
the flow rule (3.11) and (4.7), we get the analytical relation between the volumentric strain
Trε and the deviatoric strain ε′ := εx − εz:

Trε =
6a2√

6(βm + 6a2βD)∥σD∥+ 3(a− 2bβm)
ε′ + C1 =: Lε

′ + C1, (4.8)

where the constant C1 depends on ∥σD∥ and on the parameters of the model. Observing
that

ε′ =
Trε

2
− 3

2
εz,

we obtain

Trε = − 3L

2− L
εz + C2, (4.9)

with C2 constant and dependent only on ∥σD∥ and on the parameters of the model.

Remark 4 (Link between dilatancy and normal vector to Kσ). Consider the parabolic
elastic domain Kσ. The vector(

6a2√
6(βm + 6a2βD)∥σD∥+ 3(a− 2bβm)

,

√
2

3

)

is normal to the boundary of the domain in the point (σm, ∥σD∥). Notice that the first
component is exactly the linear term L that characterizes the slope of dilatancy, see (4.8)
and (4.9).

To summarize under the triaxial compression we test the elastic domain limit for shear
loading, this finally allows us to identify one missing model parameter. Precise expression
depends on the analyzed behavior (either plastic limit (4.6) from Figures 3a and 3c, or
dilatancy slope (4.9) from Figures 3b and 3e), but if this data is coupled with the initial
hydrostatic test results all model parameters can be experimentally fitted, i.e. hyperelastic
pair βm and βD, and the criterion shape pair a and b.
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(a) Deviatoric stress q = σx−σz vs. axial strain
εz.
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(b) Volumetric strain Trε vs. axial strain εz.
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(c) Average stress σm vs. volumetric strain Trε.
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(d) Evolution in the stress domain.

Figure 4: Graphs of cyclic test. The different stages of the evolution are shown with
different colors: hydrostatic confining (red), hyperelastic (green), and plastic (blue) stage.

4.3 Cyclic triaxial test

Now, we consider a cyclic triaxial test. As in the previous subsection, we perform initially
a hydrostatic compression; then, we decrease and increase cyclically the axial strain εz
maintaining the lateral pressure constant. The parameters are again fixed by (4.4), and
the results are displayed in Figure 4. Notice that the main influence of hyperelasticity,
besides the nonlinear evolution of Trε, σm, and q, is the progressive accommodation
of the values. This is particularly relevant for the saturation of dilatancy, Figure 4b.
Furthermore, Figure 4d shows the piecewise linear evolution in the stress space:

∥σD∥ =
√
6 |σm + p0|, (4.10)
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by (4.3). The intersections of the parabolic domain with (4.10) represent the values of the
stress during the plastic phases: P 1 (4.6) when ε̇z < 0 and

P 2 := (σ2,m, ∥σD
2 ∥)

=

(−2(βm + 6a2βD)p0 − a+ 2βmb− a2 +
√
∆2

2(βm + 6a2βD)
,−

√
6
−a+ 2βmb− a2 +

√
∆2

2(βm + 6a2βD)

)
,

(4.11)

where

∆2 := a2(1 + a2) + 4(βm + 6a2βD)a2p0 − 4βma2b+ 24βDa2b(a− βmb),

when ε̇z > 0.
The dilatancy saturation shown in Figure 4b, as well as the accommodation of vol-

umetric strain shown in Figure 4c, are two sides of the same process: the loading path
presented in the generalized forces space is progressively drifting towards higher compres-
sion values. This process is due to the total strain increase and the presence of hyperelastic
coupling, so even if we start the first loading loop with an amplitude sufficient to reach the
plastification boundary, the cycling will shift the loading to a purely hyperelastic phase,
see Figures 4a, 4b and 4c. This result is a very distinguished feature of the hyperelastic
description we have introduced.

4.4 Comparison with an elastic model with linear failure criterion

As it was mentioned in the previous subsection, we have obtained some non-trivial results
for the cyclic loading test with the current hyperelastic model: the process of accom-
modation of volumetric strain and the saturation of dilatancy. That is why we found it
important to make a focus in this subsection on the comparison of the responses obtained
with the hyperelastic model with parameters (4.4), and with an elastic model (2.2) with
linear plasticity criterion for the tests of subsections 4.2 and 4.3. In particular, for the
latter model, we consider the linear yield criterion passing through P 1 (4.6) and P 2 (4.11).

Figure 5 and 6 display the results of monotonic and cyclic triaxial tests with a con-
fining pressure, respectively. The colors identifying the different stages of the evolutions
(confining, hyperelastic/elastic, and plastic) are the same as the previous subsections (red,
green, and blue). In addition, empty circles represent the response of the hyperelastic
model, while diamonds of the elastic model.

For both models and loadings, the evolution of the stress in the reversibility domain lies
on the piecewise straight-line defined by (4.10), see Figure 5d and 6d. From Figure 5b and
5c, it is evident that the elastic model provides a linear evolution while the hyperelastic
model a nonlinear one. Furthermore, the slope of dilatancy evolution is smaller with the
hyperelastic model, as shown by Figure 5b. Finally, Figure 6b and 6c show that only with
the hyperelastic model we can achieve the accommodation of the volumetric strain.
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(a) Deviatoric stress q = σx−σz vs. axial strain
εz.
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(c) Average stress σm vs. volumetric strain Trε.
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(d) Evolution in the stress domain.

Figure 5: Comparison of the response for a triaxial compression test with a confining
pressure. The different stages of the evolution are shown with different colors: hydrostatic
confining (red), hyperelastic (green), and plastic (blue) stage. The hyperelastic response
is represented with empty circles, while the elastic one with diamonds.
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(a) Deviatoric stress q = σx−σz vs. axial strain
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(c) Average stress σm vs. volumetric strain Trε.
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(d) Evolution in the stress domain.

Figure 6: Comparison of the response for a cyclic test. The different stages of the evolution
are shown with different colors: hydrostatic confining (red), hyperelastic (green), and
plastic (blue) stage. The hyperelastic response is represented with empty circles, while the
elastic one with diamonds.

4.5 Radial loadings

In this last numerical example, we consider some radial tests with fixed stress triaxiality,

i.e., loadings in which the ratio η :=
q

σm
is constant during a compression. Assuming that

σ =

σx 0 0

0 σx 0

0 0 σz

 and ε =

εx 0 0

0 εx 0

0 0 εz

 ,

we have

η = 3
σz − σx
2σx + σz

= ±
√

3

2

∥σD∥
σm

= const,

which corresponds to

σz =
3 + 2η

3− η
σx, η ∈ R.

Figure 7 shows the elastic radial evolution for five different values for η and the parameters
(4.4). The case η = 0 (violet) corresponds to a hydrostatic compression, i.e., ∥σD∥ = 0
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(b) Axial stress σz vs. axial strain εz.
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(c) Evolution in the stress domain.

Figure 7: Graphs of radial loadings with different values of η = q/σm.

and σ lies on the hydrostatic axis in Figure 7c. For all the other cases, one can notice a
nonlinear behavior in the (q,Trε)–space, Figure 7a. This kind of behavior can be observed
for some geomaterial, we cite for example [28, Figure 9]. In the stress space, the evolution
is linear, Figure 7c, and the angle θ with the hydrostatic axis depends on the absolute
value of η:

tan θ = −
√

2

3
|η|.

To conclude, while during the radial loading the evolution is still linear in stress space,
the stress-strain relation exhibits a clear nonlinear signature.

5 Conclusions

In this paper, we have studied the influence of hyperelasticity on the classical perfect plas-
ticity constitutive behavior. Inspired by the early works of Houlsby and co-authors [21, 4]
on specific forms of Gibbs free energy, we explore restrictions imposed on a simplified
Helmholtz free energy expression through elastic domain observation. We establish first
the nonlinear transformation of the formally defined thermodynamic forces to the experi-
mentally observable mechanical stresses. Our general observation is that the non-linearity
coupling influences the thermodynamic-to-experimental mapping of the reversibility re-
gion. It is shown then that, for a particular class of hyperbolic elasticity, the hyperelastic
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coupling creates a link between a linear criterion in the generalized force space and a
quadratic one in the stress space. On one hand, the Hoek–Brown criterion, empirically
found long ago, appears to be the natural choice for geomaterials that exhibit nonlinear
elastic behavior. On the other hand, in the case of elastic nonlinearity, the simple fact
of observing a fixed-in-stress-space yield surface (independent of the plastification level)
can point out the two-parameter hyperbolic elasticity relation, which is easier to fit with
experimental data. Furthermore, we have numerically implemented an example of this
hyperelastic-plastic model written in the formalism of Standard Generalized Materials,
ensuring dissipation positivity. The model has been constructed from an energy function
with hyperbolic elastic dependencies in the compressibility and shear moduli. The me-
chanical properties of the presented model have been investigated in detail. Most notably,
the obtained model reveals accommodation of dilatancy during cyclic triaxial compression
tests with a confining pressure. Being common for many geomaterials and experimentally
observed, this saturation of dilatancy constitutes another indirect proof of the importance
of hyperelasticity. For sure, the simplified example model defined here can hardly repre-
sent all aspects of the rather complex behavior of real geomaterials. Nevertheless, it can be
considered as a limiting or initial constitutive relation, serving as a fundamental brick for
more subtle models. The authors foresee some relevant modifications that hyperelasticity
would provide for previously proposed damage coupled to plasticity law [30].
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A Implementation considerations

In this section, we propose some considerations about the implementation of the constitu-
tive relation determined by (3.6), the plasticity criterion (3.10), and the normal flow rule
(3.11).

With the aim of computing the evolution of a material point under the hypothesis of a
quasi-static nonlinear problem, we discretize the problem using an incremental approach.
For simplicity, for any tensor or scalar variable x, its value at the previous equilibrium state,
at the current equilibrium state, and its increment are denoted by x−, x and ∆x := x−x−,
respectively. Then, in order to solve locally the evolution of a point we have to satisfy the
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following equations:

σ = E(Trε)(ε− p) +
1

2

∂E(Trε)
∂Trε

(ε− p) : (ε− p), (definition of σ)

X = E(Trε)(ε− p), (definition of X)

fX(X) ≤ 0, (yield criterion)

∆p = ∆λ
∂fX(X)

∂X
, ∆λ ≥ 0, (flow rule)

fX(X)∆λ = 0. (plastic evolution)

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

Here, ε, p−, and, as a consequence, σ− and X− are known, and the goal is to find the
current values p, σ, and X. The implementation of this system is composed of two main
blocks which correspond to the phase of elastic prediction and to the phase of correction
with elasto-plastic evolution.

Remark 5 (Stress computation). The stress tensor σ can be computed directly from X
thanks to the relation (3.8), instead of using the explicit expression (A.1). As a conse-
quence, for simplicity, in the following, we will only consider (A.2)–(A.5), for which the
unknowns are ∆p, X, and ∆λ.

During the phase of elastic prediction, we define

Xpred := E(Trε)(ε− p−).

If fX(Xpred) ≤ 0, then the solution is simply

(∆p,X, ∆λ) = (0,Xpred, 0).

Otherwise, we have to find (∆p,X, ∆λ) ∈ R3×3
sym × R3×3

sym × R+ such that
X = E(Trε)(ε− p− −∆p),

∆p = ∆λ
∂fX(X)

∂X
,

fX(X) = 0.

(A.6)

Remark 6. The system (A.6) with unknowns (∆p,X, ∆λ) ∈ R3×3
sym × R3×3

sym × R+ has a
symmetric Jacobian:

J̃ =


E(Trε) I4 0

I4 −∆λ
∂2fX(X)

∂X2 −∂fX(X)

∂X

0 −∂fX(X)

∂X
0

 ,

where I4 denotes the fourth-order identity tensor. As a consequence, we can easily define
an energy function ϕ̃(∆p,X, ∆λ) such that solving the problem (A.6) is equivalent to
finding an extremum of ϕ̃. In particular,

ϕ̃(∆p,X, ∆λ) =
1

2
E(Trε)∆p : ∆p+∆p :

(
X − E(Trε)(ε+ p−)

)
−∆λfX(X)
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By defining the elastic part of the strain tensor as εel := ε− p, we have

X = E(Trε)(εel,− +∆εel),

∆εel = ∆ε−∆p,

∆p = ∆λ

(
1√
6

εel,D,− +∆εel,D

∥εel,D,− +∆εel,D∥ +
a

3
I2

)
,

2√
6
µ(Trε)∥εel,D,− +∆εel,D∥+ aK(Trε)Tr (εel,− +∆εel)− b = 0.

(A.7a)

(A.7b)

(A.7c)

(A.7d)

Notice that the last two equations do not depend explicitly on X anymore, and the latter
can be easily computed once we have the increment ∆εel. As a consequence, substituting
(A.7c) into (A.7b) the problem is reduced to: Find (∆εel, ∆λ) ∈ R3×3

sym × R+ such that
∆εel −∆ε+∆λ

(
1√
6

εel,D,− +∆εel,D

∥εel,D,− +∆εel,D∥ +
a

3
I2

)
= 0,

2√
6
µ(Trε)∥εel,D,− +∆εel,D∥+ aK(Trε)Tr (εel,− +∆εel)− b = 0.

This nonlinear problem can be solved with some iterative methods like the Newton method,
for which we have to compute the Jacobian matrix:

J =

(
J1 J2
J3 0

)
,

where

J1 := I4 +
∆λ√
6

[(
I4 −

1

3
I2 ⊗ I2

)
1

∥εel,D,− +∆εel,D∥ − (εel,D,− +∆εel,D)⊗ (εel,D,− +∆εel,D)

∥εel,D,− +∆εel,D∥3

]
,

J2 :=
1√
6

εel,D,− +∆εel,D

∥εel,D,− +∆εel,D∥ +
a

3
I2,

J3 :=
2√
6
µ(Trε)

εel,D,− +∆εel,D

∥εel,D,− +∆εel,D∥ + aK(Trε)I2,

and ⊗ denotes the tensor product.

B Hyperelasticity of small rotations

In this section, we will briefly describe finite strain transformation under the assumption of
small rotations. The main aim is to justify the choice of infinitesimal strain as the primary
state variable and discuss its relevance even for cases going beyond linear approximation.
More details may be found in the classical book [40], and some useful numerical examples
are also available online https://www.continuummechanics.org/.

Let us suppose that the mechanical system evolves so that any initial vector X pointing
somewhere inside the material transforms to the final position x. Adopting the Lagrange
description, we may formally write that x is some function of X: x = χ(X). The first
approximation to the deformation generated by the transformation χ in the vicinity of the
point X is given by the function gradient tensor field F = ∇χ(X). If the knowledge of this
first approximation suffices to determine the stress at any X, the corresponding material
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is called simple [40]. For these simple materials the Cauchy stress tensor, which defines
the state of local forces, is supposed to be a function of displacement gradient F:

σ = σ(F). (B.1)

For composed transformations X ⇒ x1 ⇒ x2 the superposition rule applies. That allows
us to discretize any evolution into a sequence of step-by-step transformations:

x2 = χ21(x1) and x1 = χ10(X), F20 = F21 · F10

The attentive reader may remark that the expression (B.1) is not fully consistent,
provided the fact that rigid body rotation should not generate any internal forces: σ = 0
for F = F−† ̸= I2. We need then to introduce some supplementary ingredients into this
dependence so it becomes fully coherent.

We remind you that any tensor can be decomposed in two different ways that will be
useful for our future analysis: polar and symmetric decomposition. The polar decomposi-
tion presents the initial tensor as the product of rotation R and stretching U: F = RU,
where R†R = I2 and U = U†. Alternatively, we can decompose the initial tensor into a
sum of symmetric and antisymmetric contributions: F = Fs + Fa, where F†

s = Fs and
F†
a = −Fa. As both decompositions are constructed from the initial tensor F, it can be

seen as some bijective function relying on both representations couple: (Fs,Fa) ⇔ (R,U).
We can formally write that:

Fs =
1

2
(F+ F†) =

1

2
(RU+UR†)

Fa =
1

2
(F− F†) =

1

2
(RU−UR†),{

U =
√
(Fs − Fa) · (Fs + Fa)

R = (Fs + Fa) · ((Fs − Fa)(Fs + Fa))
−1/2 .

(B.2)

(B.3)

While the first relation (B.2) is trivial, the second one (B.3) is not easy to derive as it
relies on advanced tensor analysis methods. Let us notice at this stage that Fs is directly
related to the classical infinitesimal strain ε: Fs ≡ ε + I2. As the latter is supposed
to be an objective measure of deformations in this approximation, one may expect that
symmetric decomposition is somehow more suitable for small transformations. It’s clear,
that comprehension of the physical meaning of both decompositions lies at the core of
their relevant usage.

We will now address a more general case of finite transformations and understand
the mechanical meaning of polar decomposition. If we apply the principle of material
frame indifference (MFI) that asserts invariance under superposed rigid motion, it can be
shown that the deformation measure cannot be dependent on the rotational part of the
decomposition [40]. In other words, stress should be an exclusive function of U, which is
said to be objective observable for deformations. For locally invertible transformations,
det(F) ̸= 0, the polar decomposition is unique and U =

√
F†F. Provided the fact that

computation of a square root of a positively defined tensor is a rather challenging task,
the material constitutive relation is usually written straight with the help of the so-called
“Right Cauchy-Green Deformation Tensor” replacing the previous formal expression (B.1)
by:

σ = σ(F) ⇒ MFI ⇒ σ = σ(U) ∼ σ(U2) = σ(F†F). (B.4)
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We remark that for small deformations the Cauchy–Green tensor is close to the identity,
i.e., F†F ≈ I2, and this is why it is sometimes more convenient to introduce its shifted to
zero equivalent, called in the literature the Green–Lagrange strain: E ≡ (F†F− I2)/2.

If we summarize, the constitutive relation for simple materials is a relation between
Cauchy stress and one of the multiple versions of the objective strain measures (stretching,
Cauchy-Green Deformation, Green-Lagrange strain), while the transformation gradient
itself (i.e., F) is used in the construction of incremental evolution, but being not objective,
it’s not an appropriate measure for deformations in stress dependence expression.

B.1 Infinitesimal strain

Let us now establish a connection between finite and infinitesimal transformations. For
small deformations, the Cauchy stress is supposed to be a function of the infinitesimal
strain. It relies on the notion of the displacement field, which is defined for any material
point as the vector field u = x−X. Its gradient is related to the transformation gradient
introduced earlier by F = ∇u+ I2. Finally, the infinitesimal strain is given by:

ε =
1

2
(∇u+ (∇u)†) = Fs − I2.

The most common way to link both descriptions is to decompose up to first order in the
displacement gradient the Green–Lagrange strain E:

E =
1

2
(F†F− I2) =

1

2
([(∇u)† + I2] · [∇u+ I2]− I2) = ε+

1

2
(∇u)†(∇u),

E =
1

2
(F†F− I2) = ε+ o(∇u).

In the first order of displacement gradient, the Green-Lagrange strain is equivalent to the
infinitesimal strain. While the antisymmetric part of the transformation gradient Fa is
neglected inside the constitutive relation, its meaning could be restored by more detailed
considerations. Let us establish the link between polar and symmetric decomposition for
small deformations:

U2 = U† ·U = F†R ·R†F = F†F = I2 + 2ε+ o(∇u).

As the Cauchy–Green tensor is symmetric and both of its additive components (I2 and
2ε) commute, the square root is easily computable:

U = I2 + ε+ o(∇u) = I2 +
1

2
(∇u+ (∇u)†) + o(∇u).

For small deformations, this tensor is positively defined and can be inverted in order to
obtain rotation component R of polar decomposition:

R = FU−1 = (I2 +∇u)

(
I2 − (∇u+

1

2
(∇u)†)

)
+ o(∇u)

= I2 +
1

2
(∇u− (∇u)†) + o(∇u)

= I2 + Fa + o(∇u).

So far, we have obtained a bijective relation between symmetric and polar tensor decompo-
sition (Fs,Fa) ⇔ (R,U) for the infinitesimal approximation case. The antisymmetric part
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of the transformation gradient Fa represents infinitesimal rotations which are neglected in
the stress-strain dependence (B.4), but are present in the full expression of transformation
gradient:

F = RU = Fs + Fa = (I2 + Fa) · (I2 + ε) + o(∇u).

For composed infinitesimal transformations X ⇒ x1 ⇒ x2, the superposition rule simpli-
fies to a separate addition of infinitesimal rotations and infinitesimal strains:

x2 = χ21(x1) and x1 = χ10(X), ε20 = ε21 + ε10 and Fa,20 = Fa,21 + Fa,10.

This allows us to discretize once again any evolution into a sequence of step-by-step trans-
formations.

Finally, the classical Hooke’s law is obtained by developing Rivlin–Ericksen decompo-
sition up two first-order in displacement gradients:

σ = c0I2 + c1E+ c2E
2 = λTrε I2 + 2µε+ o(∇u). (B.5)

where ci are some functions of rotational invariants of Green–Lagrange tensor E, and λ
and µ are elastic constants (Lamé parameters).

The same equation (B.5) can be derived from the energy-based formulation. First, we
introduce Helmholtz free energy, that is a function of rotational invariants of infinitesimal
strain ε, which we can formally write as ϕ(ε). Second, the Cauchy stress tensor is obtained
as dual conjugate to the total strain, i.e., σ = ∂ϕ/∂ε. If we want to keep just linear terms
in the stress expression, we must use the second-order expansion inside the free energy.
Therefore, the free energy related to Hooke’s law can depend only on first (Tr (ε)) and
second (Tr(ε2) ≡ ε : ε) invariants of rotation, as the third one would give higher order
terms:

ϕ(ε) =
1

2
λ(Trε)2 + µε : ε+ o((∇u)2).

In conclusion, Rivlin–Ericksen and Helmholtz’s descriptions coincide for infinitesimal strain
approximation.

B.2 Small rotations

The goal of this last subsection is to see whether it is possible to extend this most trivial
constitutive equation relying on infinitesimal strain deformation’s measure for other kinds
of approximations. In particular, here we will consider the case of small rotations. By
analogy with the previous considerations, we still start from F = RU and we additionally
suppose that R = I2 +Ω, where Ω is small. This leads to:

R† ·R = I2 ⇒ Ω+Ω† +Ω† ·Ω = 0

R ·R† = I2 ⇒ Ω+Ω† +Ω ·Ω† = 0.

The small rotations are represented once again by the antisymmetric tensor: Ω = −Ω† +
O(ΩΩ†). As we have mentioned before, (B.2) polar to symmetric relation is straightfor-
ward, so we get:

Fs =
1

2
((1 +Ω)U+U(1 +Ω†)) = U+

1

2
(ΩU+UΩ†)

Fa =
1

2
((1 +Ω)U−U(1 +Ω†)) =

1

2
(ΩU−UΩ†).
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Its inverse can be obtained up to any order in the small rotation expansion:
U = Fs −

1

2
(ΩFs + FsΩ

†) +
1

4
(Ω2Fs + 2ΩFsΩ

† + Fs(Ω
†)2) + o(Ω2)

Fa =
1

2
(ΩFs − FsΩ

†)− 1

4
(Ω2Fs − Fs(Ω

†)2) + o(Ω2).

We can now make the first quite trivial conclusion, that for any finite transformation,
the stretching tensor is equal to the symmetric part of the transformation gradient for
vanishing rotation. We are going further, reminding that Fs is nothing else as I2 + ε, and
developing the equation for stretching U up to the first order in Ω:

U− I2 = ε+
1

2
(εΩ−Ωε) +O(Ω2),

(U− I2)
2 = ε2 +

1

2
(ε2Ω−Ωε2) +O(Ω2).

(B.6)

(B.7)

The Cauchy stress can be obtained through the Rivlin–Ericksen decomposition, written
for convenience for shifted stretching tensor U− I2:

σ = c0I2 + c1(U− I2) + c2(U− I2)
2 = c0I2 + c1ε+ c2ε

2 +O(Ω). (B.8)

Even if we use infinitesimal strain as a deformation measure it does not need to be small,
since it should be just seen as shifted symmetric part of the transformation gradient:
ε = (∇u + (∇u)†)/2 = Fs − I2. In this expression, the linear terms in the stretching
tensor Ω will appear as they are initially present in the stretching expansion (B.6), for
instance, σ ∼ εΩ−Ωε. We will show further that, if we follow the energy approach, these
linear terms will disappear in the final constitutive relation.

We make first an interesting remark: while the tensor expressions (B.6) are equal up
to the first order in rotation, all of their invariants (trace, deviator, and determinant) are
equal up to the second order in rotation. From (B.6) we get the first two invariants:

Tr (U− I2) = Tr(ε) +O(Ω2)

Tr (U− I2)
2 = Tr(ε2) +O(Ω2)

For the last invariant we have computed first the cube of shifted stretching:

(U− I2)
3 = ε3 + (ε3Ω−Ωε3)/2 +O(Ω2)

Tr (U− I2)
3 = Tr(ε3) +O(Ω2).

Finally, as all “mechanical” invariants (trace, deviator, determinant) are functions of
three traces obtained just above, they would also be equal between shifted stretching
(U − I2) and infinitesimal strain ε. The most general hyperelastic isotropic constitutive
relation is obtained as the derivative of Helmholtz free energy, that is a function of the
three rotational invariants of infinitesimal strain ε up to the second order approximation
in rotation tensor Ω:

ϕ = ϕ(Tr (U− I2),Tr(U− I2)
2,Tr(U− I2)

3) = ϕ(Trε,Tr(ε2),Tr(ε3)) +O(Ω2),

so we can formally write

ϕ(U− I2) = ϕ(ε) +O(Ω2)
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and

σ = d1I2 + d2(U− I2) + d3(U− I2)
2 = r1I2 + r2ε+ r3ε

2 +O(Ω2). (B.9)

where the functions dn and rn are the partial derivatives of the free energy ϕ:

dn = n
∂ϕ(U− I2)

∂Tr [(U− I2)n]
and rn = n

∂ϕ(ε)

∂Tr(εn)
n ∈ {1, 2, 3}.

The main difference between the Rivlin–Ericksen constitutive relation (B.8) and the hy-
perelastic Helmholtz one (B.9) is that the latter expansion on small rotation does not
have any linear in the Ω term. The explanation of this major difference is that linear
terms (for example σ ∼ εΩ − Ωε) result in a non-symmetric tangent operator ∂σ/∂ε,
which points out the absence of gradient-generating energy function, thus violating the
Clairaut–Schwarz theorem.

We summarize here our main conclusion: the hyperelastic Helmholtz’s description for
small rotation approximation results in the very general constitutive relation (B.9), where
the infinitesimal strain can still be used as an objective measure of deformation up to the
second order in rotations Ω.
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