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Abstract

We analyze the influence of hyperelasticity on the plastic behavior of materials. A
specific class of what we call hyperbolic elasticity arises from theoretical considerations
as straight consequence of plastic invariance of elastic domain. The latter property of
fixed residual plasticity is observed experimentally for many geomaterials. We super-
impose hyperelastic effects on the plastic Drucker–Prager constitutive relation, widely
used in geoscience. Curiously, we found that the hyperbolic nonlinearity, introduced
through the Standard Generalized Material formalism, curves the initially linear sur-
face to a quadratic one, that is assimilated to the generalized Hoek–Brown criterion.
We conclude than that one possible justification of the empirical Hoek–Brown fit is
the material’s hyperlastic nature.

Keywords: hyperelasticity, elasto-plastic model, Hoek–Brown criterion, constitutive re-
lation, Drucker–Prager criterion, Fairhurst criterion

1 Introduction

One of the key points in the accurate description of rocks is the precise identification of
their elastic domain (or yield surface/criterion). Due to the softening behavior, not only
rocks but also all analogous materials like concrete, clay, soil or even ice [33] are commonly
classified by their resistance to various mixed mode loading. This approach is closely
related to the basic safety rules in industrial applications, where it is often considered that
geomaterials could exhibit unstable failure once the critical loading is reached [14].

Throughout the last century, specific testing machines and corresponding measurement
protocols were established by national and international committees in order to harmonize
and standardize the experimental characterization of the above-cited brittle materials. To
mention only a few, the brazilian tensile [3], oedometric, uni- and tri-axial compression are
all well documented experiments that are routinely executed to catalog material strength
by spotting just some points of their multidimensional yield surface. This reduced “single
point” vision of material resistance is increasingly scrutinized in recent times, and multiple
evolutions have been adopted. For instance, constant improvements of finite element
software enable new kinds of modeling, with loadings going beyond the elastic domain
to explore a more subtle post-peak behavior. In the corresponding mechanical tests, the
response of the material subjected to a set of pre-established loadings is analyzed during
both the elastic and softening phase, enabling the full model parameter fitting. Some

∗Corresponding author

1



more sophisticated hybrid measurement techniques are also proposed, where the loading
pass is adapted during the test execution. A single, all in one experiment, replaces the
classical set with the same goal of full model identification [18]. While the complexity
of post-peak description could be reached through various theoretical formalisms, most of
them still rely on the initial yield surface definition, and the question of this elastic domain
shape remains the cornerstone of any non-linear model identification. Even if considerable
progress was made in recent decades, this precise identification of yield surface remains
nowadays a rather challenging task [21].

A common feature of geomaterials is their strong resistance to compressive loading.
For some large scale structures, like hydraulic dams or underground tunnel excavations,
the construction material is naturally submitted to high levels of compression. For oth-
ers, like nuclear confinement buildings or bridges, civil engineering constitutive concrete
parts are pre-loaded to reach artificially an initial compression state by supplementary
constraint of tension reinforcing steel tendons. In both cases, the property of higher
compressive resistance is exploited on industrial level with the aim of increasing global
structure robustness.

According to the physical origin of geomaterials, a large variety of criteria defining the
elastic domain are employed in order to model their mechanical behavior. The simplest
surface, admitting infinite resistance in compression, is the linear cone-shaped one. It
was first introduced more than a century ago and, depending on whether it is written in
principal stresses or with help of rotational invariants, it’s commonly called either Mohr–
Coulomb [4, 25] or Drucker–Prager [6] criterion. Straight relation between shear and
compressive loadings, which is the main signature of these linear criteria, has allowed the
development of various constitutive relations based on the same simplified dependence
[20, 1].

In the middle of the last century, with numerous large infrastructural projects ongo-
ing, more complex criteria emerged as further experimental data became available. For
wider ranges of loadings, the friction-type shear dependency seemed to be deflecting from
the linear curve. Logically, a quadratic relation was to be explored first. Back in 1924,
assuming the hypothesis of crack propagation via rapid growth of randomly distributed
micro-flaws, Griffith had already obtained a theoretical justification of the parabolic yield
shape [10]. Inspired by the Griffith’s model, Fairhust proposed its empirical extension
validated on the tensile Brazilian test [9]. In this spirit, in 1980 Evert Hoek and Edwin T.
Brown [13] came up with a new particular shape of quadratic nonlinear criterion. It repro-
duced the Mohr–Coulomb type singularity for weak tensile loading simultaneously taking
into account the reduction of shear resistance for high compression. Purely empirical, the
Hoek–Brown criterion was originally obtained for intact rocks by two parameters fitting
of the results of triaxial tests. Validated during the following years on wider experimental
database, the criterion was used extensively in the design of underground excavations [14].

It should be underlined that not only previously cited [10, 9, 13], but many other
authors (e.g. [28]) kept the number of model parameters reduced, so that the better fit
was obtained by the new curve’s form itself, rather then by the addition of supplementary
fitting variables. Consequently, the final expression of the failure criteria, being pure
result of trial error process, appears quite artificial at first glance. In this article we
try to establish a possible hyperelastic link between the whole class of quadratic Hoek–
Brown type criteria and their linear Mohr–Coulomb (Drucker–Prager) counterparts. The
single hypothesis of existence of a stable failure surface under free-energy type description
generates a sub-class of quadratic yield surfaces from the linear relation of generalized
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plastic force. The Hoek–Brown relation is seen then as a consequence of the simultaneous
presence of both plasticity and nonlinear elasticity phenomena in the geomaterial under
investigation.

2 Main idea in the nutshell

In this section we summarize the main idea of the article reducing as far as possible tech-
nical details and complex notation that are required for a rigorous theoretical description.

Under the small deformation hypothesis, the thermodynamical description of contin-
uum mechanics relies on the Helmholtz free energy density definition. For isothermal
evolution in presence of plasticity, this function depends on at least two state variables:
the total strain ε and the plastic strain p, i.e., φ(ε,p). The Cauchy stress tensor is then
the dual conjugate to the total strain σ = ∂φ/∂ε, while the energy response of the system
on plastic strain evolution is captured through the generalized plastic force X = −∂φ/∂p.
Most elasto-plastic models admit additive separation of elastic and plastic strains. This
leads to the simplest quadratic form of free energy describing residual plastic state :

φ(ε,p) =
1

2
E(ε− p)2, (2.1)

where E is the constant elastic modulus. Notice that we adopt abridged notations for
tensor operations. In particular, in this linear elastic case, the generalized plastic force
and Cauchy stress are equal:

σ = X = E(ε− p). (2.2)

The reversible elastic domain, characterized by the absence of plasticity evolution, is de-
fined in the space of generalized force: p = const ⇒ X ∈ KX . As we have mentioned in
the introduction, considerable experimental efforts are focused on the identification of the
elastic domain. In perfect plasticity hypothesis, the domain is fixed during evolution and
it could consequently be considered as main material property. On further stage of model
development, a plastic variable evolution is introduced, as it is commonly done either
trough dissipation potential [11], plastic potential [31] or directly via explicit flow rule.
Among the many possible existing extensions of the basic perfect plasticity constitutive
model, we focus this work on the modification of the shape of the elastic domain generated
by hyperelasticity [27].

Unlike Cauchy elasticity, that postulates linear (Hooke’s law) or non linear straight
stress-strain relationship, hyperelasticity admits the existence of scalar strain energy den-
sity function from which the stress is derived: σ = ∂φ/∂ε. In this sense, the hyperelastic
formalism is conservative and is compatible with a general thermodynamical description.
Usually written for large strain [27], it is easily adapted to the small strain hypothesis [26].

Let us suppose that, in (2.1), the elastic modulus is some function of the total infinites-
imal strain, i.e., E = E(ε). The stress-strain relationship becomes nonlinear and the stress
is no longer equal to the generalized plastic force:

X = E(ε− p) 6= σ.

Formal writing of the expression for the stress gives:

σ = E(ε− p) +
∂E
2∂ε

(ε− p)2 = X +
∂E

2E2∂ε
X2. (2.3)
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If the elastic domain is fixed in the space of generalized force X, in the presence of hyper-
elasticity it becomes strain dependent in the space of stresses σ: Kσ. For small loading
(X � 1) the quadratic term ∼ X2 could be considered as a nonlinear cinematic harden-
ing, but in general the equation (2.3) states the nonlinear modification of the initial elastic
domain Kσ 6= KX . For plastifying cyclic loading, the initial yield surface is modified on
each back-and-forth loop creating a mechanism similar to those introduced earlier by dif-
ferent authors, like bounding surface in [5] or parent/child surfaces in Hujeux constitutive
behaviour [2]. Therefore, the presence of hyperelasticity in plastic materials introduces
not only a nonlinear stress-strain relationship, but also a modification of elastic domain
represented in stress space.

Nonlinear behaviors of rocks, clays and soils are historically well known, but are often
considered less relevant than other major mechanical phenomena, like fracture, plasticity,
dilatancy etc. For most geomaterials the reversible elastic domain is comparatively small
and hard to quantify experimentally. Nevertheless, some recent well documented experi-
ments manage to separate and evaluate the elastic nonlinearity itself. For example, in [19]
the authors conducted locally cyclic loadings on sand that revealed its hyperelastic proper-
ties. Even if this new experiment sheds light on this longtime forgotten phenomenon, the
general hyperelastic coupling term is too complex to be fully identified. Natural question
arise on how to handle all possible couplings in the multidimensional tensor relation E(ε).
In this article, it is shown that hyperelastic coupling term can be simplified (2.4) enabling
its analysis with the currently accessible experimental databases (e.g. [19]).

We introduce a particular class of hyperelasto-plastic materials that have fixed yield
criterion in the stress space. This yield criterion can be considered either as initial elastic
domain or as residual yield surface, for example for fully damaged elasto-plastic coupled
to damage behavior [24]. As the elastic domain in the space of generalized force X is
supposed to be fixed, it would also stay fixed in the space of stresses σ if and only if the
coupling term in (2.3) is constant:

∂E
2E2∂ε

= const.

This condition defines one particular class of hyperelastic materials that keep the elastic
domain fixed. This equation states that the material compliance should be linear with
total strain:

∂E
2E2∂ε

= −∂E
−1

2∂ε
= const =⇒ E−1 ∼ ε. (2.4)

This formal writing of a tensor based expression is certainly over-simplified, but it allows us
to propose a sub-class of hyperelastic materials that has fixed yield surface. For instance,
we could reach this condition by setting both Lamé coefficients as hyperbolic functions
of the strain trace. This particular case of hyperelasticity and subsequent constitutive
relation obtained under the assumption of Standard Generalized Materials [11, 8] are ana-
lyzed in detail in the next section. In particular, we will show that the model constructed
starting from a Drucker–Prager (linear) plasticity criterion in the generalized force space
will lead to a nonlinear hyperelastic constitutive law with a quadratic Hoek–Brown type
domain in the stress space.

3 Hyperelasticity with fixed plastic yield surface

Inspired by the ideas presented shortly above, in this section we display how to derive the
elasto-plastic model with a three-dimensional Hoek–Brown–type yield criterion, adding a
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specific type of hyperelasticity to the initially linear plasticity criterion.
Above and throughout this section, we use the usual notation of mechanics: u is the

unknown displacement field, ε ∈ R3×3
sym is the strain tensor, i.e., the symmetric part of the

gradient of u, p ∈ R3×3
sym is the plasticity component of the strain tensor, i.e., p = ε− εel,

σ ∈ R3×3
sym is the stress tensor, and X ∈ R3×3

sym is the thermodynamical force associated
with plasticity, i.e., the plastic dual variable. Strain and plasticity tensors are the state
variables of our model and, for simplicity, they are decomposed into their volumetric and
deviatoric parts:

ε =
1

3
Trε I2 + εD and p =

1

3
Trp I2 + pD.

We adopt the usual convention in mechanics of continuous media for the sign of strain
and stress, i.e., the stress is positive in traction and negative in compression.

3.1 Brief history of quadratic yield criteria

We start first with a brief description of the history of the introduction of quadratic yield
surfaces, what we call “Hoek–Brown–type” yield surfaces.

Back in 1924, while studying the mechanical behavior of glasses, Griffith [10] was the
first to derive from theoretical considerations a quadratic multi-axial criterion for fracture:

(σ1 − σ3)2 ∼ (σ1 + σ3)

where σ1 and σ3 the major and minor principal stresses, respectively.
Forty years later, Fairhust [9] attempted to empirically extend the work of Griffith for

the domain of high compression suitable for rock behavior analysis.
Finally, in 1980 Hoek and Brown [13] obtained a criterion shape that convinced many

generations of geomaterial scientists. The original Hoek–Brown criterion is still widely
used in rock mechanics and, for intact rocks, it can be written as:

σ1 = σ3 + C0

√
mi

σ3
C0

+ 1,

where C0 is the uniaxial compressive strength and mi is a material constant for the intact
rock. For more details about these constants, we refer to [15, 16], where a generalized
version of the criterion involving the geological strength index (GSI) is also proposed and
analyzed. Furthermore, the evolution of the Hoek–Brown criterion in the literature is
summarized in the article [17].

Since many papers have exhibited the strong influence of the intermediate principal
stress σ2 (see, e.g., [22, 7] and the references therein), different three-dimensional ex-
tensions based on the Hoek–Brown criterion have been developed [29, 32, 30, 22]. In
particular, the generalized form of the Pan–Hudson criterion proposed by X. D. Pan and
J. Hudson [28] reads, for an intact rock, as :

3

2C0

∥∥σD∥∥2 +

√
3mi

2
√

2

∥∥σD∥∥+miσm − C0 = 0,

where σm and σD are the spherical and deviatoric part of the stress tensor, respectively,
i.e.,

σ = σm I2 + σD, where σm =
1

3
Trσ, (3.1)
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and
∥∥σD∥∥ :=

√
σD : σD. Here, I2 denotes the second order identity tensor, and the double

dot product is simply the double contraction operation for second order tensors. All the
described criteria are parabolic and can be summarized as various choices of constants in
the general expression:

fσ = A
∥∥σD∥∥2 +B

∥∥σD∥∥+ Cσm −D = 0.

In this article we don’t suppose, but derive quadratic yield criterion of this type under the
assumption of Standard Generalized Materials [11] in a variational framework in presence
of hyperelasticity. In particular, as we have already mentioned, we will show that this
model can be constructed by starting from and elasto-plastic model with a Drucker–
Prager (linear) plasticity criterion and introducing hyperbolic hyperelastic dependence in
some material parameters. This will lead to a nonlinear elastic constitutive relation with
Hoek–Brown type yield surface.

3.2 Energy density and derivation of the stress tensor

We begin our analysis by precising the tensor notation for the perfect elasto-plastic model
already introduced in the previous section. In particular, the considered free energy density
corresponds to the non-hardening version of [24, Equation (11)], where the material is
assumed to be isotropic:

φ(ε,p) =
1

2
E(ε− p) : (ε− p)

=
1

2
K(Trε− Trp)2 + µ(εD − pD) : (εD − pD).

(3.2)

Here, the action of the fourth order elasticity tensor E is described by Eτ = λTrτ I2+2µτ
for any second order tensor τ , λ > 0 is the Lamé parameter, µ > 0 is the shear modulus,
and K = λ+ 2µ/3 is the compressibility modulus of the material. The dual variables σ and
X can be obtained by deriving the energy density (3.2) with respect to the state variables
ε and p:

σ :=
∂φ

∂ε
(ε,p) and X := −∂φ

∂p
(ε,p). (3.3)

In particular, we recall that in this case we simply obtain (2.2).
Now, we introduce some hyperelasticity dependencies in the elasticity tensor, and in

particular we suppose E = E(Trε). Indeed, as discussed in the previous section, material
compliance need to be linear function of strain (2.4). If trace dependence is natural,
the deviator one is not obvious as it wouldn’t be derivable on hydrostatic axis. Here, in
particular, we meet the required conditions by assuming:

K(Trε) =
Ki

2KiβmTrε+ 1
and µ(Trε) =

µi
4µiβDTrε+ 1

,

where Ki > 0 and µi > 0 are the initial compressibility and shear moduli of the sound
material, βm ≥ 0 and βD ≥ 0 are the hyperelastic parameters of the model. In addition,
we restrict ourselves to the tests in which

Trε > ε0 := max

{
− 1

2Kiβm
,− 1

4µiβD

}
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in order to ensure the positivity of K0(Trε) and µ0(Trε). Denoting with Xm and XD

the spherical and deviatoric components of X as we have done for the stress (3.1), the
expression of σ and X can be easily obtained thanks to (3.3):

σm =
Ki

2KiβmTrε+ 1
(Trε− Trp)− K2

i βm
(2KiβmTrε+ 1)2

(Trε− Trp)2

− 4µ2iβ
D

(4µiβDTrε+ 1)2
(εD − pD) : (εD − pD),

σD =
2µi

4µiβDTrε+ 1
(εD − pD),

(3.4)

and 
Xm =

Ki

2KiβmTrε+ 1
(Trε− Trp),

XD =
2µi

4µiβDTrε+ 1
(εD − pD).

(3.5)

As a consequence, σ and X are connected through the following relation:

σ = X −
(
βmX

2
m + βDXD : XD

)
I2. (3.6)

Notice that this relation only involves the hyperelastic parameters βm and βD.

3.3 The plasticity criterion

For our model, we consider the Drucker–Prager criterion in the X–space:

fX(X) :=
1√
6

∥∥XD
∥∥+ aXm − b = 0, (3.7)

where a > 0 and b ≥ 0, and we recall that ‖τ‖ :=
√
τ : τ . The corresponding elastic

domain KX := {X∗ ∈ R3×3
sym : fX(X∗) ≤ 0} is a convex cone with a singular point at(

b
a ,0
)
, and the behavior remains elastic while fX(X) < 0. Moreover, consistently with

the Standard Generalized Materials framework, we consider an associative model, i.e., we
assume that the plasticity evolution follows the normality rule. As a consequence, in the
points in which the boundary is smooth, i.e., where the function fX is differentiable, we
have

ṗ = λ̇

(
1√
6

XD

‖XD‖
+
a

3
I2

)
, λ̇ ≥ 0. (3.8)

For further details, we refer the reader to [24, Section 2]. In addition, if b 6= 0, we assume

βm ≤
a

2b
. (3.9)

Combining (3.7) with (3.6), one can obtain the explicit expression of the plasticity criterion
in the stress space:

fσ(σ) :=
1

6

(
βm + 6a2βD

) ∥∥σD∥∥2 +
1√
6

(a− 2βmb)
∥∥σD∥∥+ a2σm − b (a− βmb) = 0.

(3.10)
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σm

‖σD‖
βm 6= 0, βD = 0

βm 6= 0, βD 6= 0

βm = 0, βD 6= 0

Figure 1: Transformation of the failure criterion for different values of the hyperelastic
coefficients βm and βD. The black dashed line represents the linear failure criterion (3.7).

Therefore, starting from the linear failure criterion (3.7) for the generalized force X, we
obtain a quadratic failure criterion for the stress tensor σ. The corresponding reversibility
domain Kσ := {σ∗ ∈ R3×3

sym : fσ(σ∗) ≤ 0} is a convex cone with parabolic boundary

and a singular point in
(
b(a−βmb)

a2
,0
)

. Notice that, since (3.10) does not depend on ε or

p, Kσ remains fixed for any type of evolution. Figure 1 show the transformation of the
failure criterion from linear to quadratic for three different choices of the hyperelasticity
parameters (βm, β

D).

Remark 3.1 (Motivations of assumption (3.9)). Assumption (3.9) ensures that the domain
in the stress space is convex and contains the origin 0 of the space. Furthermore, with
this condition, the quadratic failure criterion can be written as

1√
6

∥∥σD∥∥ =
−(a− 2βmb) + a

√
1− 4σm(βm + 6a2βD) + 24βDb(a− βmb)

2(βm + 6a2βD)
.

3.4 Implementation considerations

In this section we propose some considerations about the implementation of the constitu-
tive relation determined by (3.4), the plasticity criterion (3.7), and the normal flow rule
(3.8).

With the aim of computing the evolution of a material point under the hypothesis of a
quasi-static nonlinear problem, we discretize the problem using an incremental approach.
For simplicity, for any tensor or scalar variable x, its value at the previous equilibrium state,
at the current equilibrium state, and its increment are denoted by x−, x and ∆x := x−x−,
respectively. Then, in order to solve locally the evolution of a point we have to satisfy the
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following equations:

σ = E(Trε)(ε− p) +
1

2

∂E(Trε)

∂Trε
(ε− p) : (ε− p), (definition of σ)

X = E(Trε)(ε− p), (definition of X)

fX(X) ≤ 0, (yield criterion)

∆p = ∆λ
∂fX(X)

∂X
, ∆λ ≥ 0, (flow rule)

fX(X)∆λ = 0. (plastic evolution)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Here, ε, p−, and, as a consequence, σ− and X− are known, and the goal is to find the
current values p, σ and X. The implementation of this system is composed by two main
blocks which correspond to the phase of elastic prediction and to the phase of correction
with elasto-plastic evolution.

Remark 3.2 (Stress computation). The stress tensor σ can be computed directly from
X thanks to the relation (3.6), instead of using the explicit expression (3.11). As a
consequence, for simplicity, in the following we will only consider (3.12)–(3.15), for which
the unknowns are ∆p, X, and ∆λ.

During the phase of elastic prediction, we define

Xpred := E(Trε)(ε− p−).

If fX(Xpred) ≤ 0, then the solution is simply

(∆p,X, ∆λ) = (0,Xpred, 0).

Otherwise, we have to find (∆p,X, ∆λ) ∈ R3×3
sym × R3×3

sym × R+ such that
X = E(Trε)(ε− p− −∆p),

∆p = ∆λ
∂fX(X)

∂X
,

fX(X) = 0.

(3.16)

Remark 3.3. The system (3.16) with unknowns (∆p,X, ∆λ) ∈ R3×3
sym × R3×3

sym × R+ has a
symmetric jacobian:

J̃ =


E(Trε) I4 0

I4 −∆λ∂
2fX(X)

∂X2 −∂fX(X)

∂X

0 −∂fX(X)

∂X
0

 ,

where I4 denotes the fourth order identity tensor. As a consequence, we can easily define
an energy function φ̃(∆p,X, ∆λ) such that solving the problem (3.16) is equivalent to
find an extrema of φ̃. In particular,

φ̃(∆p,X, ∆λ) =
1

2
E(Trε)∆p : ∆p+∆p :

(
X − E(Trε)(ε+ p−)

)
−∆λfX(X)
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By defining the elastic part of the strain tensor as εel := ε− p, we have

X = E(Trε)(εel,− +∆εel),

∆εel = ∆ε−∆p,

∆p = ∆λ

(
1√
6

εel,D,− +∆εel,D

‖εel,D,− +∆εel,D‖
+
a

3
I2

)
,

2√
6
µ(Trε)‖εel,D,− +∆εel,D‖+ aK(Trε)Tr (εel,− +∆εel)− b = 0.

(3.17a)

(3.17b)

(3.17c)

(3.17d)

Notice that the last two equations does not depend explicitly onX anymore, and the latter
can be easily computed once we have the increment ∆εel. As a consequence, substituting
(3.17c) into (3.17b) the problem is reduced to: Find (∆εel, ∆λ) ∈ R3×3

sym × R+ such that
∆εel −∆ε+∆λ

(
1√
6

εel,D,− +∆εel,D

‖εel,D,− +∆εel,D‖
+
a

3
I2

)
= 0,

2√
6
µ(Trε)‖εel,D,− +∆εel,D‖+ aK(Trε)Tr (εel,− +∆εel)− b = 0.

This nonlinear problem can be solved with some iterative methods like the Newton method,
for which we have to compute the Jacobian matrix:

J =

(
J1 J2
J3 0

)
,

where

J1 := I4 +
∆λ√

6

[(
I4 −

1

3
I2 ⊗ I2

)
1

‖εel,D,− +∆εel,D‖
− (εel,D,− +∆εel,D)⊗ (εel,D,− +∆εel,D)

‖εel,D,− +∆εel,D‖3

]
,

J2 :=
1√
6

εel,D,− +∆εel,D

‖εel,D,− +∆εel,D‖
+
a

3
I2,

J3 :=
2√
6
µ(Trε)

εel,D,− +∆εel,D

‖εel,D,− +∆εel,D‖
+ aK(Trε)I2,

and ⊗ denotes the tensor product.

4 Numerical results

The aim of this section is to show a panel of examples of evolution using the proposed hy-
perelastic model in some typical test cases. In particular, we want to exhibit the influence
of the hyperelastic parameters and to provide a comparison with the linear elasto-plastic
model. The results are obtained with the open source code generation tool mfront (see [12]
and also http://tfel.sourceforge.net). For all tests we start from a natural reference
configuration with p = 0, and we set the Poisson parameter ν = 0.3, which corresponds
to the compressibility modulus Ki = 5E/6 and to the shear modulus µi = 5E/13.

4.1 Hydrostatic triaxial tests

During a hydrostatic triaxial test, the stress remains on the hydrostatic axis throughout
the loading. This corresponds to the assumption that only the spherical part of the stress
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−σm/E
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−σm/E

Figure 2: Graphs of hydrostatic triaxial test: compression (left) and traction (right).

evolves, i.e., σ = σ̄I2, with σ̄ < 0 for compression tests, and σ̄ > 0 for traction tests. For
simplicity, we suppose that the lower boundary for the evolution of the volumetric part

of the strain is ε0 = − 1

2Kiβm
, i.e., Kiβm ≥ 2µiβ

D. From the second equation of (3.4)

we have immediately that εD = 0. The behavior is always hyperelastic, i.e., σ ∈ IntKσ,
during a hydrostatic compression test. In particular, the evolution is simply described by

σ = σmI2 =

[
Ki

2KiβmTrε+ 1
Trε− K2

i βm
(2KiβmTrε+ 1)2

(Trε)2
]
I2,

or

ε =
Trε

3
I2 =

[
1

6Kiβm

(
−1 +

1√
1− 4βmσm

)]
I2.

In a traction test, there is an initial hyperelastic behavior until σm reaches his maximum

value
b(a− βmb)

a2
determined by the plasticity criterion (3.10). Then, the spherical part of

the stress remains constant and plasticity evolves. One can see the corresponding graphs
of the evolution of the hydrostatic stress σm as function of Trε in Figure 2, in the case of
compression (left) and traction (right) with parameters a = 1, b = E, βm = 1/(5E), and
βD ≤ 13βm/12.

4.2 Uniaxial compression test with a confining pressure

A unilateral compression test with a confining pressure is divided in two phases:

- at first, a hydrostatic compression is performed reaching the value of pressure p0,

- then, we compress along the z–axis maintaining the lateral pressure constant.

As we have already seen in the previous subsection, during the confining phase the behavior
is elastic, i.e., p = 0, and only the hydrostatic component evolves, i.e., σD = εD = 0. At
the end of this stage σ = −p0 I2 and ε = ε̄ I2, where p0 > 0 and

ε̄ :=
1

6Kiβm

(
−1 +

1√
4βmp0 + 1

)
.
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(a) Deviatoric stress q = σx−σz vs. axial strain
εz.
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(b) Volumetric strain Trε vs. axial strain εz.
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(c) Average stress σm vs. volumetric strain Trε.
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(d) Evolution in the stress domain.

Figure 3: Graphs of uniaxial compression test with a confining pressure. The different
stages of the evolution are shown with different colors: hydrostatic confining (red), hyper-
elastic (green), and plastic (blue) stage.

Then, during the second phase of the loading, we prescribe the evolution of εz with ε̇z < 0,
while the lateral pressure stays equal to p0:

σ =

−p0 0 0

0 −p0 0

0 0 σz

 and ε =

εx 0 0

0 εx 0

0 0 εz

 .

In addition, in this case we have σm =
1

3
(σz − 2p0) and ‖σD‖ =

√
2

3
|p0 + σz|, and we

define the deviatoric stress q := p0 + σz. After an initial elastic phase, the boundary of
the reversibility domain Kσ is reached, and, as a consequence, plasticity starts to evolve
following the normality rule.

Figure 3 shows the evolution curves for this kind of test, highlighting with different
colors the stages of confining compression, hyperelastic, and plastic evolution. The pa-
rameters are given by:

a = 0.25, b =
E

10
, βm =

1

4E
, βD =

3

10E
, p0 =

E

10
. (4.1)
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(a) Deviatoric stress q = σx−σz vs. axial strain
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(b) Volumetric strain Trε vs. axial strain εz.
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(c) Average stress σm vs. volumetric strain Trε.
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(d) Evolution in the stress domain.

Figure 4: Graphs of cyclic test. The different stages of the evolution are shown with
different colors: hydrostatic confining (red), hyperelastic (green), and plastic (blue) stage.

The nonlinear influence is evident especially during the hyperelastic phase (in green) in
Figures 3b and 3c. During the plastic phase the average stress σm and the deviatoric stress
q stay constant (see Figures 3a and 3c), since in the model we propose the is no hardening
coefficient. Moreover, Figure 3b displays the presence of dilatancy without saturation,
which is a consequence of the normal flow rule for the evolution of plasticity.

4.3 Cyclic test

In this subsection we consider a cyclic test in which at first we perform a hydrostatic
compression, and then we decrease and increase cyclically the axial strain εx maintaining
the lateral pressure constant. The parameters are again fixed by (4.1). The results are
displayed in Figure 4. Notice that the main influence of hyperelasticity is the progressive
accomodation of the values. This is particularly relevant for the saturation of dilatancy,
Figure 4b.
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Figure 5: Graphs of radial loadings with different values of η = q/σm.

4.4 Radial loadings

In this last numerical example, we consider some radial tests, i.e., loadings in which the

ratio η :=
q

σm
is constant during a compression. Assuming that

σ =

σx 0 0

0 σx 0

0 0 σz

 and ε =

εx 0 0

0 εx 0

0 0 εz

 ,

we have

η = 3
σz − σx
2σx + σz

= ±
√

3

2

‖σD‖
σm

= const,

which corresponds to

σz =
3 + 2η

3− η
σx, η ∈ R.

Figure 5 shows the elastic radial evolution for five different values for η and the parameters
(4.1). The case η = 0 (violet) corresponds to a hydrostatic compression, i.e., ‖σD‖ = 0
and σ lies on the hydrostatic axis in Figure 5c. For all the other cases, one can notice a
nonlinear behavior in the (q,Trε)–space, Figure 5a. This kind of behavior can be observed
for some geomaterial, we cite for example [23, Figure 9]. In the stress space, the evolution
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is linear, Figure 5c, and the angle θ with the hydrostatic axis depends on the absolute
value of η:

tan θ = −
√

2

3
|η|.

5 Conclusions

In this paper we have studied the influence of hyperelasticity on the classical perfect
plasticity constitutive behavior. It has been shown that, for a particular class of hypere-
lasticity, the latter phenomenon creates a link between a linear criterion in the generalized
force space and a quadratic one in the stress space. On one hand, as first consequence
the Hoek–Brown criterion, empirically found long ago, appears to be the natural choice
for geomaterials that exhibit nonlinear elastic behavior. On the other hand, the simple
fact of observing fixed in stress-space yield surface (independent of plastification level) can
point out the hyperbolic elasticity relation, that is easier to fit to experimental data [19].
Furthermore, we have numerically implemented an example of this hyperelasto-plastic
model written in the formalism of Standard Generalized Materials. The model has been
constructed in the spirit of [8] from an energy function with hyperbolic elastic dependen-
cies in the compressibility and shear moduli. The mechanical properties of the presented
model have been investigated in details. Most notably, the obtained model reveals accom-
modation of dilatancy during uniaxial compression tests with a confining pressure. Being
common for many geomaterials and experimentally observed, this saturation of dilatancy
constitutes another indirect proof of importance of hyperelasticity. For sure, the simplified
example model defined here can hardly represent all aspects of rather complex behavior
of real geomaterials. Nevertheless, it can be considered as limiting or initial constitutive
relation serving as fundamental brick for more subtle models. The authors foresee some
relevant modifications that hyperelasticity would provide for previously proposed damage
coupled to plasticity law [24].
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