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Abstract
The possibility for one to recover the parameters –weights and biases– of a neural network thanks

to the knowledge of its function on a subset of the input space can be, depending on the situation,
a curse or a blessing. On one hand, recovering the parameters allows for better adversarial attacks
and could also disclose sensitive information from the dataset used to construct the network. On the
other hand, if the parameters of a network can be recovered, it guarantees the user that the features in
the latent spaces can be interpreted. It also provides foundations to obtain formal guarantees on the
performances of the network.

It is therefore important to characterize the networks whose parameters can be identified and those
whose parameters cannot.

In this article, we provide a set of conditions on a deep fully-connected feedforward ReLU neural
network under which the parameters of the network are uniquely identified –modulo permutation and
positive rescaling– from the function it implements on a subset of the input space.

Keywords: ReLU networks, Equivalent parameters, Symmetries, Parameter recovery, Deep
Learning

1 Introduction
The development of Machine Learning and in particular of Deep Learning in the last decade has led
to many breakthroughs in fields such as image classification [30], object recognition [50, 51], speech
recognition [26, 53, 24], natural language processing [39, 40, 29], anomaly detection [48] or climate
sciences [2]. Deep neural networks are now widely used in real-life tasks stemming from those fields
and beyond. This development and the diversity of contexts in which neural networks are used require
to investigate theoretical properties that permit to guarantee that they can be used safely, are robust
to attack, and can be used widely without giving access to sensitive information.

One key problem in these regards is the relation between the parameters and the function imple-
mented by the network. If a parameterization of a network uniquely defines a function, the reverse is
not true. Which other parameterizations define the same function, and what do they have in common?
Which information on the parameters of a network are we able to infer from the knowledge of its function
on a given domain? Addressing these questions is important for different reasons: industrial property,
privacy, robustness and efficiency guarantee (see Section 2 for further discussions and references).

In this article, we consider fully-connected feedforward neural networks with K layers, K ≥ 2,
with the ReLU activation function (see Section 3 for details). The weights and bias parameterizing
a neural network are gathered in a list M of matrices and a list b of vectors. The corresponding
function is denoted1 fM,b : RnK −→ Rn0 . We say that two parameterizations (M,b) and (M̃, b̃) are

1For clarity of the proofs, we index the layers from K (input) to 0 (output). The input layer is not counted hence the ‘K
layers’.
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equivalent if they can be deduced from each other by the permutation of neurons in each hidden layer
and by positive rescaling between the inward and outward weights of every neuron of every hidden
layer. These two operations, that are precisely defined in Definition 3, are well-known in the literature
[49, 46, 47, 52, 58] and will be referred to as ‘permutation and positive rescaling’. As is well known and
restated for completeness in Proposition 4, if two parameterizations (M,b) and (M̃, b̃) are equivalent,
then the corresponding networks implement the same function: for all x ∈ RnK , fM,b(x) = fM̃,b̃(x).
In other words, parameter equivalence implies functional equivalence of the networks.

The main contribution of this article is an identifiablity statement (see Theorem 7) which establishes
a ‘weak’ converse of this statement. We consider a set Ω ⊂ RnK and two parameterizations (M,b)
and (M̃, b̃) sharing the same architecture (number of layers and of neurons per layer). We establish
a sufficient condition P such that, if for all x ∈ Ω, fM,b(x) = fM̃,b̃(x) and the condition P is met,
then the two parameterizations (M,b) and (M̃, b̃) are equivalent. The motivation for the introduction
of the set Ω is that, in practice, we may only test the values of fM,b and fM̃,b̃ on a subset of RnK .
Typically, Ω is a subset of the support of the input distribution law. Such a setting also allows to show
that two networks which coincide on a given domain actually coincide on the whole input space RnK .
Indeed, if the functions implemented by the networks coincide on Ω and if the sufficient condition P is
satisfied, then the parameters are equivalent and thus by Proposition 4 the functions also coincide on
the rest of the input space RnK . This can be useful to bound the generalization error.

We also reformulate this identifiability statement (see Corollary 8) in a way that illustrates its
interest with regard to risk minimization. The corollary considers a random variable X generating the
input and an output of the form Y = fM,b(X), for some parameters (M,b). It states that, when the
condition P is met, any estimated neural network (M̃, b̃) for which the population risk equals 0 belongs
to the equivalence class of (M,b). In words, the only way to have a perfect prediction is to perfectly
recover (M,b), up to permutation and positive rescaling.

We describe the related works in Section 2. In addition to the works providing identifiability,
stability or stable recovery statements, we give a few pointers on privacy, robustness and guarantees of
efficiency that motivate our study from an applied perspective. We define in Section 3 the considered
neural networks and provide the (known) properties that are useful in our context. The sufficient
condition P and the main theorems are in Section 4. The sketch of the proofs is in Section 5 and the
details are in the Appendix.

2 Related work
2.1 Identifiability, stability and stable recovery
2.1.1 Identifiability
Identifiability of the parameters of neural networks has been the topic of a fair amount of work. For
smooth activation functions, some results were already established in the 1990s. For shallow networks,
results exist for activation functions amongst which tanh [61, 3], the logistic sigmoid [32], or the
Gaussian and rational functions [28]. For deep networks, [18] shows that with tanh as activation
function, with only a few generic conditions on the parameters, two networks that implement the same
function have the same architecture and the same parameters up to some permutations and sign-flip
operations.

In the case of ReLU networks, we have seen that two operations are well known to preserve the
function implemented by the network: permutation and positive rescaling. These operations define
equivalence classes on the set of parameters, and we can at best identify the parameters of a network
up to these equivalences. It is shown in [47] that these operations are the only generic operations
of this kind for ReLU networks with nonincreasing number of neurons per layer. Indeed, they show
that for any fully-connected ReLU network architecture with nonincreasing number of neurons per
layer, for any nonempty open set Ω, there exists a parameterization (M,b) such that for any other
parameterization (M̃, b̃) satisfying some generic assumption, if fM̃,b̃ coincides with fM,b on Ω, then
(M̃, b̃) in the equivalence class of (M,b).

In this work, in order to establish identifiability, we take advantage of the piecewise linear geometry
of the functions implemented by ReLU networks to identify the parameters. Indeed, it is well known that
the function defined by a deep ReLU network is continuous piecewise-linear, i.e. we can partition the
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input space into polyhedral regions, sometimes called ‘linear regions’, over which the function is affine.
These regions are separated by boundaries that are made of pieces of hyperplanes and that correspond
to the non differentiabilities of the function. One crosses such a boundary when the pre-activation
value of a neuron (before applying the ReLU function) changes sign. By observing the boundary, one
can infer information about the weights and bias of the said neuron.

Other articles adopt similar strategies for shallow [46] or deep networks [52, 47, 58, 59]. The
specificity of our proof is to proceed by induction, identifying the weights and bias layer after layer. We
discuss the differences between our condition P and the sufficient conditions given in [47, 52, 59] in
detail in Section 4.3.3.

In the case of shallow ReLU networks, [46] establishes a sufficient condition on the parameters for
identifiability. If the condition is satisfied by two two-layer fully-connected feedforward ReLU networks
whose functions coincide on all the input space, then the parameters of one network can be obtained
from the parameters of the other network by permutation and positive rescaling.

In the case of deep ReLU networks, [52] gives a sufficient condition to be able to reconstruct the
architecture, weights and biases of a deep ReLU network by knowing its input-output map on all the
input space. The condition concerns the boundaries mentioned above: for each neuron in a hidden layer,
the authors define the boundary associated to the neuron as the points at which the pre-activation
value of the neuron is zero. Then, the condition requires each boundary associated to a neuron in a
layer k to intersect the boundaries associated to all the neurons in layer k + 1 and k − 1 (see Section
4.3.3 for more details).

Another kind of property is local identifiability, which is identifiability of a parameter (M,b)
amongst a set of parameters that are close to (M,b). [59] studies this property for shallow and deep
networks. For a deep ReLU network, it first shows that under a trivial assumption, general identifiability
up to permutation and positive rescaling implies local identifiability up to positive rescaling, and that
the non-existence of ‘twin’ neurons is necessary to identifiability and local identifiability. Then, [59]
makes a breakthrough by giving an abstract necessary and sufficient condition on (M,b) such that
there exists a well-chosen finite set Ω from which local identifiability holds up to positive rescalings,
and it gives a bound on the size of the set. Furthermore, more recently, [6] provided a numerically
testable condition for local identifiability also from a finite set Ω.

Finally, another line of work that can be linked to identifiability is the field of lossless compression
of neural networks [56, 57].

2.1.2 Inverse stability and stable recovery
Establishing identifiability properties is a first step towards establishing inverse stability properties and
studying stable recovery algorithms. Given a norm between functions, we say that inverse stability
holds when the proximity of the functions implemented by two networks with the same architecture
implies the proximity of the corresponding parameters -up to equivalences of parameters, for instance
permutations and positive rescalings in the case of ReLU networks. Inverse stability is a stronger
property than identifiability, and is necessary for stable recovery algorithms, which goal is to practically
recover the parameters of a network from its function.

Inverse stability does not hold in general with the uniform norm for fully-connected feedforward
neural networks. Indeed, [45] shows that for any depth, for any architecture with at least 3 neurons in
the first hidden layer and any practically used activation function, there exists a sequence of networks
whose function tends uniformly to 0 while any parameterization of these networks tends to infinity.

Many inverse stability and stable recovery results already exist for shallow networks. [17] studies
inverse stability directly up to functional equivalence classes, without specifying the nature of these
classes in terms of parameters -which interests us in this paper. The authors show that inverse stability
has interesting implications in terms of optimization, allowing to link the minima in the parameter
space to minima in the realization space (the space of all the functions that can be implemented by
a network) and to estimate the quality of local minima in the parameter space based on their radii.
Referring to the counter-example given by [45], the authors of [17] argue that the Sobolev norm is more
suited than the uniform norm to the problem of inverse stability. With this norm, they concretely
establish an inverse stability result on shallow ReLU networks without bias, under a few conditions on
the parameters.

When it comes to stable recovery algorithms, [20] provides a sample complexity under which one can
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recover the parameters of a shallow network with sigmoid activation function using cross-entropy as a
loss. For shallow fully-connected ReLU networks, without bias and with Gaussian input, [21, 65, 66, 67]
study the stable recovery of the parameters of a teacher network. They give a sample complexity under
which minimizing the empirical risk allows to recover the parameters of the network. [34] studies the
same configuration but with an identity mapping that skips one layer. ReLU networks can also be used
to recover a network with absolute value as activation function [33]. In fact, a neuron with absolute
value can be seen as a sum of two ReLU neurons.

Some results also exist in the case of shallow convolutional networks. [8, 64, 63, 16] establish stable
recovery results for convolutional ReLU networks with no overlapping. [27] gives a result in the case of
a sigmoidal activation function. The case of convolutional ReLU networks with overlapping is studied
in [22].

Stability and stable recovery for deep networks is a more complicated question. A few results exist
on the subject, but it stays mostly unexplored.

Among them, for deep structured linear networks, [36, 37, 38] use a tensorial lifting technique to
establish inverse stability properties. [36, 37] establish necessary and sufficient conditions of inverse
stability for a general constraint on the parameters defining the network. [38] specializes the analysis
to the sparsity constraint on the parameters, and obtains necessary and sufficient conditions of inverse
stability.

The authors of [4] consider deep feed-forward networks with Heavyside activation function which
are very sparse and randomly generated. They show that these can be learned with high probability
one layer after another.

The authors of [55] consider a deep feed-forward neural network, with an activation function that
can be, inter alia, ReLU, sigmoid or softmax. They show that, if the input is Gaussian or its distribution
is known, and if the weight matrix of the first layer is sparse, then a method based on moments and
sparse dictionary learning can retrieve it exactly. Nothing is said about the stability or the estimation
of the other layers.

For deep ReLU networks, in the case where one has full access to the function implemented by
the network [52] provides a practical algorithm able to approximately recover the parameters modulo
permutation and rescaling, and [9] reconstructs a functionally equivalent network, formulating it as a
cryptanalytic problem.

Further inverse stability and stable recovery results for deep ReLU networks are still to be established.
Studying identifiability for these networks, as we do in this article, is a first step towards this goal.

2.2 Motivations: privacy, robustness and interpretability
The generalization of deep networks in various applications such as life style choices or medical diagnosis
has raised new concerns about privacy and security. Indeed, to perform well, neural networks need to
be trained with many examples. The training of some models can take up to several weeks, and need
huge datasets such as ImageNet, which contains millions of images. For instance, the training of the
giant GPT-3 neural network costed an estimated 12 millions of dollars [7]. For this reason, trained
models are valuable and their owners may want to protect them from replication.

In many applications, the training dataset also contains sensitive information that could be uncovered
[43, 35, 10, 19, 14]. It is crucial, to the deployment of the solutions relying on deep networks, to
guarantee that this cannot occur. For example, when the system returns a confidence indicator in
the prediction or a notion of margin, the Model Inversion Attack described in [19] uncovers learning
examples x by maximizing the confidence/margin, under a constraint that ∥fM,b(x) − y∥ ≤ ε, where y
is a target output. In moderate dimension, this can be achieved by simply applying fM,b several times.
In large dimension, the complexity of the computation is too large unless the adversary can compute
∇fM,b(x), for any x. To perform this computation, the adversary needs to know (M,b). Guaranteeing
that the parameters cannot be recovered prevents this. With a slightly different objective, (differential)
privacy deep learning also assumes that the adversary has the knowledge of the network parameters [1].

Furthermore, knowing the architecture and parameters of a network could make easier for a malicious
user to attack it, for instance with adversarial attacks. Indeed, if some black-box adversarial attacks
do exist [60, 54, 15], many of them use the knowledge of the parameters of the network, at least to
compute the gradients [62, 23, 31, 44, 11, 42, 41, 5].

For all these reasons, the authors of [12] developed a method of preventing parameters extraction
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Figure 1: The parameters M and b of a neural network.

by artificially complexifying the network without changing its global behavior. This method builds on
previous works on stable recovery of the parameters of the ReLU networks, and in particular on the
fact that the piecewise-linear structure of the functions implemented by such networks can be used to
recover the parameters. Further understanding of stable recovery for deep networks could help improve
protection methods.

Another interest of our work is interpretability of deep neural networks. In some uses of deep
networks we want to understand what happens at a layer level and how we can interpret the feature
spaces defined by the different layers. But such an interpretation is more meaningful if we know that,
for a given function implemented by the network, the parameterization is unique -up to elementary
operations such as permutations and positive rescalings for ReLU networks.

3 Neural networks
In this section, we provide known definitions and properties of neural networks with ReLU activation
functions. For a self-contained reading, all the corresponding proofs are provided in the appendix.

3.1 Parameterization of neural networks
We consider deep feedforward ReLU networks with K ≥ 2 layers. To clarify any ambiguity, note that
the input layer is not actually counted, as it does not gather any weights. As evoked in the introduction,
we index the layers of a deep neural network in reverse order, from K to 0, for some K ≥ 2. The input
layer is the layer K, the output layer is the layer 0, and between them are K − 1 hidden layers. We
denote by nk ∈ N∗ the number of neurons of the layer k. The information contained at the layer k is a
nk-dimensional vector.

Let k ∈ J0,K − 1K. We denote the weights between the layer k + 1 and the layer k with a matrix
Mk ∈ Rnk×nk+1 . We also consider a bias vector bk ∈ Rnk at the layer k, and the ReLU activation
function, that is σ(x) = max(x, 0). By extension, for a vector x = (x1, . . . , xp)T ∈ Rp we also write
σ(x) = (σ(x1), . . . , σ(xp))T . We denote by hk the mapping implemented by the network between the
layer k+ 1 and the layer k. If x ∈ Rnk+1 is the information contained at the layer k+ 1, the information
contained at the layer k is:

hk(x) =
®
σ(Mkx+ bk) if k ̸= 0
Mkx+ bk if k = 0.

(1)

The parameters of the network can be summarized in the couple (M,b), where M = (M0,M1, . . . ,MK−1) ∈
Rn0×n1 × · · · × RnK−1×nK and b = (b0, b1, . . . , bK−1) ∈ Rn0 × · · · × RnK−1 . The function implemented
by the network is then fM,b = h0 ◦ h1 ◦ · · · ◦ hK−1, from RnK to Rn0 . We refer to Figure 1 for a
representation of a neural network and its parameters.

5



3.2 Continuous piecewise linear functions and neural networks
We will actively use the fact that the function implemented by a deep ReLU network as well as the
intermediate functions between layers are continuous piecewise linear, which means that we can partition
their domain of definition in closed polyhedral subsets such that they are linear on each subset. In
this paper we use indifferently ‘linear’ or ‘affine’ to describe functions of the form x 7→ Ax+ b, with
A ∈ Rn×m some matrix and b ∈ Rn some vector.

More precisely, for m ∈ N, a subset D ⊂ Rm is a closed polyhedron iif there exist q ∈ N, a1, . . . , aq ∈
Rm and b1, . . . bq ∈ R such that for all x ∈ Rm,

x ∈ D ⇐⇒


aT1 x+ b1 ≤ 0
...
aTq x+ bq ≤ 0.

(2)

By convention, if q = 0, we obtain an empty system of equations which is satisfied for any x ∈ Rm,
meaning the set Rm is a closed polyhedron.

We say that a function g : Rm → Rn is continuous piecewise linear if there exists a finite set of
closed polyhedra whose union is Rm and such that g is linear over each polyhedron.

It is easy to show (see Proposition 19 in the appendix) that this definition implies the continuity
of the function, hence the ‘continuous’ in the name. We do not require here the polyhedra to be
disjoint and in fact, there are always some overlaps between the borders of adjacent polyhedra. For a
given continuous piecewise linear function g, there are infinitely many possible sets of closed polyhedra
that match the definition. Among them, we can always find one such that all the polyhedra D have
nonempty interior D̊ (see Proposition 22 in the appendix). We call such a set admissible, as in the
following definition.
Definition 1. Let g : Rm → Rn be a continuous piecewise linear function. Let Π be a set of closed
polyhedra of Rm. We say that Π is admissible with respect to g if and only if:

⋃
D∈Π D = Rm,

for all D ∈ Π, g is linear on D,

for all D ∈ Π, D̊ ̸= ∅.
(3)

We now define additional functions associated to a network. Recall the layer functions hk defined in
(1), that represent the actions of the network between successive layers. Let k ∈ J0,KK. We define the
following functions:

fk = hk ◦ hk+1 ◦ · · · ◦ hK−1;
gk = h0 ◦ h1 ◦ · · · ◦ hk−1.

(4)

Above, by convention, we let fK = idRnK and g0 = idRn0 , where idRm denotes the identity function on
Rm. The function fk : RnK 7→ Rnk represents the mapping implemented by the network between the
input layer and the layer k. The function gk : Rnk 7→ Rn0 represents the mapping implemented by the
network between the layer k and the output layer. Hence, for all k ∈ J0,KK we have gk ◦ fk = fM,b,
and in particular f0 = gK = fM,b.

For any Ω ⊂ RnK , we also denote for all k ∈ J0,KK,

Ωk = fk(Ω). (5)

In particular, ΩK = fK(Ω) = Ω.
The following proposition is easy to show by induction and using the fact that the composition of

two continuous piecewise linear functions is also continuous piecewise linear (see Proposition 32 in the
appendix).
Proposition 2. For all k ∈ J0,KK, fk and gk are continuous piecewise linear.

In particular, fM,b is continuous piecewise linear.
We say that a list of sets of closed polyhedra Π = (Π1, . . . ,ΠK−1) is admissible with respect to

(M,b) iif for all k ∈ J1,K − 1K, the set of closed polyhedra Πk is admissible with respect to gk. Since
there always exist such Πk (from Proposition 2 and Proposition 22 in Appendix A), there always exists
an admissible list Π.
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3.3 Equivalence between two parameterizations
We are interested in sufficient conditions to identify the parameters of a network from its function.
As mentioned in the introduction, some elementary operations on the parameters are well known to
preserve the function of a network, so what we shall actually identify is the equivalence class of the
parameters modulo these operations. There are two such operations:

• the permutation of neurons of a hidden layer;
• the positive rescalings, that is, multiplying all the outward weights of a hidden neuron by a strictly

positive number and dividing the inward weights by the same number.

The invariance to permutation is classical and common to many feedforward architectures. It is described
in the foundational articles [25, 13]. The invariance to positive rescalings is more specific to ReLU (and
homogeneous activation functions), and is also well-studied, as for instance in [49, 46, 47, 52, 58].

We give in Definition 3 below the formalization we use for the equivalence relation modulo these
operations, after introducing some notations. For all m ∈ N∗, we denote by Sm the set of all
permutations of J1,mK. For any permutation φ ∈ Sm, we denote by Pφ the m×m permutation matrix
associated to φ, whose coefficients are defined as

(Pφ)i,j =
®

1 if φ(j) = i

0 otherwise.

We also denote by 1m the vector (1, 1, . . . , 1)T ∈ Rm, by R∗
+ the set of strictly positive real numbers

and by Idm the m×m identity matrix.

Definition 3 (Equivalence between parameters). If (M,b) and (M̃, b̃) are two parameterizations of a
network, we say that (M,b) is equivalent to (M̃, b̃), and we write (M,b) ∼ (M̃, b̃), if and only if there
exist:

• a family of permutations φ = (φ0, . . . , φK) ∈ Sn0 × · · · ×SnK
, with Pφ0 = Idn0 and PφK

= IdnK
,

• a family of vectors λ = (λ0, λ1, . . . , λK) ∈ (R∗
+)n0 × · · · × (R∗

+)nK , with λ0 = 1n0 and λK = 1nK
,

such that for all k ∈ J0,K − 1K,®
M̃k = Pφk

Diag(λk)Mk Diag(λ(k+1))−1P−1
φk+1

b̃k = Pφk
Diag(λk)bk.

(6)

The relation (M,b) ∼ (M̃, b̃) is an equivalence relation [49, 46, 47]. We include a proof of this fact
for completeness in Appendix A (see Proposition 38). We denote by [M,b] the equivalence class of
(M,b).

We can now formalize in Proposition 4 the fact discussed at the beginning of the section: two
equivalent parameterizations modulo permutation and positive rescaling implement the same function.
As mentioned, this result is well-known [49, 46, 47, 52, 58], but we prove it for completeness in Appendix
A (see Proposition 39 and Corollary 40).

Proposition 4. If (M,b) ∼ (M̃, b̃), then fM,b = fM̃,b̃.

In this article we give a set of conditions under which we have a reciprocal, i.e. if two param-
eterizations (M,b) and (M̃, b̃) satisfying the conditions lead to the same function on a set Ω, i.e.
fM,b(x) = fM̃,b̃(x) for all x ∈ Ω, then they are equivalent: (M,b) ∼ (M̃, b̃).

4 Main result
The core of our work is exposed in this section. It is structured as follows. In Section 4.1, we expose
the conditions P and in Section 4.2 we state our main theorems of identifiability. Then, Section 4.3 is
dedicated to an extensive discussion of the conditions P, with motivating examples and comparison to
the state of the art.
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4.1 Conditions
We expose in this section the conditions under which the main theorem holds. They are formalized in
Definition 5 and referred to as conditions P.

First, we introduce a few notations. We consider a network with K ≥ 2 layers and with parameters
(M,b), a list of sets of closed polyhedra Π = (Π1, . . . ,ΠK−1) admissible with respect to (M,b) and
a domain Ω ⊂ RnK . Recall the definitions (1) and (4) of the functions hk, fk and gk associated to
the network. For all k ∈ J1,K − 1K, gk is continuous piecewise linear, and since Π is admissible with
respect to (M,b), by definition, the set of closed polyhedra Πk is admissible with respect to gk in the
sense of Definition 1. For all D ∈ Πk, the function gk thus coincides with a linear function on D. Since
by definition the interior of D is nonempty, we define V k(D) ∈ Rn0×nk and ck(D) ∈ Rn0 as the unique
couple satisfying, for all x ∈ D:

gk(x) = V k(D)x+ ck(D). (7)

For Ω ⊂ RnK , recall the definition (29) of Ωk, for all k ∈ [0,K]. For any m,n ∈ N∗, for any m × n
matrix Σ, for any i ∈ J1,mK, j ∈ J1, nK, we denote by Σi,. the ith row vector of Σ and by Σ.,j the jth

column vector of Σ. We denote Eki = {x ∈ Rnk , xi = 0}, and hlink (x) = Mkx+ bk. For any m ∈ N∗ and
any subset A ⊂ Rm, we denote by ∂A the topological boundary with respect to the standard topology
of Rm.

Definition 5. We say that (M,b,Ω,Π) satisfies the conditions P iif for all k ∈ J1,K − 1K:
P.a) Mk is full row rank;
P.b) for all i ∈ J1, nkK, there exists x ∈ Ω̊k+1 such that

Mk
i,.x+ bki = 0,

or equivalently
Eki ∩ hlink (Ω̊k+1) ̸= ∅;

P.c) for all D ∈ Πk, for all i ∈ J1, nkK, if Eki ∩D ∩ Ωk ̸= ∅ then V k.,i(D) ̸= 0;
P.d) for any affine hyperplane H ⊂ Rnk+1 ,

H ∩ Ω̊k+1 ̸⊂
⋃

D∈Πk

∂h−1
k (D).

The conditions P are invariant modulo equivalences of parameters. Indeed, as shown by the
following proposition, if some parameters (M,b) satisfy the conditions P, then all the parameters in
their equivalence class satisfy them too.

Proposition 6. Suppose (M,b) and (M̃, b̃) are two equivalent network parameterizations, and suppose
that there exists a list Π admissible with respect to (M,b) such that (M,b,Ω,Π) satisfies the conditions
P.

Then, there exists a list Π̃ that is admissible with respect to (M̃, b̃), and such that (M̃, b̃,Ω, Π̃)
satisfies the conditions P.

Proposition 6 is proven as Proposition 50 in Appendix B.

4.2 Main theorems
We have now introduced all the necessary material to expose our main result, Theorem 7, as well as an
application in terms of risk minimization in Section 4.2.2.

4.2.1 Identifiability statement
Our main theorem is the following one. We provide a sketch of the proof in Section 5. For the complete
proof, see Theorem 51 in Appendix B and its proof in Section B.4.
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Theorem 7. Let K ∈ N, K ≥ 2. Suppose we are given two networks with K layers, identical number
of neurons per layer, and with respective parameters (M,b) and (M̃, b̃). Assume Π and Π̃ are two lists
of sets of closed polyhedra that are admissible with respect to (M,b) and (M̃, b̃) respectively. Denote
by nK the number of neurons of the input layer, and suppose we are given a set Ω ⊂ RnK such that
(M,b,Ω,Π) and (M̃, b̃,Ω, Π̃) satisfy the conditions P, and such that, for all x ∈ Ω:

fM,b(x) = fM̃,b̃(x).

Then:
(M,b) ∼ (M̃, b̃).

As mentioned before, this theorem can be seen as a partial reciprocal to Proposition 4. Indeed, the
latter shows that two networks with equivalent parameters modulo permutation and positive rescaling
implement the same function. In other words, parameter equivalence implies functional equivalence of
the networks. In Theorem 7, we state that under the conditions P, functional equivalence (on a given
domain Ω) implies parameter equivalence modulo permutation and positive rescaling.

4.2.2 An application to risk minimization
Assume we are given a couple of input-output variables (X,Y ) generated by a ground truth network
with parameters (M,b):

Y = fM,b(X).

We can use Theorem 7 to show that the only way to bring the population risk to 0 is to find the
ground truth parameters -modulo permutation and positive rescaling.

Indeed, let Ω ⊂ RnK be a domain that is contained in the support of X, and suppose L : Rn0 ×Rn0 →
R+ is a loss function such that L(y, y′) = 0 ⇒ y = y′. Consider the population risk:

R(M̃, b̃) = E[L(fM̃,b̃(X), Y )].

We have the following result.

Corollary 8. Suppose there exists a list of sets of closed polyhedra Π admissible with respect to (M,b)
such that (M,b,Ω,Π) satisfies the conditions P.

If (M̃, b̃) is such that there exists a list Π̃ admissible with respect to (M̃, b̃) such that (M̃, b̃,Ω, Π̃)
satisfies the conditions P, and if (M,b) ̸∼ (M̃, b̃), then:

R(M̃, b̃) > 0.

For the proof, see Corollary 52 in Appendix B and its proof in Section B.5.

4.3 Discussion on the conditions
This section is dedicated to discussing the conditions P. We start by explaining the different conditions
P.a) − P.d) and their purpose in Section 4.3.1. Then, in Section 4.3.2, we provide counter-examples
illustrating how non-identifiability arises when they are not satisfied. Finally, we compare the conditions
P to the state of the art in Sections 4.3.3 and 4.3.4.

4.3.1 The conditions explained
Let us explain the conditions P. The first condition, P.a), requires the matrix Mk ∈ Rnk×nk+1 to
have full row rank. This implies that for all k ∈ J1,K − 1K, the layer k has no more neurons than its
predecessor, the layer k + 1:

nk ≤ nk+1.

Once this is satisfied, the condition is mild in the sense that it is satisfied for all matrices except a set
of matrices of empty Lebesgue measure.

As a first remark about P.b), notice that by taking k = K− 1, it implies that Ω̊ = Ω̊K ≠ ∅. Thus, in
the main result, the set Ω over which the function implemented by the network is assumed to be known
needs to have nonempty interior. In particular, Ω cannot be a finite sample set. This limitation is

9



h−1(D1)

h−1(D2)

h−1(D3)

h−1(D4)

Ω

H1

H2

D1

D2

D3

D4

hlin(Ω)

EK−1
1

EK−1
2

RnK RnK−1

Figure 2: Left. In RnK , the inverse image by hK−1 of the polyhedra D ∈ ΠK−1. To make the figure
lighter we write h instead of hK−1. The grey zone represents Ω. For i ∈ {1, 2}, Hi is the hyperplane
defined by the equation MK−1

i,. x + bK−1
i = 0. As a direct consequence, we have h(Hi) ⊂ EK−1

i . Right.
In RnK−1 , the admissible polyhedra D ∈ ΠK−1 with respect to gK−1. The grey zone corresponds to the
image hlin(Ω) = MK−1Ω + bK−1.

already present in [52], which assumes an access to the function on the whole input space and [47] which
considers the function of the network on a bounded open nonempty domain. However, as we discuss in
the conclusion, it seems possible to establish a result for a finite Ω, and the conditions formulated here
should be a basis for future work.

The conditions P.b),P.c) and P.d) must be satisfied for all k ∈ J1,K − 1K, but to give a sense of
them, let us see what they mean for k = K − 1.

As explained in Section 3.2, the function implemented by a ReLU network is continuous piecewise
linear: we can divide the input space RnK into polyhedral regions, over each of which the function
is linear. We take advantage of this structure to acquire information about the parameters of the
network. The boundaries of the polyhedral regions are of particular interest. They are made of pieces
of hyperplanes, and they roughly correspond to the points where the function implemented by the
network is not differentiable. We use this non differentiability property to identify the boundaries. We
go from one linear region to another when there is a change of sign in the pre-activation value (input of
σ) of one hidden neuron. The boundary between two linear regions is thus associated to a particular
neuron of a particular hidden layer.

We separate the function implemented by the first layer of the network and the function implemented
by the rest of the layers thanks to the functions defined in (1) and (4), writing

fM,b = gK = gK−1 ◦ hK−1,

RnK
hK−1−→ RnK−1

gK−1−→ Rn0 .

The goal is first to identify the weights and bias of the first layer, MK−1 and bK−1. To do so,
we focus on the boundaries associated to the neurons in the first hidden layer. These ‘first-order’
boundaries are hyperplanes defined by the equations MK−1

i,. x+ bK−1
i = 0, for all i ∈ J1, nK−1K. The

conditions P.b), P.c) and P.d) are made to ensure that we are able to identify the hyperplanes, and
consequently, the parameters MK−1 and bK−1. The two relevant spaces to visualize the conditions are
the input space, RnK , and the first hidden space, RnK−1 , which are represented in Figure 2. Let us
explain the conditions P.b),P.c) and P.d).

P.b) The condition P.b) in the case k = K − 1 requires the hyperplane defined by the equation
MK−1
i,. x + bK−1 = 0 to intersect Ω̊K = Ω̊. Indeed, we only consider the function implemented

by the network over Ω, so the hyperplane must intersect Ω̊K in order to be detectable as a non
differentiability. In the example of Figure 2, we see that the two such hyperplanes, which are H1
and H2, intersect Ω, so the condition is satisfied.
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P.c) Consider a polyhedron D ∈ ΠK−1. The function gK−1 is linear over D, and using the notations
defined in (7), we have for all u ∈ D,

gK−1(u) = V K−1(D)u+ cK−1(D). (8)

For all x ∈ RnK such that hK(x) ∈ D, using (8) we obtain:

fM,b(x) = gK−1 ◦ hK−1(x) =
nK−1∑
i=1

V K−1
.,i (D)σ

Ä
MK−1
i,. x+ bK−1

i

ä
+ cK−1(D).

In particular, at the points x such that MK−1
i,. x + bK−1

i = 0, the function σ(MK−1
i,. x + bK−1

i )
is not differentiable, and this non differentiability can only be reflected in the function fM,b if
V K−1
.,i (D) ̸= 0. The condition P.c) ensures that. In the example of Figure 2 (right part), we see

that D1 intersects EK−1
1 so to satisfy P.c), we must have V K−1

.,1 (D1) ̸= 0. Similarly, D2 intersects
EK−1

1 and EK−1
2 so we must have V K−1

.,1 (D2) ̸= 0 and V K−1
.,2 (D2) ̸= 0, and the polyhedron D4

intersects EK−1
2 so we must have V K−1

.,2 (D4) ̸= 0.

P.d) For the last condition, P.d), we consider the inverse images h−1
K−1(D), for all the polyhedra

D ∈ ΠK−1. Since hK−1 is piecewise linear and D is a closed polyhedron, h−1
K−1(D) is a finite

union of closed polyhedra (see the first point of Proposition 23 in the appendix). In particular, its
boundary ∂h−1

K−1(D) is made of pieces of hyperplanes. We require the union of these boundaries
not to contain any full hyperplane (within the domain Ω). In the example of Figure 2, the
condition is satisfied.

4.3.2 Illustrative counter-examples
To illustrate the necessity for the conditions in P, we give for each of the conditions P.a) − P.d) a
simple example of a parameterization (M,b) and a set Ω which do not satisfy it, and we show that
(M,b) is not identifiable by constructing a parameterization (M̃, b̃) that is not equivalent to (M,b),
but such that fM̃,b̃ coincides with fM,b over Ω. These four examples illustrate the behaviors we want
to prevent with the conditions P.

Example 9. We consider an architecture with one hidden layer, i.e. K = 2, with n2 = 2, n1 = 3,
n0 = 1. We consider the parameterization (M,b) defined as follows.

M1 =

Ñ
0 2
1 −1

−1 −1

é
b1 =

Ñ
0
0
0

é
,

M0 =
(
1 1 1

)
b0 = 0.

For this example, we consider Ω = R.
The condition P.a) is not satisfied: the matrix M1 cannot have full row rank since its dimension is

3 × 2, and more specifically we have the relation

M1
1,. +M1

2,. +M1
3,. = 0. (9)

Let us define M̃1 = −M1 and M̃ = (M̃1,M0). Let us show that fM̃,b = fM,b.
Let x ∈ R2. We have

fM,b(x) = σ
(
M1

1,.x
)

+ σ
(
M1

2,.x
)

+ σ
(
M1

3,.x
)
.

There exist activations ϵ1, ϵ2, ϵ3 ∈ {0, 1}, depending on x, such that

fM,b(x) = ϵ1M
1
1,.x+ ϵ2M

1
2,.x+ ϵ3M

1
3,.x. (10)
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Since M̃1 = −M1 and b1 = 0, the signs of the activations are switched in fM̃,b and thus

fM̃,b(x) = (1 − ϵ1)M̃1
1,.x+ (1 − ϵ2)M̃1

2,.x+ (1 − ϵ3)M̃1
3,.x

=
3∑
i=1

(1 − ϵi)(−M1
i,.x)

=
3∑
i=1

ϵiM
1
i,.x− (

3∑
i=1

M1
i,.)x

= fM,b(x),

where we obtain the last equality thanks to (9) and (10).
Now since only the positive rescalings are authorized, (M̃,b) is not equivalent to (M,b), which

shows that (M,b) is not identifiable modulo permutation and rescaling.

Example 10. Let us consider a very simple architecture with one hidden layer and only one neuron
per layer, i.e. n2 = n1 = n0 = 1. We consider the parameterization (M,ba), for a > 0, defined by

M1 = 1, b1
a = a, M0 = 1, b0

a = −a.

The function implemented by the network satisfies, for all x ∈ R,

fM,ba
(x) = σ(x+ a) − a =

®
−a if x < −a
x if x ≥ −a.

(11)

Let us consider Ω = [1,+∞[. With such a choice of Ω, none of the parameterizations (M,ba) satisfy
P.b), because for all x ∈ Ω, M1x+ b1

a = x+ a > 0.
For any a > 0, for any x ∈ Ω, we have x ≥ 1 > −a, so (11) shows that fM,ba

(x) = x, i.e. the
functions implemented by the parameterizations (M,ba) all coincide over Ω. However, since (11) shows
they do not implement the same function over R, Proposition 4 shows they are not equivalent.

Example 11. We consider an architecture with 2 hidden layers, that is K = 3, and again one neuron
per layer: n3 = n2 = n1 = n0 = 1. Let us consider the parameterizations (M,ba), defined for a > 0 by

M2 = 1, b2
a = a,

M1 = 1, b1
a = −1 − a,

M0 = 1, b0
a = 0.

We consider Ω = R. Let us show that for any a > 0 and any admissible Π, the condition P.c) is
not satisfied by (M,b,Ω,Π) in the case k = 2.

Indeed, we have h2,a(x) = σ(M2x + b2
a) = σ(x + a), and thus Ω2 = h2,a(Ω) = R+. Further, the

expression of g2,a is

g2,a(x) = M0σ(M1x+ b1
a) + b0

a = σ(x− 1 − a) =
®

0 if x ≤ 1 + a

x− 1 − a if x > 1 + a.

For any set of closed polyhedra Π2 admissible with respect to g2,a, a polyhedron D ∈ Π2 intersecting
E2

1 = {0} must satisfy V 2(D) = 0 since g2,a(x) = 0 for x ∈] − ∞, 1 + a]. This contradicts P.c) for k = 2.
To exhibit functionally equivalent parameterizations, we now show that for all a > 0 and x ∈ R,

fM,ba
(x) = σ(x− 1). (12)

Indeed, let x ∈ R.
• if x ∈] − ∞,−a[, we have σ(M2x+ b2

a) = σ(x+ a) = 0, so

fM,ba
(x) = M0σ(M1 · 0 + b1

a) + b0
a

= σ(b1
a)

= 0 = σ(x− 1).
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• if x ∈ [−a,+∞[, we have σ(M2x+ b2
a) = σ(x+ a) = x+ a, so

fM,ba(x) = M0σ(M1(x+ a) + b1
a) + b0

a

= σ(x+ a− 1 − a)
= σ(x− 1).

This shows (12). The function fM,ba
is therefore independent of a > 0, but if a ̸= a′, (M,ba) ̸∼

(M,ba′).
The lack of identifiability comes here from the fact that we do not ‘observe’ the non differentiability

induced by the first hidden neuron, because V 2(D) = 0 for D containing 0. Indeed, if P.c) was satisfied,
we would observe a non differentiability at the point at which the sign of M2x+ b2

a changes, which is
x = −a, and we thus would have fM,ba

̸= fM,ba′ for a ̸= a′.
We remark that here, even if P.c) was satisfied, the condition P.d) would not be satisfied, as we see

next in Example 12.

Example 12. We consider again the architecture of Example 11, wih two hidden layers and one neuron
per layer. This time, we consider the parameterizations (M,b) and (M̃, b̃), defined by

M2 = 1, b2 = 0,
M1 = −1, b1 = 1,
M0 = −1, b0 = 0,

and

M̃2 = −1, b̃2 = 1,
M̃1 = −1, b̃1 = 1,
M̃0 = 1, b̃0 = −1.

We can remark without waiting further that (M,b) ̸∼ (M̃, b̃), for instance because b0 = 0, and b̃0 = −1,
and the rescalings do not permit such a transformation.

Let Ω = R. Let us consider the sets Π2 = {] − ∞, 1], [1,+∞[}, Π1 = {R} and the list Π = (Π1,Π2).
After showing that Π is admissible with respect to (M,b), we will first show that (M,b) does not
satisfy the condition P.d) and we will then show that fM,b = fM̃,b̃.

Let us show that Π is admissible with respect to (M,b). Indeed, for all x ∈ R, we have

g2(x) = M0σ(M1x+ b1) + b0 = −σ(−x+ 1).

The function g2 is linear over both the intervals ] − ∞, 1] and [1,+∞[, so Π2 is admissible with respect
to g2. The function g1 is linear, so Π1 is admissible with respect to g1.

Let us now show that (M,b,Ω,Π) does not satisfy the condition P.d). Let us first determine⋃
D∈Π2

∂h−1
2 (D). Since h2(x) = σ(x), we have h−1

2 (] − ∞, 1[) =] − ∞, 1] and h−1
2 ([1,+∞[) = [1,+∞[.

Hence, ⋃
D∈Π2

∂h−1
2 (D) = {1}.

Now, since Ω̊3 = Ω̊ = R, we have
Ω̊3 ∩ {1} ⊂

⋃
D∈Π2

∂h−1
2 (D),

and since {1} is an affine hyperplane of R, this shows that P.d) is not satisfied for k = 2.
Let us now show that for all x ∈ Ω = R, we have

fM,b(x) = fM̃,b̃(x) =
®
σ(x) − 1 if x ≤ 1
0 if x > 1.

(13)

Let us first determine fM,b(x), for x ∈ R. We have

fM,b(x) = M0σ(M1σ(M2x+ b2) + b1) + b0 = −σ(−σ(x) + 1).
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• If x ≤ 1, then σ(x) ≤ 1 and thus −σ(x) + 1 ≥ 0. Thus, −σ(−σ(x) + 1) = σ(x) − 1, and
fM,b(x) = σ(x) − 1.

• If x > 1, then −σ(x) + 1 < 0 and thus −σ(−σ(x) + 1) = 0. We thus have fM,b(x) = 0.
Let us now determine fM̃,b̃(x), for x ∈ R. We have

fM̃,b̃(x) = M̃0σ(M̃1σ(M̃2x+ b̃2) + b̃1) + b̃0 = σ(−σ(−x+ 1) + 1) − 1.

• If x ≤ 1, then −x+ 1 ≥ 0 and thus fM̃,b̃(x) = σ((x− 1) + 1) − 1 = σ(x) − 1.
• If x > 1, then −x+ 1 ≤ 0 and thus fM̃,b̃(x) = σ(1) − 1 = 0.

This shows (13), and as a consequence, (M,b) is not identifiable.
In this example, the lack of identifiability comes from the fact that the sets of non differentiabilities

induced by the first and the second layer are indistinguishable: they are both reduced to a point. This
will always be the case for networks with only one neuron per layer and more than one hidden layer.
When the input dimension is 2 or higher and the condition P.d) is satisfied, the non differentiabilities
induced by neurons in the first hidden layer are the only ones that correspond to full hyperplanes, and
this is how they can be identified, as illustrated for instance in the example of Section 4.3.4.

4.3.3 Comparison with the existing work
To our knowledge, there are only two existing results on global identifiability of deep ReLU networks
(with bias), as we consider here, exposed in the recent contributions [47] and [52]. Let us compare our
hypotheses with theirs.

The authors of [47] introduce two notions: the notion of general network and the notion of transparent
network. They note the fact that some boundaries of non differentiablity bend over some others to
build a graph of dependency. The main result in [47] applies to networks whose number of neurons per
layer nk is non-increasing, as is the case in the present paper, that are transparent and general, and for
which the graphs of dependency of the functions gk satisfy additional technical conditions.

It can be verified that these hypotheses imply our conditions P.a), P.b) and P.c), which makes
P.a), P.b) and P.c) more applicable.

When it comes to our last condition P.d), it can be compared to the technical conditions on the
graph of dependency. These conditions address the way the boundaries associated to some neurons
bend over the boundaries associated to neurons in previous layers. P.d) and this set of conditions are
different, and neither implies the other.

The result exposed in [52] has a main strength compared to [47] and to us: it does not require
the number of neurons per layer to be non-increasing. However, when it comes to the intersection of
boundaries of linear regions, it requires each boundary, associated to some neuron, to intersect the
boundaries associated to all the neurons in the previous layer, which appears to be a strong hypothesis
to us. In comparison, we ask each boundary to intersect at least one of the boundaries associated to a
neuron in a previous layer. Also, in [52], the function is supposed to be known on the whole input space,
while [47] as well as us propose conditions on a domain Ω such that the knowledge of the function on Ω
is enough. In both cases Ω has nonempty interior. [59, 6] open the way for considering a finite Ω by
giving conditions of local identifiability in that case. To our knowledge global identifiability from a
finite set has not been tackled yet for deep ReLU networks.

4.3.4 A simple comparative example
To shed a better light on the interest of the conditions P, we describe in this section a simple network
parameterization for which the conditions P apply, in contrast to the conditions described in [47, 52].

Let us consider a network architecture with 2 hidden layers (i.e. K = 3) and 2 neurons per layer,
except the output layer containing 1 neuron: n3 = n2 = n1 = 2 and n0 = 1. Let us consider the
parameterization (M,b) defined by

M2 =
Å

1 0
0 1

ã
, M1 =

Å
1 −1

−1 2

ã
, M0 =

(
1 1

)
,

b2 =
Å

0
0

ã
, b1 =

Å
−1
2

ã
, b0 = 0.
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Figure 3: Left. The closed polyhedra of Π2. Right. The reciprocal images by h2 of the closed polyhedra
of Π2.

The network implements a function fM,b : R2 → R. Here we simply consider Ω = R2.
First, we are going to show that there exists a list Π that is admissible with respect to (M,b),

and such that (M,b,Ω,Π) satisfies the conditions P. Then, we shall discuss why this network
parameterization does not satisfy the conditions in [47, 52].

Let us define the list Π as follows. For ϵ1, ϵ2 ∈ {−1, 1}, we denote by Dϵ1,ϵ2 the closed polyhedron
satisfying, for all x ∈ R2:

x ∈ Dϵ1,ϵ2 ⇔
®
ϵ1
(
M1

1,.x+ b1
1
)

≥ 0
ϵ2
(
M1

2,.x+ b1
2
)

≥ 0.
(14)

These 4 polyhedra are displayed in Figure 3. In other words, the polyhedron to which x be-
longs depends on the sign of both components of the vector M1x + b1. We define the set Π2 =
{D1,1, D1,−1, D−1,1, D−1,−1}. We also define the set Π1 = {R2}, containing the single polyhedron R2,
and we denote Π = (Π1,Π2). Let us show that Π is admissible with respect to (M,b). Indeed, the
closed polyhedra of Π2 cover R2. Furthermore, their interior is nonempty. Finally, for all x ∈ R2, we
have

g2(x) = M0σ
(
M1x+ b1)+ b0

= σ
(
M1

1,.x+ b1
1
)

+ σ
(
M1

2,.x+ b1
2
)
. (15)

We derive from (15), (14) and the definition of the ReLU activation that for all Dϵ1,ϵ2 ∈ Π2, the function
g2 is affine over Dϵ1,ϵ2 of the form g2(x) = V 2(Dϵ1,ϵ2)x+ c2(Dϵ1,ϵ2), with the following values

V 2(D1,1) = M1
1,. +M1

2,. =
(
0 1

)
c2(D1,1) = b1

1 + b1
2 = 1

V 2(D1,−1) = M1
1,. =

(
1 −1

)
c2(D1,−1) = b1

1 = −1
V 2(D−1,1) = M1

2,. =
(
−1 2

)
c2(D−1,1) = b1

2 = 2
V 2(D−1,−1) =

(
0 0

)
c2(D−1,−1) = 0.

(16)

This shows that the set of closed polyhedra Π2 is admissible with respect to g2, and the values in (16)
correspond to those of the definition (7). Moreover, since g1 is affine, the set Π1 is trivially admissible
with respect to g1. We conclude that the list Π is admissible with respect to (M,b).

Let us show that (M,b,Ω,Π) satisfies the conditions P.
The conditions P must hold for k ∈ J1,K − 1K, so in our case, for k = 2 and k = 1. To check them,

we will need to compute Ω3 and Ω2. Recalling the definition in (5), we have Ω3 = Ω = R2. Then, since
h2(x) = σ

(
M2x+ b2) = σ(x), we have Ω2 = σ(R2) = (R+)2.

Let us now check the conditions one by one.

15



P.a) The matrices M2 and M1 are both full row rank, so P.a) is satisfied for k = 2 and k = 1.
P.b) Let us first show the condition for k = 2. We have Ω̊3 = Ω̊ = R2, so taking x1 = (0, 1)T ∈ Ω̊3 and

x2 = (1, 0)T ∈ Ω̊3, we find 
M2

1,.x1 + b2
1 =
Ä
1 0
äÇ0

1

å
= 0

M2
2,.x2 + b2

2 =
Ä
0 1
äÇ1

0

å
= 0.

Let us now show the condition for k = 1. We have Ω̊k+1 = Ω̊2 = (R∗
+)2. Let us choose

x3 = (2, 1)T ∈ Ω̊2 and x4 = (4, 1)T ∈ Ω̊2. We have
M1

1,.x3 + b1
1 =
Ä
1 −1

äÇ2
1

å
− 1 = 0

M1
2,.x4 + b1

2 =
Ä
−1 2

äÇ4
1

å
+ 2 = 0.

This shows that P.b) is satisfied for k = 2 and k = 1.
P.c) For k = 2, let us recall from (16) the values of V 2(D) for all D ∈ Π2. In the case of V 2(D1,−1) and

V 2(D−1,1), P.c) is clearly satisfied. When it comes to D1,1, we have V 2
.,1(D1,1) = 0, but D1,1 does

not intersect E2
1 in Ω2. Finally, we have V 2

.,1(D−1,−1) = V 2
.,2(D−1,−1) = 0, but D−1,−1 ∩ Ω2 = ∅.

We thus conclude that P.c) is satisfied for k = 2.
The case k = 1 is easier, Π1 = {R2} and for all x ∈ R2, we have g1(x) = M0x+ b0, so we have
V 1(R2) = M0 =

(
1 1

)
, and P.c) is clearly satisfied.

P.d) Here, the case k = 1 is trivial since Π1 = {R2}, and h−1
1 (R2) = R2, and thus ∂h−1

1 (R2) = ∅.
We thus only need to study the case k = 2. Let us first determine the sets h−1

2 (D), for D ∈ Π2.
We remind that for all x ∈ R2, h2(x) = σ(x).
For this, let us divide R2 in 3 regions. Let x = (x1, x2) ∈ R2.

– If x1 < 0, then h2(x) = (0, σ(x2))T . We thus have

M1h2(x) + b1 =
Å

−1(σ(x2) + 1)
2(σ(x2) + 1)

ã
.

Since σ(x2) ≥ 0, we see that h2(x) ∈ D−1,1.
– If x1 ≥ 0 and x2 < 0, then h2(x) = (x1, 0)T . We thus have

M1h2(x) + b1 =
Å
x1 − 1

−x1 + 2

ã
.

There are 3 possibilities: if x1 ≤ 1, then h2(x) ∈ D−1,1, if 1 ≤ x1 ≤ 2, h2(x) ∈ D1,1, and if
2 ≤ x1, h2(x) ∈ D1,−1.

– If x1, x2 ≥ 0, then h2(x) = x and for all Dϵ1,ϵ2 ∈ Π2, h2(x) ∈ Dϵ1,ϵ2 ⇐⇒ x ∈ Dϵ1,ϵ2 . There
are 3 possibilities, x ∈ D−1,1, x ∈ D1,−1 and x ∈ D1,1 since D−1,−1 ∩ (R+)2 = ∅.

Summarizing, we find (see also Figure 3):

h−1
2 (D−1,1) = R− × R ∪ [0, 1] × R− ∪ (R+)2 ∩D−1,1

h−1
2 (D1,1) = [1, 2] × R− ∪ (R+)2 ∩D1,1

h−1
2 (D1,−1) = [2,+∞[×R− ∪ (R+)2 ∩D1,−1

h−1
2 (D−1,−1) = ∅.

To express the boundaries of these regions, we define the following pieces of hyperplanes:

H+
3 = {x = (x1, x2) ∈ R2, x1 ≥ 0, x2 ≥ 0,M1

1,.x+ b1
1 = 0}
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H+
4 = {x = (x1, x2) ∈ R2, x1 ≥ 0, x2 ≥ 0,M1

2,.x+ b1
2 = 0}

H−
3 = {x = (x1, x2) ∈ R2, x1 = 1, x2 ≤ 0}

H−
4 = {x = (x1, x2) ∈ R2, x1 = 2, x2 ≤ 0}.

We have

∂h−1
2 (D−1,1) = H−

3 ∪H+
3

∂h−1
2 (D1,1) = H−

3 ∪H+
3 ∪H−

4 ∪H+
4

∂h−1
2 (D1,−1) = H−

4 ∪H+
4

∂h−1
2 (D−1,−1) = ∅,

and thus, ⋃
D∈Π2

∂h−1
2 (D) = H−

3 ∪H+
3 ∪H−

4 ∪H+
4 . (17)

Let us check the condition P.d) for k = 2. Since Ω3 = R2, here Ω̊3 ∩H = H. The condition is
thus satisfied if and only if

⋃
D∈Π2

∂h−1
2 (D) does not contain any full hyperplane H, and (17)

shows that it is the case. The condition P.d) is satisfied.
Let us now discuss the conditions given in [47, 52] for this example. Let us first define the following

hyperplanes:
H1 = {x ∈ R2,M2

1,.x+ b2
1 = 0}

H2 = {x ∈ R2,M2
2,.x+ b2

2 = 0}.

To discuss the conditions in [47], we will refer to their concepts of fold-set, of piece-wise linear
surface, of canonical representation and dependency graph of a piece-wise linear surface, as well as to
their Lemma 4. We also use their notations □1S and □2S. Let us now consider the set S as the fold-set
of the function fM,b implemented by the network. Here, it corresponds to the points x satisfying one
of the following equations 

M2
1,.x+ b2

1 = 0
M2

2,.x+ b2
2 = 0

M1
1,.h2(x) + b1

1 = 0
M1

2,.h2(x) + b1
2 = 0.

In other words, S = H1 ∪H2 ∪H−
3 ∪H+

3 ∪H−
4 ∪H+

4 . The canonical representation of S is the following

S = (H1 ∪H2) ∪
(
H−

3 ∪H+
3 ∪H−

4 ∪H+
4
)
,

where □1S = (H1 ∪H2) and □2S = S. Further, it can be checked that the dependency graph of S
only contains the edges: H2 → H−

3 , H2 → H+
3 , H2 → H−

4 and H2 → H+
4 .

The identifiable networks considered in [47] must satisfy the conditions of Lemma 4 in [47]. In
particular, the dependency graph of S must contain at least 2 directed paths of length 1 with distinct
starting vertices, which is not the case here since all the paths of length 1 start from H2. Hence, this
network does not fall under the conditions of [47].

Now if we use the concepts and notations of [52], let us denote by z1 the first neuron of the first
hidden layer, whose associated parameters are M2

1,. and b2
1. Following the definition in [52], the boundary

associated to z1 is Bz1 = H1. Let us denote by z3 the first neuron of the second hidden layer, whose
associated parameters are M1

1,. and b1
1. Its boundary is Bz3 = H−

3 ∪H+
3 . Since z1 and z3 belong to two

consecutive layers and are thus linked by an edge of the network, the conditions in [52] (see Theorem 2)
require that Bz1 and Bz3 intersect. It is however clear that they do not (see Figure 3).
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5 Sketch of proof of Theorem 7
Our main result, Theorem 7, is proven in details in Appendix B.4, and we give a sketch of the proof in
this section. It is proven by induction. We are given two parameterizations (M,b) and (M̃, b̃), two
lists Π and Π̃ that are admissible with respect to (M,b) and (M̃, b̃) respectively, and a domain Ω
that satisfy the hypotheses of Theorem 7 and we want to show that the two parameterizations are
equivalent. For this, we identify the layers one after the other. To facilitate identification at a layer
level, we begin with a normalisation step.

5.1 Normalisation step
Two equivalent parameterizations do not necessarily have equal weights on their layers. Indeed, the
neuron permutations but more importantly the rescalings can change the structure of the intermediate
layers. We are going to assume the following normalisation property: for all k ∈ J1,K − 1K, for all
i ∈ J1, nkK, we have

∥Mk
i,.∥ = 1;

∥M̃k
i,.∥ = 1.

(18)

Indeed, we show in the appendix that for a parameterization satisfying the conditions P, there
always exists an equivalent parameterization that is normalised and that satisfies the conditions P
(see Propositions 42 and 50). We can thus replace each parameterization (M,b) and (M̃, b̃) by an
equivalent normalised parameterization. If we are able to show the normalised parameterizations are
equivalent, then the original parameterizations are equivalent too.

5.2 Induction
The induction proof relies on Lemma 14 below. Let K be the number of layers of the network, and
suppose the theorem is true for the networks with K − 1 layers. As explained in section 4.1, to identify
the parameters MK−1 and bK−1, we separate the function implemented by the first layer of the network
and the function implemented by the rest of the layers. For each network:

gK = gK−1 ◦ hK−1,

g̃K = g̃K−1 ◦ h̃K−1.

We know that gK−1 and g̃K−1 are continuous piecewise linear, and this will allow us to apply
Lemma 14. Before stating it, we introduce a set of conditions, called C, that need to be satisfied
in order to apply it. These conditions come immediately from P, and one can easily check that
(gK−1,M

K−1, bK−1,ΩK ,ΠK−1) and (g̃K−1, M̃
K−1, b̃K−1,ΩK , Π̃K−1) satisfy C, as a direct consequence

of the conditions P being satisfied by (M,b,Ω,Π) and (M̃, b̃,Ω, Π̃).

Definition 13. Let l,m, n be integers, M ∈ Rm×l, b ∈ Rm, Ω ⊂ Rl be an open domain, let g : Rm → Rn
a continuous piecewise linear function, and let Π be an admissible set of polyhedra with respect to g.

Let D ∈ Π. The function g coincides with a linear function on D. Since the interior of D is
nonempty, we define V (D) ∈ Rn×m and c(D) ∈ Rn as the unique couple satisfying, for all x ∈ D:

g(x) = V (D)x+ c(D).

We denote Ei = {x ∈ Rm, xi = 0}.
We say that (g,M, b,Ω,Π) satisfies the conditions C iif

C.a) M is full row rank;
C.b) for all i ∈ J1,mK, there exists x ∈ Ω̊ such that

Mi,.x+ bi = 0,

or equivalently, if we denote by hlin the function x 7→ Mx+ b, then

Ei ∩ hlin(Ω̊) ̸= ∅;
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C.c) for all D ∈ Π, for all i ∈ J1,mK, if Ei ∩D ∩ h(Ω) ̸= ∅ then V.,i(D) ̸= 0;
C.d) for any affine hyperplane H ⊂ Rl,

H ∩ Ω̊ ̸⊂
⋃
D∈Π

∂h−1(D).

We can now state the lemma.

Lemma 14. Let l,m, n ∈ N∗. Suppose g, g̃ : Rm → Rn are continuous piecewise linear functions,
Ω ⊂ Rl is a subset and let M, M̃ ∈ Rm×l, b, b̃ ∈ Rm. Denote h : x 7→ σ(Mx+b) and h̃ : x 7→ σ(M̃x+ b̃).
Assume Π and Π̃ are two sets of polyhedra admissible with respect to g and g̃.

Suppose (g,M, b,Ω,Π) and (g̃, M̃ , b̃,Ω, Π̃) satisfy the conditions C, and for all i ∈ J1,mK, ∥Mi,.∥ =
∥M̃i,.∥ = 1.

Suppose for all x ∈ Ω:
g ◦ h(x) = g̃ ◦ h̃(x).

Then, there exists a permutation φ ∈ Sm, such that:
• M̃ = PφM ;
• b̃ = Pφb;
• g and y 7→ g̃(Pφy) coincide on h(Ω).

Lemma 14 is restated in Appendix B as Lemma 53 and proven in Appendix C.
Applying this lemma to (gK−1,M

K−1, bK−1,ΩK ,ΠK−1) and (g̃K−1, M̃
K−1, b̃K−1,ΩK , Π̃K−1), we

conclude that there exists a permutation φK−1 such that®
M̃K−1 = PφK−1M

K−1

b̃K−1 = PφK−1b
K−1,

(19)

and that gK−1 and y 7→ g̃(PφK−1y) coincide on hK−1(Ω).
The functions gK−1 and y 7→ g̃(PφK−1y) are the functions implemented by the networks (M,b)

and (M̃, b̃) once we have removed the first layer, with a permutation of the input for the second one.
Since they coincide on ΩK−1 = hK−1(Ω) and they satisfy the conditions P, we can apply the induction
hypothesis to conclude the proof of Theorem 7. The complete proof is detailed in the appendices, as
discussed above.

6 Conclusion
We established a set of conditions P under which the function implemented by a deep feedforward
ReLU neural network on a subset Ω of the input space uniquely characterizes its parameters, up to
permutation and positive rescaling. This contributes to the understanding of identifiability and stable
recovery for deep ReLU networks, which is still largely unexplored. The conditions under which our
result holds differ from the conditions of the results established in [47] and [52], which allows us to cover
new situations. To be satisfied the conditions P need Ω to have nonempty interior, which prevents it
from being a sample set. The authors of [59, 6] are able to give a result with a finite set Ω, but for
local identifiability only. Obtaining the best of both worlds, that is establishing a global identifiability
result for deep ReLU networks with a finite set Ω, would be a major step forward.
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In the appendices, we restate all the notations, definitions and results of the main text, for clarity of
reading. The appendices are then organized as follows. In Appendix A, we give the complete definitions
and basic properties necessary to state and prove the main theorem. In Appendix B, we state the main
result, Theorem 51 (Theorem 7 in the main text), and we prove it. Finally, we prove the fundamental
lemma used in the proof of the main theorem, Lemma 53 (Lemma 14 in the main text), in Appendix C.

A Definitions, notations and preliminary results
Appendix A is structured as follows: after giving some notations in Section A.1, we recall the definition
of a continuous piecewise linear function and some corresponding basic properties in Section A.2 and
we give our formalization of deep ReLU networks as well as some well-known properties in Section A.3.

A.1 Basic notations and definitions
We denote by

σ : R −→ R
t 7−→ max(t, 0)

the ReLU activation function. If x = (x1, . . . , xm)T ∈ Rm is a vector, we denote σ(x) = (σ(x1), . . . , σ(xm))T .
If A ⊂ Rm, we denote by Å the interior of A and A the closure of A with respect to the standard

topology of Rm. We denote by ∂A = A\Å the topological boundary of A.
For m,n ∈ N∗, we denote by Rn the vector space of n-dimensional real vectors and Rm×n the

vector space of real matrices with m lines and n columns. On the space of vectors, we use the norm
∥x∥ =

»∑n
i=1 x

2
i . For x ∈ Rn and r > 0, we denote B(x, r) = {y ∈ Rn, ∥y − x∥ < r}.

For any vector x ∈ Rn whose coefficients xi are all different from zero, we denote by x−1 or 1
x the

vector
Ä

1
x1
, 1
x2
, . . . , 1

xn

äT
.

For any matrix M ∈ Rm×n, for all i ∈ J1,mK, we denote by Mi,. the ith line of M . The vector Mi,.

is a line vector whose jth component is Mi,j . Similarly, for j ∈ J1, nK, we denote by M.,j the jth column
of M , which is the column vector whose ith component is Mi,j . For any matrix M ∈ Rm×n, we denote
by MT ∈ Rn×m the transpose matrix of M .

To avoid any confusion, we will denote by (MT )i,. the ith line of the matrix MT and by M T
i,. the

transpose of the line vector Mi,., which is a column vector. Similarly, we will denote by (MT ).,j the jth

column of MT and M T
.,j the transpose of the column vector M.,j .

For n ∈ N∗, we denote by Idn the n× n identity matrix and by 1n the vector (1, 1, . . . , 1)T ∈ Rn.
If λ ∈ Rn is a vector of size n, for some n ∈ N∗, we denote by Diag(λ) the n× n matrix defined by:

Diag(λ)i,j =
®
λi if i = j

0 otherwise.

For any integer m ∈ N∗, we denote by Sm the set of all permutations of J1,mK. We denote by
idJ1,mK and idRm the identity functions on J1,mK and Rm respectively.

For any permutation φ ∈ Sm, we denote by Pφ the m×m permutation matrix associated to φ:

∀i, j ∈ J1,mK, (Pφ)i,j =
®

1 if φ(j) = i

0 otherwise.
(20)

For all x ∈ Rm, we have:
(Pφx)i = xφ−1(i). (21)

Using (21) we see that Pφ−1Pφx = x, which shows, since Pφ is orthogonal, that we have

P−1
φ = Pφ−1 = PTφ . (22)

Let l,m, n ∈ N∗. For any matrix M ∈ Rm×l and any function f : Rm → Rn, we denote with a slight
abuse of notation f ◦M the function x 7→ f(Mx).
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If X and Y are two sets and h : X → Y is a function, for a subset A ⊂ Y , we denote by h−1(A) the
following set:

{x ∈ X,h(x) ∈ A}.

Note that this does not require the function h to be injective.

A.2 Continuous piecewise linear functions
We now introduce a few definitions and properties around the notion of continuous piecewise linear
function.

Definition 15. Let m ∈ N∗. A subset D ⊂ Rm is a closed polyhedron iif there exist q ∈ N∗,
a1, . . . , aq ∈ Rm and b1, . . . bq ∈ R such that for all x ∈ Rm,

x ∈ D ⇐⇒


aT1 x+ b1 ≤ 0
...
aTq x+ bq ≤ 0.

Remarks. • A closed polyhedron is convex as an intersection of convex sets.
• Since we can fuse the inequation systems of several closed polyhedrons into one system, we see

that an intersection of closed polyhedrons is a closed polyhedron.
• For q = 1 and a1 = 0, taking b1 > 0 and b1 ≤ 0 respectively we can show that ∅ and Rm are both

closed polyhedra.

Proposition 16. Let m, l ∈ N∗. If h : Rl → Rm is linear and C is a closed polyhedron of Rm, then
h−1(C) is a closed polyhedron of Rl.

Proof. The function h is linear so there exist M ∈ Rm×l and b ∈ Rm such that for all x ∈ Rl,

h(x) = Mx+ b.

The set C is a closed polyhedron so there exist a1, . . . , aq ∈ Rm and b1, . . . bq ∈ R such that y ∈ C if
and only if 

aT1 y + b1 ≤ 0
...
aTq y + bq ≤ 0.

For all x ∈ Rl,
x ∈ h−1(C) ⇐⇒ h(x) ∈ C

⇐⇒


aT1 (Mx+ b) + b1 ≤ 0
...
aTq (Mx+ b) + bq ≤ 0

⇐⇒


(aT1 M)x+ (aT1 b+ b1) ≤ 0
...
(aTqM)x+ (aTq b+ bq) ≤ 0.

This shows that h−1(C) is a closed polyhedron.

Definition 17. We say that a function g : Rm → Rn is continuous piecewise linear if there exists a
finite set of closed polyhedra whose union is Rm and such that g is linear over each polyhedron.

Example. Since Rm is a closed polyhedron, we see in particular that an affine function x 7→ Ax+ b,
with A ∈ Rn×m and b ∈ Rn, is continuous piecewise linear from Rm to Rn.
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Example 18. The vectorial ReLU function σ : Rm → Rm is continuous piecewise linear. Indeed, each
of the 2m closed orthants is a closed polyhedron, defined by a system of the form

ϵ1x1 ≥ 0
...
ϵmxm ≥ 0,

with ϵi ∈ {−1, 1}, and over such an orthant, the ReLU coincides with the affine function

(x1, . . . , xm) 7→
Å1 + ϵ1

2 x1, . . . ,
1 + ϵm

2 xm

ã
.

In this definition the continuity is not obvious. We show it in the following proposition.

Proposition 19. A continuous piecewise linear function is continuous.

Proof. Let g : Rm → Rn be a continuous piecewise linear function. There exists a finite family of closed
polyhedra C1, . . . , Cr such that

⋃r
i=1 Ci = Rm and g is linear on each closed polyhedron Ci.

Let x ∈ Rm. Let ϵ > 0.
Let us denote I = {i ∈ J1, nK, x ∈ Ci}. Since the polyhedrons are closed, there exists r0 > 0 such

that for all i /∈ I,B(x, r0) ∩ Ci = ∅. We thus have

B(x, r0) =
m⋃
i=1

(B(x, r0) ∩ Ci) =
⋃
i∈I

(B(x, r0) ∩ Ci) .

For all i ∈ I, g is linear -therefore continuous- on Ci so there exists ri > 0, such that

y ∈ Ci ∩B(x, ri) ⇒ ∥g(y) − g(x)∥ ≤ ϵ.

Let r = min(r0,mini∈I(ri)). For all y ∈ B(x, r) there exists i ∈ I such that y ∈ Ci, and since r ≤ ri,
we have

∥g(y) − g(x)∥ ≤ ϵ.

Summarizing, for any x ∈ Rn and for any ϵ > 0, there exists r > 0 such that

y ∈ B(x, r) ⇒ ∥g(y) − g(x)∥ ≤ ϵ.

This shows g is continuous.

Proposition 20. If h : Rl → Rm and g : Rm → Rn are two continuous piecewise linear functions, then
g ◦ h is continuous piecewise linear.

Proof. By definition there exist a family C1, . . . , Cr of closed polyhedra of Rl such that
⋃r
i=1 Ci = Rl

and h is linear on each Ci and a family D1, . . . , Ds of closed polyhedra of Rm such that
⋃s
i=1 Di = Rm

and g is linear on each Di. Let i ∈ J1, rK and j ∈ J1, sK. The function h coincides with a linear map
h̃ : Rl → Rm on Ci and the inverse image of a closed polyhedron by a linear map is a closed polyhedron
(Proposition 16) so h̃−1(Dj) is a closed polyhedron. Thus h−1(Dj) ∩ Ci = h̃−1(Dj) ∩ Ci is a closed
polyhedron as an intersection of closed polyhedra. The function h is linear on Ci and g is linear on Dj

so g ◦ h is linear on h−1(Dj) ∩ Ci. We have a family of closed polyhedra,(
h−1(Dj) ∩ Ci

)
i∈J1,rK
j∈J1,sK

,

each of which g ◦ h is linear over. Given that
r⋃
i=1

s⋃
j=1

h−1(Dj) ∩ Ci =
r⋃
i=1

Ci = Rl,

we can conclude that g ◦ h is continuous piecewise linear.
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Definition 21. Let g : Rm → Rn be a continuous piecewise linear function. Let Π be a set of closed
polyhedra of Rm. We say that Π is admissible with respect to the function g if and only if:

•
⋃
D∈Π D = Rm,

• for all D ∈ Π, g is linear on D,
• for all D ∈ Π, D̊ ̸= ∅.

Proposition 22. For all g : Rm → Rn continuous piecewise linear, there exists a set of closed polyhedra
Π admissible with respect to g.

Proof. Let g : Rm → Rn be a continuous piecewise linear function. By definition there exists a finite
set of closed polyhedra D1, . . . , Ds such that

⋃s
i=1 Di = Rm and g is linear on each Di.

Let I = {i ∈ J1, sK, D̊i ̸= ∅}. Let us show that
⋃
i∈I Di = Rm.

We first show that if a polyhedron Di has empty interior, then it is contained in an affine hy-
perplane. Indeed, if it is not contained in an affine hyperplane, then there exist m + 1 affinely
independent points x1, . . . , xm+1 ∈ Di. Since a closed polyhedron is convex, the convex hull of the
points Conv(x1, . . . , xm+1), which is a m-simplex, is contained in Di, and thus Di has nonempty
interior.

Let x ∈ Rm. For all i /∈ I, Di is contained in an affine hyperplane, and a finite union of affine
hyperplanes does not contain any nontrivial ball. As a consequence, for all n ∈ N, the ball B(x, 1

n ) is
not contained in

⋃
i/∈I Di and thus there exists in ∈ I such that Din ∩ B(x, 1

n ) ̸= ∅. Since I is finite,
there exists i ∈ I such that in = i for infinitely many n, and thus x ∈ Di.

We have shown that for all x ∈ Rm there exists i ∈ I such that x ∈ Di = Di, which means that⋃
i∈I

Di = Rm.

Hence, the set Π := {Di, i ∈ I} is admissible with respect to g.

Proposition 23. Let h : Rl → Rm be a continuous piecewise linear function and let P be a finite set
of closed polyhedra of Rm. Then

• for all D ∈ P, h−1(D) is a finite union of closed polyhedra;
•

⋃
D∈P ∂h

−1(D) is contained in a finite union of hyperplanes
⋃s
k=1 Ak.

Proof. Consider Π an admissible set of closed polyhedra with respect to h. Let D ∈ P. Since⋃
C∈Π C = Rl, we can write

h−1(D) = h−1(D) ∩

( ⋃
C∈Π

C

)
=

⋃
C∈Π

(
h−1(D) ∩ C

)
.

For all C ∈ Π, h is linear over C, so h−1(D) ∩ C is a polyhedron (see Proposition 16). This shows the
first point of the proposition.

Since h−1(D) ∩ C is a polyhedron, ∂
(
h−1(D) ∩ C

)
is contained in a finite union of hyperplanes. In

topology, we have

∂

[ ⋃
C∈Π

(
h−1(D) ∩ C

)]
⊂

⋃
C∈Π

∂
(
h−1(D) ∩ C

)
,

which shows that ∂
[⋃

C∈Π
(
h−1(D) ∩ C

)]
i.e. ∂h−1(D) is contained in a finite union of hyperplanes

too. This is true for any D ∈ P , and since P is finite, this is also true of the union
⋃
D∈P ∂h

−1(D).

A.3 Neural networks
We consider fully connected feedforward neural networks, with ReLU activation function. We index the
layers in reverse order, from K to 0, for some K ≥ 2. The input layer is the layer K, the output layer is
the layer 0, and between them are K−1 hidden layers. For k ∈ J0,KK, we denote by nk ∈ N the number
of neurons of the layer k. This means the information contained at the layer k is a nk-dimensional
vector.

23



Let k ∈ J0,K − 1K. We denote the weights between the layer k + 1 and the layer k with a matrix
Mk ∈ Rnk×nk+1 , and we consider a bias bk ∈ Rnk in the layer k. If k ̸= 0, we add a ReLU activation
function. If x ∈ Rnk+1 is the information contained at the layer k + 1, the layer k contains:®

σ(Mkx+ bk) if k ̸= 0
M0x+ b0 if k = 0.

The parameters of the network can be summarized in the couple (M,b), where M = (M0,M1, . . . ,MK−1) ∈
Rn0×n1 × · · · × RnK−1×nK and b = (b0, b1, . . . , bK−1) ∈ Rn0 × · · · × RnK−1 . We formalize the transfor-
mation implemented by one layer of the network with the following definition.

Definition 24. For a network with parameters (M,b), we define the family of functions (h0, . . . , hK−1)
such that for all k ∈ J0,K − 1K, hk : Rnk+1 → Rnk and for all x ∈ Rnk ,

hk(x) =
®
σ(Mkx+ bk) if k ̸= 0
M0x+ b0 if k = 0.

The function implemented by the network is then

fM,b = h0 ◦ h1 ◦ · · · ◦ hK−1 : RnK −→ Rn0 . (23)

The network with its parameters are represented in Figure 1 in the main part.
For all l ∈ J0,K − 1K, we denote M≤l = (M0,M1, . . . ,M l) and b≤l = (b0, b1, . . . , bl).

Remark 25. Since the vectorial ReLU function is continuous piecewise linear, Proposition 20 guarantees
that the functions hk are continuous piecewise linear.

We now define a few more functions associated to a network.

Definition 26. For a network with parameters (M,b), we define the family of functions (hlin0 , . . . , hlinK−1)
such that for all k ∈ J0,K − 1K, hlink : Rnk+1 → Rnk and for all x ∈ Rnk+1 ,

hlink (x) = Mkx+ bk.

The functions hlink correspond to the linear part of the transformation implemented by the network
between two layers, before applying the activation σ.

Definition 27. For a network with parameters (M,b), we define the family of functions (fK , fK−1, . . . , f0)
as follows:

• fK = idRnK ,
• for all k ∈ J0,K − 1K, fk = hk ◦ hk+1 ◦ · · · ◦ hK−1.

Remark. In particular we have f0 = fM,b.
The function fk : RnK 7→ Rnk represents the transformation implemented by the network between

the input layer and the layer k.

Definition 28. For a network with parameters (M,b), we define the sequence (g0, . . . , gK) as follows:

• g0 = idRn0 ,
• for all k ∈ J1,KK, gk = h0 ◦ h1 ◦ · · · ◦ hk−1.

Remark. We have in particular
• gK = fM,b;
• for all k ∈ J0,KK, fM,b = gk ◦ fk.
The function gk : Rnk 7→ Rn0 represents the transformation implemented by the network between

the layer k and the output layer.
In this paper the functions implemented by the networks are considered on a subset Ω ⊂ RnK . The

successive layers of a network project this subset onto the spaces Rnk , inducing a subset Ωk of Rnk for
all k, as in the following definition.
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Definition 29. For a network with parameters (M,b), for any Ω ⊂ RnK , we denote for all k ∈ J0,KK,

Ωk = fk(Ω).

Definition 30. For a network with parameters (M,b), for all k ∈ J2,KK, for all i ∈ J1, nk−1K, we
define

Hk
i = {x ∈ Rnk , Mk−1

i,. x+ bk−1
i = 0}.

Remark. When Mk−1
i,. ̸= 0, the set Hk

i is a hyperplane.
Remark 31. The objects defined in Definitions 24, 26, 27, 28, 29 and 30 all depend on (M,b), but
to simplify the notation we do not write it explicitly. To disambiguate when manipulating a second
network, whose parameters we will denote by (M̃, b̃), we will denote by h̃k, h̃link , f̃k, g̃k, Ω̃k and H̃k

i

the corresponding objects.

Proposition 32. For all k ∈ J0,KK, fk and gk are continuous piecewise linear.

Proof. We show this by induction: for the initialisation we have fK = idRnK which is continuous
piecewise linear. Now let k ∈ J0,K − 1K and assume fk+1 is continuous piecewise linear. By definition,
we have fk = hk ◦ fk+1. The function hk is continuous piecewise linear as noted in Remark 25. By
Proposition 20, the composition of two continuous piecewise linear functions is continuous piecewise
linear, so fk is continuous piecewise linear. The conclusion follows by induction.

We do the same for (g0, . . . , gK) starting with g0: first we have g0 = idRn0 which is continuous
piecewise linear, then for all k ∈ J1,KK, we have gk = gk−1 ◦ hk−1, and we conclude by composition of
two continuous piecewise linear functions.

Corollary 33. The function fM,b is continuous piecewise linear.

Proof. It comes immediately from fM,b = f0 and Proposition 32.

Recall the definition of an admissible set with respect to a continuous piecewise linear function
(Definition 21). Proposition 32 allows the following definition.

Definition 34. Consider a network parameterization (M,b), and the functions gk associated to it.
We say that a list of sets of closed polyhedra Π = (Π1, . . . ,ΠK−1) is admissible with respect to (M,b)
iif for all k ∈ J1,K − 1K, the set Πk is admissible with respect to gk.

Remark. For a list Π = (Π1, . . . ,ΠK−1), for all l ∈ J1,K − 1K, we denote Π≤l = (Π1, . . . ,Πl). If Π is
admissible with respect to (M,b), then Π≤l is admissible with respect to (M≤l,b≤l).

Proposition 35. For any network parameterization (M,b), there always exists a list of sets of closed
polyhedra Π that is admissible with respect to (M,b).

Proof. For all k ∈ J1,K−1K, since gk is continuous piecewise linear, Proposition 22 guarantees that there
exists an admissible set of polyhedra Πk with respect to gk. We simply define Π = (Π1, . . . ,ΠK−1).

Definition 36. For a parameterization (M,b) and a list Π admissible with respect to (M,b), for all
k ∈ J1,K − 1K, for all D ∈ Πk, since gk is linear over D and D has nonempty interior, we can define
V k(D) ∈ Rn0×nk and ck(D) ∈ Rn0 as the unique couple that satisfies:

∀x ∈ D, gk(x) = V k(D)x+ ck(D).

We now introduce the equivalence relation between parameterizations, often referred to as equivalence
modulo permutation and positive rescaling.

Definition 37 (Equivalent parameterizations). If (M,b) and (M̃, b̃) are two network parameterizations,
we say that (M,b) is equivalent modulo permutation and positive rescaling, or simply equivalent, to
(M̃, b̃), and we write (M,b) ∼ (M̃, b̃), if and only if there exist:

• a family of permutations φ = (φ0, . . . , φK) ∈ Sn0 × · · · × SnK
, with φ0 = idJ1,n0K and φK =

idJ1,nKK,
• a family of vectors λ = (λ0, λ1, . . . , λK) ∈ (R∗

+)n0 × · · · × (R∗
+)nK , with λ0 = 1n0 and λK = 1nK

,
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such that for all k ∈ J0,K − 1K,®
M̃k = Pφk

Diag(λk)Mk Diag(λk+1)−1P−1
φk+1

b̃k = Pφk
Diag(λk)bk.

(24)

Remarks.

1. Recall that we denote by 1
λk+1 the vector whose components are 1

λk+1
i

. Note that Diag(λk+1)−1 =
Diag( 1

λk+1 ). Using (21), for all k ∈ J0,K − 1K, (24) means that for all (i, j) ∈ J1, nkK × J1, nk+1K,

M̃k
i,j =

λk
φ−1

k
(i)

λk+1
φ−1

k+1(j)

Mk
φ−1

k
(i),φ−1

k+1(j)

and
b̃ki = λk

φ−1
k

(i)b
k
φ−1

k
(i).

2. We go from a parameterization to an equivalent one by:
• permuting the neurons of each hidden layer k with a permutation φk;
• for each hidden layer k, multiplying all the weights of the edges arriving (from the layer

k + 1) to the neuron j, as well as the bias bkj , by some positive number λkj , and multiplying
all the weights of the edges leaving (towards the layer k − 1) the neuron j by 1

λk
j

.

Proposition 38. The relation ∼ is an equivalence relation.

Proof. Let us first show the following equality, that we are going to use in the proof. For any n ∈ N∗,
λ ∈ Rn and φ ∈ Sn,

Diag(λ)Pφ = Pφ Diag(P−1
φ λ). (25)

Indeed, Diag(λ)Pφ is the matrix obtained by multiplying each line i of Pφ by λi, so recalling (20), for
all i, j ∈ J1,mK, we have

(Diag(λ)Pφ)i,j =
®
λi if φ(j) = i

0 otherwise.

At the same time, Pφ Diag(P−1
φ λ) is the matrix obtained by multiplying each column j of Pφ by

(P−1
φ λ)j = λφ(j) (see (21) and (22)), so for all i, j ∈ J1,mK, we have

(Pφ Diag(P−1
φ λ))i,j =

®
λφ(j) if φ(j) = i

0 otherwise.

The two matrices are clearly equal.
We can now show the proposition.

• To show reflexivity we can take λk = 1nk
and φk = idJ1,nkK for all k ∈ J0,KK.

• Let us show symmetry. Assume a parameterization (M,b) is equivalent to another parameteriza-
tion (M̃, b̃). Let us denote by φ and λ the corresponding families of permutations and vectors,
as in Definition 37. Inverting the expression of M̃k in Definition 37 and using (25) twice, we have
for all k ∈ J0,K − 1K:

M̃k = Pφk
Diag(λk)Mk Diag(λk+1)−1P−1

φk+1

⇐⇒ Diag(λk)−1P−1
φk
M̃kPφk+1 Diag(λk+1) = Mk

⇐⇒ P−1
φk

Diag(Pφk
λk)−1M̃k Diag(Pφk+1λ

k+1)Pφk+1 = Mk,

so denoting φ̃k = φ−1
k and λ̃k = (Pφk

λk)−1, and recalling that Pφ−1
k

= P−1
φk

, we have, for all
k ∈ J0,K − 1K,

Mk = Pφ̃k
Diag(λ̃k)M̃k Diag(λ̃k+1)−1P−1

φ̃k+1
.
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We show similarly that for all k ∈ J0,K − 1K,

bk = Pφ̃k
Diag(λ̃k)b̃k.

We naturally have φ̃0 = idJ1,n0K and φ̃K = idJ1,nKK, as well as λ̃0 = 1n0 and λ̃K = 1nK
.

This proves the symmetry of the relation.
• Let us show transitivity. Assume (M,b), (M̃, b̃) and (M̌, b̌) are three parameterizations such

that (M,b) ∼ (M̃, b̃) and (M̃, b̃) ∼ (M̌, b̌).
As in Definition 37, we denote by φ, φ̃, λ and λ̃ the families of permutations and vectors such
that, for all k ∈ J0,K − 1K,®

M̃k = Pφk
Diag(λk)Mk Diag(λk+1)−1P−1

φk+1

b̃k = Pφk
Diag(λk)bk,

and ®
M̌k = Pφ̃k

Diag(λ̃k)M̃k Diag(λ̃k+1)−1P−1
φ̃k+1

b̌k = Pφ̃k
Diag(λ̃k)b̃k.

Combining these and using (25), we have

M̌k = Pφ̃k
Diag(λ̃k)Pφk

Diag(λk)Mk Diag(λk+1)−1P−1
φk+1

Diag(λ̃k+1)−1P−1
φ̃k+1

= Pφ̃k

(
Diag(λ̃k)Pφk

)
Diag(λk)Mk

· Diag(λk+1)−1 (Diag(λ̃k+1)Pφk+1

)−1
P−1
φ̃k+1

= Pφ̃k

(
Pφk

Diag(P−1
φk
λ̃k)
)

Diag(λk)Mk

· Diag(λk+1)−1
Ä
Pφk+1 Diag(P−1

φk+1
λ̃k+1)

ä−1
P−1
φ̃k+1

= Pφ̃k
Pφk

Diag(P−1
φk
λ̃k) Diag(λk)Mk

· Diag(λk+1)−1 Diag(P−1
φk+1

λ̃k+1)−1P−1
φk+1

P−1
φ̃k+1

,

and
b̌k = Pφ̃k

Diag(λ̃k)Pφk
Diag(λk)bk

= Pφ̃k
Pφk

Diag(P−1
φk
λ̃k) Diag(λk)bk.

Hence denoting φ̌k = φ̃k ◦ φk and λ̌k = Diag(P−1
φk
λ̃k)λk, for all k ∈ J0,KK, we see that, for

k ∈ J0,K − 1K,
M̌k = Pφ̌k

Diag(λ̌k)Mk Diag(λ̌k+1)−1P−1
φ̌k+1

and
b̌k = Pφ̌k

Diag(λ̌k)bk.

Naturally, we also have φ̌0 = idJ1,n0K and φ̌K = idJ1,nKK, as well as λ̌0 = 1n0 and λ̌K = 1nK
,

which shows that (M,b) ∼ (M̌, b̌).

Recall the objects hk, fk, gk,Ωk, Hk
i associated to a parameterization (M,b), defined in Definitions

24, 27, 28, 29 and 30, and recall that we denote by h̃k, f̃k, g̃k, Ω̃k and H̃k
i the corresponding objects

with respect to another parameterization (M̃, b̃). We give in the following proposition the relations
that link these objects when the two parameterizations (M,b) and (M̃, b̃) are equivalent.

Proposition 39. Assume (M,b) ∼ (M̃, b̃) and consider φ and λ as in Definition 37. Let Π be a list
of sets of closed polyhedra that is admissible with respect to (M,b). Then:

1. for all k ∈ J0,K − 1K,

h̃k = Pφk
Diag(λk) ◦ hk ◦ Diag(λk+1)−1P−1

φk+1
,
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2. for all k ∈ J0,KK,
f̃k = Pφk

Diag(λk) ◦ fk, (26)
g̃k = gk ◦ Diag(λk)−1P−1

φk
,

Ω̃k = Pφk
Diag(λk)Ωk,

3. for all k ∈ J2,KK, for all i ∈ J1, nk−1K,

H̃k
i = Pφk

Diag(λk)Hk
φ−1

k−1(i),

4. for all k ∈ J1,K − 1K, the set of closed polyhedra Π̃k = {Pφk
Diag(λk)D,D ∈ Πk} is admissible

for g̃k, i.e. the list Π̃ = (Π̃1, . . . , Π̃K−1) is admissible with respect to (M̃, b̃).

Proof. 1. Let k ∈ J0,K − 1K. If k ̸= 0, we have from Definition 24:

h̃k(x) = σ(M̃kx+ b̃k)

= σ
Ä
Pφk

Diag(λk)Mk Diag(λk+1)−1P−1
φk+1

x

+Pφk
Diag(λk)bk

)
= σ
Ä
Pφk

Diag(λk)
î
Mk Diag(λk+1)−1P−1

φk+1
x+ bk

óä
.

Denote y :=
î
Mk Diag(λk+1)−1P−1

φk+1
x+ bk

ó
. Let i ∈ J1, nkK. Using (21) and the fact that λk

φ−1
k

(i)

is nonnegative, the ith coordinate of h̃k(x) is

h̃k(x)i =
[
σ
(
Pφk

Diag(λk)y
)]
i

= σ
([
Pφk

Diag(λk)y
]
i

)
= σ

(
λk
φ−1

k
(i)yφ−1

k
(i)

)
= λk

φ−1
k

(i)σ
Ä
yφ−1

k
(i)

ä
=
[
Pφk

Diag(λk)σ (y)
]
i
.

Finally, we find the expression of h̃k(x):

h̃k(x) = Pφk
Diag(λk)σ (y)

= Pφk
Diag(λk)σ

Ä
Mk Diag(λk+1)−1P−1

φk+1
x+ bk

ä
= Pφk

Diag(λk)hk
Ä
Diag(λk+1)−1P−1

φk+1
(x)
ä
.

This concludes the proof when k ̸= 0.
The case k = 0 is proven similarly but replacing the ReLU function σ by the identity.

2. • We prove by induction the expression of f̃k.
For k = K, we have f̃K = fK = idRnK , and since PφK

= IdnK
and λK = 1nK

the equality
f̃K = PφK

Diag(λK)fK holds.
Now let k ∈ J0,K − 1K. Suppose the induction hypothesis is true for f̃k+1. Using the
expression of h̃k we just proved in 1 and the induction hypothesis, we have

f̃k = h̃k ◦ f̃k+1

=
Ä
Pφk

Diag(λk) ◦ hk ◦ Diag(λk+1)−1P−1
φk+1

ä
◦
(
Pφk+1 Diag(λk+1) ◦ fk+1

)
= Pφk

Diag(λk) ◦ hk ◦ fk+1

= Pφk
Diag(λk) ◦ fk.

This concludes the induction.
• We prove similarly the expression of g̃k, but starting from k = 0: first we have g̃0 = g0 = idRn0 ,

and then, for k ∈ J0,K − 1K, we write g̃k+1 = g̃k ◦ h̃k and we use the induction hypothesis
and the expression of h̃k.
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• Using the relation (26), that we just proved, we obtain

Ω̃k = f̃k(Ω) = Pφk
Diag(λk)fk(Ω) = Pφk

Diag(λk)Ωk.

3. Let k ∈ J2,KK and i ∈ J1, nk−1K. For all x ∈ Rnk , using (24) and (21),

x ∈ H̃k
i ⇐⇒ M̃k−1

i,. x+ b̃k−1
i = 0

⇐⇒
[
Pφk−1 Diag(λk−1)Mk−1 Diag(λk)−1P−1

φk

]
i,.
x

+
[
Pφk−1 Diag(λk−1)bk−1]

i
= 0

⇐⇒ λk−1
φ−1

k−1(i)M
k−1
φ−1

k−1(i),. Diag(λk)−1P−1
φk
x+ λk−1

φ−1
k−1(i)b

k−1
φ−1

k−1(i) = 0

⇐⇒ λk−1
φ−1

k−1(i)

Å
Mk−1
φ−1

k−1(i),. Diag(λk)−1P−1
φk
x+ bk−1

φ−1
k−1(i)

ã
= 0

⇐⇒ Mk−1
φ−1

k−1(i),. Diag(λk)−1P−1
φk
x+ bk−1

φ−1
k−1(i) = 0

⇐⇒ Diag(λk)−1P−1
φk
x ∈ Hk

φ−1
k−1(i).

Thus, H̃k
i = Pφk

Diag(λk)Hk
φ−1

k−1(i).

4. For all D ∈ Πk, denote D̃ = Pφk
Diag(λk)D. We have Π̃k = {D̃,D ∈ Πk}.

Let D ∈ Πk. The matrix Pφk
Diag(λk) is invertible so, according to Proposition 16, D̃ =

Pφk
Diag(λk)D is a closed polyhedron, and since D̊ ̸= ∅ we also have ˚̃D ̸= ∅.

Now recall from Item 2 that:
g̃k = gk ◦ Diag(λk)−1P−1

φk
.

For all x ∈ D̃, we have Diag(λk)−1P−1
φk
x ∈ D. Since Πk is admissible with respect to gk (by

definition of Π), gk is linear on D, and thus the function g̃k is linear on D̃.
Again, since Πk is admissible with respect to gk, we have

⋃
D∈Πk

D = Rm, and thus⋃
D̃∈Π̃k

D̃ =
⋃

D∈Πk

Pφk
Diag(λk)D

= Pφk
Diag(λk)

( ⋃
D∈Πk

D

)
= Pφk

Diag(λk) (Rm)
= Rm,

which shows that Π̃k is admissible with respect to g̃k.
This being true for any k ∈ J1,K − 1K, we conclude that Π̃ is admissible with respect to (M̃, b̃).

Corollary 40. If (M,b) ∼ (M̃, b̃), then fM,b = fM̃,b̃.

Proof. Consider φ and λ as in Definition 37. Looking at (26) for k = 0, and using the fact that
f0 = fM,b and f̃0 = fM̃,b̃, we obtain from Proposition 39

fM̃,b̃ = Pφ0 Diag(λ0)fM,b.

By definition of φ and λ, we have Pφ0 = Idn0 and λ0 = 1n0 , so we can finally conclude:

fM̃,b̃ = fM,b.

Definition 41. We say that (M,b) is normalized if for all k ∈ J1,K − 1K, for all i ∈ J1, nkK, we have:

∥Mk
i,.∥ = 1.
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Proposition 42. If (M,b) satisfies, for all k ∈ J1,K − 1K, for all i ∈ J1, nkK, Mk
i,. ̸= 0, then there

exists an equivalent parameterization (M̃, b̃) that is normalized.

Proof. We define recursively the family (λ0, λ1, . . . , λK) ∈ (R∗
+)n0 × · · · × (R∗

+)nK by:
• λK = 1nK

;
• for all k ∈ J1,K − 1K, for all i ∈ J1, nkK,

λki = 1
∥Mk

i,. Diag(λk+1)−1∥
;

• λ0 = 1n0 .
Consider the parameterization (M̃, b̃) defined by, for all k ∈ J0,K − 1K:®

M̃k = Diag(λk)Mk Diag(λk+1)−1

b̃k = Diag(λk)bk.

The parameterization is, by definition, equivalent to (M,b), and, for all k ∈ J1,K − 1K, for all
i ∈ J1, nkK:

∥M̃k
i,.∥ =

∥∥∥[Diag(λk)Mk Diag(λk+1)−1]
i,.

∥∥∥
=

∥∥λkiMk
i,. Diag(λk+1)−1∥∥

=
∥∥∥∥∥ 1

∥Mk
i,. Diag(λk+1)−1∥

Mk
i,. Diag(λk+1)−1

∥∥∥∥∥
= 1.

Proposition 43. If (M,b) and (M̃, b̃) are both normalized, then they are equivalent if and only if there
exists a family of permutations (φ0, . . . , φK) ∈ Sn0 × · · · × SnK

, with φ0 = idJ1,n0K and φK = idJ1,nKK,
such that for all k ∈ J0,K − 1K: ®

M̃k = Pφk
MkP−1

φk+1

b̃k = Pφk
bk.

(27)

Proof. Assume (M,b) and (M̃, b̃) are equivalent. Then there exist a family of permutations (φ0, . . . , φK) ∈
Sn0 × · · · × SnK

and a family (λ0, . . . , λK) ∈ (R∗
+)n0 × · · · × (R∗

+)nK as in Definition 37.
Let us prove by induction that λk = 1nk

for all k ∈ J0,KK.
For k = K it is true by Definition 37.
Let k ∈ J1,K − 1K, and suppose λk+1 = 1nk+1 . This means Diag(λk+1) = Idnk+1 . Let i ∈ J1, nkK.

Since (M,b) is normalized, ∥Mk
i,.∥ = 1. Since P−1

φk+1
is a permutation matrix, it is orthogonal

so ∥Mk
i,.P

−1
φk+1

∥ = ∥Mk
i,.∥ = 1. Recalling (24) and using the fact that (M̃, b̃) is normalized, that

Diag(λk+1) = Idnk+1 and that λki is positive, we have:

1 = ∥M̃k
φk(i),.∥ = ∥λkiMk

i,. Diag(λk+1)−1P−1
φk+1

∥

= λki ∥Mk
i,.P

−1
φk+1

∥

= λki .

This shows λk = 1nk
.

The case k = 0 is also true by Definition 37.
Equation (24) with λk = 1nk

for all k ∈ J0,KK is precisely equation (27).
The reciprocal is clear: (27) is a particular case of (24) with λk = 1nk

.
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B Main theorem
In Appendix B, we prove the main theorem using the notations and results of Appendix A, and
admitting Lemma 53, which is proven in Appendix C.

More precisely, we begin by stating the conditions C and P in Section B.1, we then state our main
result, which is Theorem 51, in Section B.2, and we give a consequence of this result in terms of risk
minimization, which is Corollary 52, in Section B.3. Finally we prove Theorem 51 and Corollary 52 in
Sections B.4 and B.5 respectively.

B.1 Conditions
Assume g : Rm → Rn is a continuous piecewise linear function, Π is a set of closed polyhedra admissible
with respect to g, and let Ω ⊂ Rl, M ∈ Rm×l and b ∈ Rm.

We define
h : Rl −→ Rm

x 7−→ σ(Mx+ b)
and

hlin : Rl −→ Rm
x 7−→ Mx+ b.

Definition 44. For all i ∈ J1,mK, we denote Ei = {x ∈ Rm, xi = 0}.

Definition 45. Let D ∈ Π. The function g coincides with a linear function on D. Since the interior of
D is nonempty, we define V (D) ∈ Rn×m and c(D) ∈ Rn as the unique couple satisfying, for all x ∈ D:

g(x) = V (D)x+ c(D).

Definition 46. We say that (g,M, b,Ω,Π) satisfies the conditions C iif:
C.a) M is full row rank;
C.b) for all i ∈ J1,mK, there exists x ∈ Ω̊ such that

Mi,.x+ bi = 0,

or equivalently,
Ei ∩ hlin(Ω̊) ̸= ∅;

C.c) for all D ∈ Π, for all i ∈ J1,mK, if Ei ∩D ∩ h(Ω) ̸= ∅ then V.,i(D) ̸= 0;
C.d) for any affine hyperplane H ⊂ Rl,

H ∩ Ω̊ ̸⊂
⋃
D∈Π

∂h−1(D).

Definition 47. For all k ∈ J1,K − 1K, for all i ∈ J1, nkK, we denote Eki = {x ∈ Rnk , xi = 0}.

We now state the conditions P (already stated in the main text in Definition 5).

Definition 48. We say that (M,b,Ω,Π) satisfies the conditions P iif for all k ∈ J1,K − 1K,
(gk,Mk, bk,Ωk+1,Πk) satisfies the conditions C.

Explicitly, for all k ∈ J1,K − 1K, the conditions are the following:
P.a) Mk is full row rank;
P.b) for all i ∈ J1, nkK, there exists x ∈ Ω̊k+1 such that

Mk
i,.x+ bki = 0,

or equivalently
Eki ∩ hlink (Ω̊k+1) ̸= ∅;

P.c) for all D ∈ Πk, for all i ∈ J1, nkK, if Eki ∩D ∩ Ωk ̸= ∅ then V k.,i(D) ̸= 0;
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P.d) for any affine hyperplane H ⊂ Rnk+1 ,

H ∩ Ω̊k+1 ̸⊂
⋃

D∈Πk

∂h−1
k (D).

Remark 49. The condition P.b) implies that for all k ∈ J1,K − 1K, Ω̊k+1 ̸= ∅, and in particular for
k = K − 1, the set Ω = ΩK has nonempty interior.

The following proposition shows that the conditions P are stable modulo permutation and positive
rescaling, as defined in Definition 37.

Proposition 50. Suppose (M,b) and (M̃, b̃) are two equivalent network parameterizations, and
suppose (M,b,Ω,Π) satisfies the conditions P. Then, if we define Π̃ as in Item 4 of Proposition 39,
(M̃, b̃,Ω, Π̃) satisfies the conditions P.

Proof. Since (M,b) and (M̃, b̃) are equivalent, by Definition 37 there exist

• a family of permutations (φ0, . . . , φK) ∈ Sn0 × · · · × SnK
, with φ0 = idJ1,n0K and φK = idJ1,nKK,

• a family (λ0, λ1, . . . , λK) ∈ (R∗
+)n0 × · · · × (R∗

+)nK , with λ0 = 1n0 and λK = 1nK
,

such that ®
M̃k = Pφk

Diag(λk)Mk Diag(λk+1)−1P−1
φk+1

b̃k = Pφk
Diag(λk)bk.

(28)

Let k ∈ J1,K − 1K. We know the conditions P.a) − P.d) are satisfied by (gk,Mk, bk,Ωk+1,Πk), let
us show they are satisfied by (g̃k, M̃k, b̃k, Ω̃k+1, Π̃k).

P.a) Since Mk satisfies P.a), it is full row rank, and using (28) and the fact that the matrices
Pφk

,Diag(λk),Diag(λk+1)−1 and P−1
φk+1

are invertible, we see that M̃k is full row rank.

P.b) Let i ∈ J1, nkK. Since (gk,Mk, bk,Ωk+1,Πk) satisfies the condition P.b), we can choose x ∈ Ω̊k+1
such that

Mk
φ−1

k
(i),.x+ bk

φ−1
k

(i) = 0. (29)

Recall from Proposition 39 that

Ω̃k+1 = Pφk+1 Diag(λk+1)Ωk+1.

Since Pφk+1 Diag(λk+1) is an invertible matrix, it induces an homeomorphism on Rnk+1 , and thus
this identity also holds for the interiors:

˚̃Ωk+1 = Pφk+1 Diag(λk+1)Ω̊k+1.

Given that x ∈ Ω̊k+1, defining y = Pφk+1 Diag(λk+1)x, we have y ∈ ˚̃Ωk+1.
Using (28), (21) and (29), we have

M̃k
i,.y + b̃ki = [Pφk

Diag(λk)Mk Diag(λk+1)−1P−1
φk+1

]i,.y + [Pφk
Diag(λk)bk]i

= [Diag(λk)Mk Diag(λk+1)−1P−1
φk+1

]φ−1
k

(i),.y + [Diag(λk)bk]φ−1
k

(i)

= λk
φ−1

k
(i)M

k
φ−1

k
(i),. Diag(λk+1)−1P−1

φk+1
y + λk

φ−1
k

(i)b
k
φ−1

k
(i)

= λk
φ−1

k
(i)M

k
φ−1

k
(i),.x+ λk

φ−1
k

(i)b
k
φ−1

k
(i)

= 0.

We showed that there exists y ∈ ˚̃Ωk+1 such that

M̃k
i,.y + b̃ki = 0,

which concludes the proof of P.b).
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P.c) Let D̃ ∈ Π̃k and i ∈ J1, nkK. Suppose Eki ∩ D̃ ∩ h̃k(Ω̃k+1) ̸= ∅, and let us show Ṽ ki,.(D̃) ̸= 0.
Let x ∈ Ω̃k+1 such that h̃k(x) ∈ Eki ∩ D̃. Inverting the equalities of Proposition 39 we get

• hk = Diag(λk)−1P−1
φk
h̃k ◦ Pφk+1 Diag(λk+1),

• Hk+1
φ−1

k
(i) = Diag(λk+1)−1P−1

φk+1
H̃k+1
i ,

• Ωk+1 = Diag(λk+1)−1P−1
φk+1

Ω̃k+1.
Denote D = Diag(λk)−1P−1

φk
D̃. Since Π̃k has been defined as in Item 4 of Proposition 39, we know

that D ∈ Πk. Let y = Diag(λk+1)−1P−1
φk+1

x. Let us prove that hk(y) ∈ Ekφk(i)−1 ∩D ∩ hk(Ωk+1).
Since x ∈ Ω̃k+1, we see that y ∈ Ωk+1, so hk(y) ∈ hk(Ωk+1).
We also have

hk(y) = Diag(λk)−1P−1
φk
h̃k ◦ Pφk+1 Diag(λk+1)

Ä
Diag(λk+1)−1P−1

φk+1
x
ä

= Diag(λk)−1P−1
φk
h̃k (x) ,

which shows, since h̃k(x) ∈ D̃, that hk(y) ∈ D.
Since, by hypothesis, h̃k(x) ∈ Eki , using (21) and (22), we have

[hk(y)]φ−1
k

(i) =
[
Diag(λk)−1P−1

φk
h̃k (x)

]
φ−1

k
(i)

= 1
λk
φ−1

k
(i)

[
P−1
φk
h̃k(x)

]
φ−1

k
(i)

= 1
λk
φ−1

k
(i)

(h̃k(x))i

= 0.

This proves that hk(y) ∈ Ek
φ−1

k
(i).

We proved that
hk(y) ∈ Ek

φ−1
k

(i) ∩D ∩ hk(Ωk+1),

which shows this intersection is not empty. Since (gk,Mk, bk,Ωk+1,Πk) satisfies P.c), we have
V k
.,φ−1

k
(i)(D) ̸= 0.

Since, according to proposition 39,

g̃k = gk ◦ Diag(λk)−1P−1
φk
,

we deduce:
Ṽ k(D̃) = V k(D) Diag(λk)−1P−1

φk
. (30)

For a matrix A and a permutation φ, we have [PφA]i,. = Aφ−1(i),., so by taking the transpose, we
see that [ATP−1

φ ].,i = (AT ).,φ−1(i).
Taking the ith column of (30), we thus obtain

Ṽ k.,i(D̃) =
[
V k(D) Diag(λk)−1P−1

φk

]
.,i

= 1
λk
φ−1

k
(i)
V k
.,φ−1

k
(i)(D),

which shows that Ṽ k.,i(D̃) ̸= 0.
P.d) Let H̃ ⊂ Rnk+1 be an affine hyperplane. Denote H = Diag(λk+1)−1P−1

φk+1
H̃. Since P.d) holds for

(gk,Mk, bk,Ωk+1,Πk), using Item 2 of Proposition 39, we have

H̃ ∩ ˚̃Ωk+1 = Pφk+1 Diag(λk+1)
Ä
H ∩ Ω̊k+1

ä
̸⊂ Pφk+1 Diag(λk+1)

⋃
D∈Πk

∂h−1
k (D)

=
⋃

D∈Πk

Pφk+1 Diag(λk+1)∂h−1
k (D). (31)
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For all k, Pφk+1 Diag(λk+1) is an invertible matrix, so it induces an homeomorphism of Rnk+1 .
We thus have

Pφk+1 Diag(λk+1)∂h−1
k (D) = ∂

(
Pφk+1 Diag(λk+1)h−1

k (D)
)
. (32)

Furthermore, by Item 1 of Proposition 39, we have h̃k = Pφk
Diag(λk)hk ◦ Diag(λk+1)−1P−1

φk+1
, so

h̃−1
k = Pφk+1 Diag(λk+1)h−1

k ◦ Diag(λk)−1P−1
φk
,

and since D̃ = Pφk
Diag(λk)D,

h̃−1
k (D̃) = Pφk+1 Diag(λk+1)h−1

k (D). (33)

Combining (32) and (33), we obtain

Pφk+1 Diag(λk+1)∂h−1
k (D) = ∂h̃−1

k (D̃),

and we can thus reformulate (31) as

H̃ ∩ ˚̃Ωk+1 ̸⊂
⋃

D̃∈Π̃k

∂h̃−1
k (D̃).

B.2 Identifiability statement
We restate here the main theorem, already stated as Theorem 7 in the main part of the article.

Theorem 51. Let K ∈ N, K ≥ 2. Suppose we are given two networks with K layers, identical number
of neurons per layer, and with respective parameters (M,b) and (M̃, b̃). Assume Π and Π̃ are two lists
of sets of closed polyhedra that are admissible with respect to (M,b) and (M̃, b̃) respectively. Denote
by nK the number of neurons of the input layer, and suppose we are given a set Ω ⊂ RnK such that
(M,b,Ω,Π) and (M̃, b̃,Ω, Π̃) satisfy the conditions P, and such that, for all x ∈ Ω:

fM,b(x) = fM̃,b̃(x).

Then:
(M,b) ∼ (M̃, b̃).

B.3 An application to risk minimization
We restate here the consequence of the main result in terms of minimization of the population risk,
already stated as Corollary 8 in the main part.

Assume we are given a couple of input-output variables (X,Y ) generated by a ground truth network
with parameters (M,b):

Y = fM,b(X).
We can use Theorem 51 to show that the only way to bring the population risk to 0 is to find the

ground truth parameters -modulo permutation and positive rescaling.
Indeed, let Ω ⊂ RnK be a domain that is contained in the support of X, and suppose L : Rn0 ×Rn0 →

R+ is a loss function such that L(y, y′) = 0 ⇒ y = y′. Consider the population risk:

R(M̃, b̃) = E[L(fM̃,b̃(X), Y )].

We have the following result.

Corollary 52. Suppose there exists a list of sets of closed polyhedra Π admissible with respect to (M,b)
such that (M,b,Ω,Π) satisfies the conditions P.

If (M̃, b̃) is also such that there exists a list of sets of closed polyhedra Π̃ admissible with respect to
(M̃, b̃) such that (M̃, b̃,Ω, Π̃) satisfies the conditions P, and if (M,b) ̸∼ (M̃, b̃), then:

R(M̃, b̃) > 0.

34



B.4 Proof of Theorem 51
To prove Theorem 51, we can assume the parameterizations (M,b) and (M̃, b̃) are normalized. Indeed,
if they are not, by Proposition 42 there exist a normalized parameterization (M′,b′) equivalent to
(M,b) and a normalized parameterization (M̃′, b̃′) equivalent to (M̃, b̃). Note that we can apply
Proposition 42 because Mk and M̃k are full row rank (condition P.a)) for all k ∈ J1,K − 1K so their
lines are always nonzero. We derive Π′ from Π and Π̃′ from Π̃ as in Item 4 of Proposition 39. By
Proposition 50, (M′,b′,Ω,Π′) and (M̃′, b̃′,Ω, Π̃′) also satisfy the conditions P. By Corollary 40,
fM′,b′ = fM,b and fM̃′,b̃′ = fM̃,b̃, so we have, for all x ∈ Ω:

fM′,b′(x) = fM̃′,b̃′(x).

(M′,b′,Ω,Π′) and (M̃′, b̃′,Ω, Π̃′) satisfy the hypotheses of Theorem 51. If we are able to show that
(M′,b′) ∼ (M̃′, b̃′), then (M,b) ∼ (M̃, b̃) follows immediately from the transitivity of the equivalence
relation, proven in Proposition 38.

Thus in the proof (M,b) and (M̃, b̃) will be assumed to be normalized.

To prove the theorem, we need the following fundamental lemma (already stated as Lemma 14 in
the main text), that is proven in Appendix C.

Lemma 53. Let l,m, n ∈ N∗. Suppose g, g̃ : Rm → Rn are continuous piecewise linear functions,
Ω ⊂ Rl is a subset and let M, M̃ ∈ Rm×l, b, b̃ ∈ Rm. Denote h : x 7→ σ(Mx+b) and h̃ : x 7→ σ(M̃x+ b̃).
Assume Π and Π̃ are two sets of polyhedra admissible with respect to g and g̃ respectively as in Definition
21.

Suppose (g,M, b,Ω,Π) and (g̃, M̃ , b̃,Ω, Π̃) satisfy the conditions C, and for all i ∈ J1,mK, ∥Mi,.∥ =
∥M̃i,.∥ = 1.

Suppose for all x ∈ Ω:
g ◦ h(x) = g̃ ◦ h̃(x).

Then, there exists a permutation φ ∈ Sm, such that:
• M̃ = PφM ;
• b̃ = Pφb;
• g and g̃ ◦ Pφ coincide on h(Ω).

Proof of Theorem 51. We prove the theorem by induction on K.
Initialization. Assume here K = 2. We are going to apply Lemma 53. Since (M,b,Ω,Π) and

(M̃, b̃,Ω, Π̃) satisfy the conditions P, by definition, (g1,M
1, b1,Ω2,Π1) and (g̃1, M̃

1, b̃1,Ω2, Π̃1) satisfy
the conditions C (note that Ω̃2 = Ω2 = Ω). The network is normalized, so we have, for all i ∈ J1, n1K,

∥M1
i,.∥ = ∥M̃1

i,.∥ = 1.

By the assumptions of Theorem 51, for all x ∈ Ω,

g1 ◦ h1(x) = fM,b(x) = fM̃,b̃(x) = g̃1 ◦ h̃1(x).

We can thus apply Lemma 53, which shows that there exists a permutation φ ∈ Sn1 such that
• M̃1 = PφM

1;
• b̃1 = Pφb

1;
• g1 and g̃1 ◦ Pφ coincide on h1(Ω).
Recall from Definition 30 that for all i ∈ J1, n1K, we denote H2

i = {x ∈ Rn2 , M1
i,.x+ b1

i = 0}. Let
(v1, . . . , vn1) be the canonical basis of Rn1 . Let us show that for all i ∈ J1, n1K,

M0vi = M̃0Pφvi.

Let i ∈ J1, n1K. By P.b), H2
i ∩ Ω̊ ̸= ∅. Since M1 is full row rank by P.a), none of the hyperplanes H2

j ,
with j ̸= i, is parallel to H2

i . As a consequence, the intersections H2
i ∩H2

j have Hausdorff dimension
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smaller than n2 − 2, so there exists x ∈ Ω̊ ∩H2
i \
Ä⋃

j ̸=iH
2
j

ä
, and ϵ > 0 such that B(x, ϵ) ∩H2

j = ∅ for
all j ̸= i. Let u be a unit vector such that M1

j,.u = 0 for all j ̸= i and M1
i,.u = α > 0 (this is possible

again since M1 is full row rank).
For all j ∈ J1, n1K\{i}, we have

σ(M1
j,.(x+ ϵu) + b1

j ) − σ(M1
j,.x+ b1

j ) = σ(M1
j,.x+ b1

j ) − σ(M1
j,.x+ b1

j ) = 0.

At the same time, we have

σ(M1
i,.(x+ ϵu) + b1

i ) − σ(M1
i,.x+ b1

i ) = M1
i,.(x+ ϵu) + b1

i −M1
i,.x+ b1

i

= ϵM1
i,.u

= ϵα.

Summarizing,
h1(x+ ϵu) − h1(x) = σ(M1(x+ ϵu) + b1) − σ(M1x+ b1)

= ϵαvi.

Let us denote y2 = h1(x + ϵu) ∈ h1(Ω) and y1 = h1(x) ∈ h1(Ω). We have shown y2 − y1 = ϵαvi,
and since g1 and g̃1 ◦ Pφ coincide on h1(Ω), we have

g1(y2) − g1(y1) = g̃1 ◦ Pφ(y2) − g̃1 ◦ Pφ(y1)
⇐⇒ M0(y2 − y1) = M̃0Pφ(y2 − y1)

⇐⇒ ϵαM0vi = ϵαM̃0Pφvi

⇐⇒ M0vi = M̃0Pφvi.

Since this last equality holds for any i ∈ J1, n1K, we conclude that

M0 = M̃0Pφ,

and using one last time that g1 and g̃1 ◦ Pφ coincide on h1(Ω), we obtain

b0 = b̃0,

i.e. we have shown ®
M̃0 = M0P−1

φ

b̃0 = b0.

Defining Pφ1 = Pφ, Pφ0 = Idn0 and Pφ2 = Idn2 , we can use Proposition 43 to conclude that

(M,b) ∼ (M̃, b̃).

Induction step. Let K ≥ 3 be an integer. Suppose Theorem 51 is true for all networks with K − 1
layers.

Consider two networks with parameters (M,b) and (M̃, b̃), with K layers and, for all k ∈ J0,KK,
same number nk of neurons per layer. Let Π and Π̃ be two list of sets of closed polyhedra that are
admissible with respect to (M,b) and (M̃, b̃) respectively (Definition 34), and let Ω ⊂ RnK such that
(M,b,Ω,Π) and (M̃, b̃,Ω, Π̃) satisfy the conditions P and fM,b and fM̃,b̃ coincide on Ω.

Recall the functions hk and gk associated to (M,b), defined in Definition 24 and Definition 28
respectively, and the corresponding functions h̃k and g̃k associated to (M̃, b̃).

We have two matrices MK−1 and M̃K−1 ∈ RnK−1×nK , two vectors bK−1 and b̃K−1 ∈ RnK−1 , two
functions gK−1 and g̃K−1 : RnK−1 → Rn0 , two sets ΠK−1 and Π̃K−1 such that:

• ∀x ∈ Ω, gK−1 ◦ hK−1(x) = gK(x) = fM,b(x) = fM̃,b̃(x) = g̃K(x) = g̃K−1 ◦ h̃K−1(x),

• gK−1 and g̃K−1 are continuous piecewise linear, and ΠK−1 and Π̃K−1 are admissible with respect
to gK−1 and g̃K−1 respectively,

• (gK−1,M
K−1, bK−1,Ω,ΠK−1) and (g̃K−1, M̃

K−1, b̃K−1,Ω, Π̃K−1) satisfy the conditions C,
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• ∀i ∈ J1, nK−1K, ∥MK−1
i,. ∥ = ∥M̃K−1

i,. ∥ = 1.

The third point comes from the fact that the conditions P hold for (M,b,Ω,Π) and (M̃, b̃,Ω, Π̃),
and the fourth point comes from the fact that (M,b) and (M̃, b̃) are normalized.

Thus, the objects gK−1, g̃K−1,M
K−1, bK−1, M̃K−1, b̃K−1,ΠK−1 and Π̃K−1 satisfy the hypotheses

of Lemma 53 and hence there exists φ ∈ SnK−1 such that®
M̃K−1 = PφM

K−1,

b̃K−1 = Pφb
K−1,

(34)

and gK−1 and g̃K−1 ◦ Pφ coincide on ΩK−1.

Let us denote M∗ = (M0, . . . ,MK−3,MK−2P−1
φ ). The functions gK−1 ◦ P−1

φ and g̃K−1 are
implemented by two networks with K − 1 layers, indexed from K − 1 up to 0, with parameters
(M∗,b≤K−2) and (M̃≤K−2, b̃≤K−2) respectively. The previous paragraph shows these functions
coincide on PφΩK−1. Recalling the definition of Ω̃K−1 and since, by (34), f̃K−1 = h̃K−1 = PφhK−1,
we have

Ω̃K−1 = f̃K−1(Ω) = PφhK−1(Ω) = PφΩK−1,

i.e. the functions gK−1 ◦ P−1
φ = fM∗,b≤K−2 and g̃K−1 = fM̃≤K−2,b̃≤K−2 coincide on Ω̃K−1.

Since (M,b,Ω,Π) and (M̃, b̃,Ω, Π̃) satisfy the conditions P, (gk,Mk, bk,Ωk+1,Πk) and (g̃k, M̃k, b̃k, Ω̃k+1, Π̃k)
satisfy the conditions C for all k ∈ J1,K − 1K so in particular these conditions are satisfied for
k ∈ J1,K − 2K, so (M≤K−2,b≤K−2,ΩK−1,Π≤K−2) and (M̃≤K−2, b̃≤K−2, Ω̃K−1, Π̃

≤K−2)) satisfy the
conditions P.

Let us verify that (M∗,b≤K−2, Ω̃K−1,Π≤K−2) also satisfies the conditions P. Indeed, the only thing
that differs from (M≤K−2,b≤K−2,ΩK−1,Π≤K−2) is Ω̃K−1 and the weights M∗K−2 between the layer
K − 1 and the layer K − 2. Writing that M∗K−2 = MK−2P−1

φ , h∗
K−2 = hK−2 ◦P−1

φ , Ω̃K−1 = PφΩK−1

andH∗K−1
i = PφH

K−1
i , let us check that the conditions C also hold for (gK−2,M

∗K−2, bK−2, Ω̃K−1,ΠK−2).
Indeed P−1

φ is invertible, so M∗K−2 is full row rank and C.a) holds.
If x ∈ Ω̊ satisfies MK−2

i,. x + bK−2
i = 0, we define h∗lin

K−2(x) = M∗K−2x + bK−2, we have h∗lin
K−2 =

hlinK−2 ◦ P−1
φ , so

Ei ∩ h∗lin
K−2(˚̃ΩK−1) = Ei ∩ hlinK−2(Ω̊K−1) ̸= ∅,

and C.b) is satisfied.
Similarly, the observation h∗

K−2(Ω̃K−1) = hK−2(ΩK−1) yields C.c).
Finally, assume H∗ ⊂ RnK−1 is an affine hyperplane. Let H = P−1

φ H∗. We have by hypothesis

H ∩ Ω̊K−1 ̸⊂
⋃

D∈ΠK−2

∂h−1
K−2(D),

thus
H∗ ∩ ˚̃ΩK−1 = Pφ

Ä
H ∩ Ω̊K−1

ä
̸⊂ Pφ

⋃
D∈ΠK−2

∂h−1
K−2(D)

=
⋃

D∈ΠK−2

∂(Pφh−1
K−2(D)).

For all D ∈ ΠK−2 we have

Pφh
−1
K−2(D) = Pφ{y, hK−2(y) ∈ D}

= Pφ{P−1
φ x, hK−2 ◦ P−1

φ (x) ∈ D}
= {x, h∗

K−2(x) ∈ D}
= h∗−1

K−2(D).

Therefore,
H∗ ∩ ˚̃ΩK−1 =

⋃
D∈ΠK−2

∂h∗−1
K−2(D),
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which proves C.d).
Since the rest stays unchanged, we can conclude.
The induction hypothesis can thus be applied to (M∗,b≤K−2, Ω̃K−1,Π≤K−2) and (M̃≤K−2, b̃≤K−2, Ω̃K−1, Π̃

≤K−2),
to obtain:

(M∗,b≤K−2) ∼ (M̃≤K−2, b̃≤K−2).
Since we also have

∀k ∈ J1,K − 3K, ∀i ∈ J1, nkK, ∥M∗k
i,. ∥ = ∥Mk

i,.∥ = 1 and ∥M̃k
i,.∥ = 1,

∀i ∈ J1, nK−2K, ∥M∗K−2
i,. ∥ = ∥MK−2

i,. P−1
φ ∥ = ∥MK−2

i,. ∥ = 1 and ∥M̃K−2
i,. ∥ = 1,

Proposition 43 shows that there exists a family of permutations (φ0, . . . , φK−1) ∈ Sn0 × · · · × SnK−1 ,
with φ0 = idJ1,n0K and φK−1 = idJ1,nK−1K, such that:

∀k ∈ J0,K − 3K,
®
M̃k = Pφk

M∗kP−1
φk+1

= Pφk
MkP−1

φk+1

b̃k = Pφk
bk,

(35)

and: ®
M̃K−2 = PφK−2M

∗K−2P−1
φK−1

= PφK−2(MK−2P−1
φ )P−1

φK−1
= PφK−2M

K−2P−1
φ

b̃K−2 = PφK−2b
K−2.

(36)

We can define (ψ0, . . . , ψK) ∈ Sn0 × · · · × SnK
by:

• ψ0 = idJ1,n0K, ψK = idJ1,nKK;
• ∀k ∈ J1,K − 2K, ψk = φk;
• ψK−1 = φ;
and using (35), (36) and (34) altogether, we then have, for all k ∈ J0,K − 1K:®

M̃k = Pψk
MkP−1

ψk+1

b̃k = Pψk
bk.

It follows from Proposition 43 that (M,b) ∼ (M̃, b̃).

B.5 Proof of Corollary 52
Theorem 52 is an immediate consequence of Theorem 51.

Since (M,b,Ω,Π) and (M̃, b̃,Ω, Π̃) satisfy the conditions P and (M,b) ̸∼ (M̃, b̃), the contra-
positive of Theorem 51 shows that there exists x ∈ Ω such that fM,b(x) ̸= fM̃,b̃(x). The function
fM,b − fM̃,b̃ is continuous so there exists r > 0 such that for all u ∈ B(x, r), fM,b(u) ̸= fM̃,b̃(u) so
L(fM,b(u), fM̃,b̃(u)) > 0. Since Ω is included in the support of X and x ∈ Ω, denoting PX the law of
X we have PX(B(x, r)) > 0 and thus

R(M̃, b̃) = E[L(fM̃,b̃(X), fM,b(X))]

≥
∫
B(x,r)

L(fM,b(u), fM̃,b̃(u))dPX(u)

> 0.

C Proof of Lemma 53
In this section we prove Lemma 53.

Let (g,M, b,Ω,Π) and (g̃, M̃ , b̃,Ω, Π̃) be as in the lemma. In particular, we assume they satisfy the
conditions C all along Appendix C.

We denote, for all x ∈ Rl:
f(x) = g (σ(Mx+ b)) .

Recall that, for all x ∈ Rl, h(x) = σ(Mx+ b) and h̃(x) = σ(M̃x+ b̃).
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Recall that, as in Definition 30, we define for all i ∈ J1,mK the sets Hi = {x ∈ Rl , Mi,.x+ bi = 0}
and H̃i = {x ∈ Rl , M̃i,.x+ b̃i = 0}. By condition C.a), for all i ∈ J1,mK, Mi,. ̸= 0 and M̃i,. ≠ 0 so Hi

and H̃i are hyperplanes.
Recall that for all D ∈ Π, we define V (D) ∈ Rn×m and c(D) ∈ Rn as in Definition 45, and similarly

for all D̃ ∈ Π̃, we define Ṽ (D̃) ∈ Rn×m and c̃(D̃) ∈ Rn associated to g̃.
We now define s : Rl → {0, 1}m as follows:

∀i ∈ J1,mK, si(x) :=
®

1 if Mi,.x+ bi ≥ 0
0 otherwise.

(37)

We define similarly s̃ for (M̃, b̃). We thus have, for all i ∈ J1,mK,

σ(Mi,.x+ bi) = si(x)(Mi,.x+ bi)

and
σ(M̃i,.x+ b̃i) = s̃i(x)(M̃i,.x+ b̃i).

Let D ∈ Π. For all y ∈ D, we have, by definition,

g(y) = V (D)y + c(D),

thus, for all x ∈ h−1(D),

f(x) = V (D)h(x) + c(D)
= V (D)σ(Mx+ b) + c(D)

=
m∑
k=1

V.,k(D)sk(x)(Mk,.x+ bk) + c(D). (38)

Similarly, for all D̃ ∈ Π̃, for all x ∈ h̃−1(D̃),

f(x) =
m∑
k=1

Ṽ.,k(D̃)s̃k(x)(M̃k,.x+ b̃k) + c̃(D̃). (39)

Proposition 54. Let D ∈ Π. For all i ∈ J1,mK, for all x ∈ Hi ∩

◦︷ ︸︸ ︷
h−1(D) ∩ Ω̊\

Ä⋃
k ̸=iHk

ä
, f is not

differentiable at the point x.

Proof. Let i ∈ J1,mK and suppose x ∈ Hi ∩

◦︷ ︸︸ ︷
h−1(D) ∩ Ω̊\

Ä⋃
k ̸=iHk

ä
. Let us consider the function

t 7→ f(x+ tM T
i,. ). Since x ∈ Hi and ∥Mi,.∥ = 1 by hypothesis,

Mi,.(x+ tM T
i,. ) + bi = tMi,.M

T
i,. +Mi,.x+ bi = t∥Mi,.∥2 = t. (40)

Given the definition of s in (37), we thus have

si(x+ tM T
i,. ) =

®
1 if t ≥ 0
0 if t < 0.

Since x ∈

◦︷ ︸︸ ︷
h−1(D) which is an open set, for t small enough we have x+ tM T

i,. ∈

◦︷ ︸︸ ︷
h−1(D) and thus,

using (38) and (40),

f(x+ tM T
i,. ) =

m∑
k=1

V.,k(D)sk(x+ tM T
i,. )

(
Mk,.(x+ tM T

i,. ) + bk
)

+ c(D)

=


∑
k ̸=i V.,k(D)sk(x+ tM T

i,. )
(
Mk,.(x+ tM T

i,. ) + bk
)

+c(D) + tV.,i(D) if t ≥ 0∑
k ̸=i V.,k(D)sk(x+ tM T

i,. )
(
Mk,.(x+ tM T

i,. ) + bk
)

+c(D) if t < 0.
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Since x does not belong to any of the hyperplanes Hk for k ̸= i, which are closed, there exists ϵ > 0
such that for all t ∈ ] − ϵ, ϵ[ and for all k ̸= i, x + tM T

i,. /∈ Hk. Therefore, for all t ∈ ] − ϵ, ϵ[, for all
k ∈ J1,mK\{i}, sk(x+ tM T

i,. ) = sk(x) and

f(x+ tM T
i,. ) =


∑
k ̸=i V.,k(D)sk(x)(Mk,.(x+ tM T

i,. ) + bk) + c(D)
+tV.,i(D) if t ≥ 0∑
k ̸=i V.,k(D)sk(x)(Mk,.(x+ tM T

i,. ) + bk) + c(D) if t < 0.

The right derivative of t 7→ f(x+ tM T
i,. ) at 0 is:∑

k ̸=i
V.,k(D)sk(x)Mk,.M

T
i,. + V.,i(D).

The left derivative of t 7→ f(x+ tM T
i,. ) at 0 is:∑

k ̸=i
V.,k(D)sk(x)Mk,.M

T
i,. .

Since x ∈ Hi ∩ h−1(D) ∩ Ω, we have h(x) ∈ Ei ∩ D ∩ h(Ω) so the condition C.c) implies that
V.,i(D) ̸= 0. We conclude that the left and right derivatives at x do not coincide and thus f is not
differentiable at x.

Lemma 55. Let D ∈ Π. For all x ∈

◦︷ ︸︸ ︷
h−1(D) \ (

⋃m
i=1 Hi), there exists r > 0 such that f is differentiable

on B(x, r).

Proof. Consider x ∈

◦︷ ︸︸ ︷
h−1(D) \ (

⋃m
i=1 Hi). Since the hyperplanes Hi are closed, there exists a ball

B(x, r) ⊂

◦︷ ︸︸ ︷
h−1(D) such that for all i ∈ J1,mK, B(x, r) ∩Hi = ∅. As a consequence, for all y ∈ B(x, r),

s(y) = s(x). Using (38) we get, for all y ∈ B(x, r),

f(y) =
m∑
i=1

V.,i(D)si(x) (Mi,.y + bi) + c(D).

The right side of this equality is affine in the variable y, so f is differentiable on B(x, r).

Lemma 56. Let γ : Rl → Rm be a continuous piecewise linear function. Let P be a finite set of polyhedra
of Rm such that

⋃
D∈P D = Rm. Let A1, . . . As be a set of hyperplanes such that

⋃
D∈P ∂γ

−1(D) ⊂⋃s
k=1 Ak (Proposition 23 shows the existence of such hyperplanes). Let H be an affine hyperplane and

a ∈ Rl, b ∈ R such that H = {x ∈ Rl, aTx+ b = 0}. Denote I = {k ∈ J1, sK, Ak = H}. Let x ∈ H such
that for all k ∈ J1, sK\I, x /∈ Ak. Then there exists r > 0, D− and D+ ∈ P (not necessarily distinct)
such that

B(x, r) ∩ {y ∈ Rl, aT y + b < 0} ⊂ γ−1(D−)
B(x, r) ∩ {y ∈ Rl, aT y + b > 0} ⊂ γ−1(D+).

Proof. Let r > 0 such that

B(x, r) ∩

(⋃
k/∈I

Ak

)
= ∅.

B(x, r)\H has two connected components: B− = B(x, r)∩{y ∈ Rl, aT y+b < 0} and B+ = B(x, r)∩{y ∈
Rl, aT y + b > 0}. The set B− (resp. B+) is convex as an intersection of two convex sets.

Since
⋃
D∈P D = Rm, there exists D− ∈ P such that γ−1(D−) ∩B− ̸= ∅. Let us show that

B− ⊂ γ−1(D−).
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Indeed, B− ∩
(⋃

k/∈I Ak
)

= ∅ and B− ∩H = ∅ so B− ∩
(⋃

k∈I Ak
)

= ∅, therefore we have

B− ∩

( ⋃
D∈P

∂γ−1(D)
)

⊂ B− ∩

(
s⋃

k=1
Ak

)
= ∅.

In particular, B− ∩ ∂γ−1(D−) = ∅. Let Y = γ−1(D−) ∩B−. Let us denote by ∂B−Y the topological
boundary of Y with respect to the topology of B−. Let us show the following inclusion:

∂B−Y ⊂ ∂γ−1(D−) ∩B−.

Indeed, let y ∈ ∂B−Y . By definition, there exist two sequences (un) and (vn) such that un ∈ Y ,
vn ∈ B−\Y , and both un and vn tend to y. In particular, un ∈ γ−1(D−) and vn ∈ Rl\γ−1(D−), so
y ∈ ∂γ−1(D−). Since y ∈ B−, we have y ∈ ∂γ−1(D−) ∩B−.

This shows ∂B−Y = ∅, and as a consequence Y is open and closed in B−. Since B− is connex and
Y is not empty, we conclude that Y = B−, i.e. B− ⊂ γ−1(D−).

We show similarly that there exists D+ ∈ Π such that B+ ⊂ γ−1(D+).

Proposition 57. There exists a bijection φ ∈ Sm such that for all i ∈ J1,mK, H̃i = Hφ−1(i).

Proof. We denote by X the set of all points of Ω̊ at which f is not differentiable. We denote by G the
set of all hyperplanes of Rl. We denote H = {H ∈ G , H ∩ Ω̊ ̸= ∅ and H ∩ Ω̊ ⊂ X}. We want to show
H = {Hi, i ∈ J1,mK}.

Indeed, once this established, since H only depends on Ω and f , we also have H = {H̃i, i ∈ J1,mK},
and thus {Hi, i ∈ J1,mK} = {H̃i, i ∈ J1,mK}. Since, using C.a), for all i, j, i ̸= j, we have Hi ̸= Hj

and H̃i ̸= H̃j , we can conclude that there exists a permutation φ ∈ Sm such that, for all i ∈ J1,mK,
H̃i = Hφ−1(i).

− Let us show H ⊂ {Hi, i ∈ J1,mK}.
To begin, let us show that X ∩ Ω̊ ⊂

⋃
D∈Π ∂h

−1(D) ∪
⋃m
i=1 Hi. Let x ∈ X ∩ Ω̊. Let D ∈ Π such

that h(x) ∈ D. Since x ∈ X, there does not exist any r > 0 such that f is differentiable on B(x, r). The

contrapositive of Lemma 55 shows that x /∈

◦︷ ︸︸ ︷
h−1(D)\ (

⋃m
i=1 Hi), so either x ∈

⋃m
i=1 Hi or x /∈

◦︷ ︸︸ ︷
h−1(D).

In the latter case, since x ∈ h−1(D) by definition of D, we have x ∈ h−1(D)\

◦︷ ︸︸ ︷
h−1(D) ⊂ ∂h−1(D).

This shows:
X ∩ Ω̊ ⊂

⋃
D∈Π

∂h−1(D) ∪
m⋃
i=1

Hi. (41)

Let H ∈ H. We are going to show that there exists i ∈ J1,mK such that H = Hi.
We know by condition C.d that H ∩ Ω̊ ̸⊂

⋃
D∈Π ∂h

−1(D). Let x ∈ (H ∩ Ω̊)\
(⋃

D∈Π ∂h
−1(D)

)
. The

set
⋃
D∈Π ∂h

−1(D) is closed, so there exists a ball

B(x, r) ⊂ Ω̊\

( ⋃
D∈Π

∂h−1(D)
)
. (42)

By definition of H,
H ∩ Ω̊ ⊂ X ∩ Ω̊,

so using the fact that B(x, r) ⊂ Ω̊ we have:

B(x, r) ∩H = B(x, r) ∩H ∩ Ω̊ ⊂ B(x, r) ∩X ∩ Ω̊.
Thus, using (41),

B(x, r) ∩H ⊂ B(x, r) ∩X ∩ Ω̊

⊂ B(x, r) ∩

( ⋃
D∈Π

∂h−1(D) ∪
m⋃
i=1

Hi

)

=
(
B(x, r) ∩

⋃
D∈Π

∂h−1(D)
)

∪

(
B(x, r) ∩

m⋃
i=1

Hi

)
,
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and since by (42) the first set of the last equality is empty, we have

B(x, r) ∩H ⊂ B(x, r) ∩
m⋃
i=1

Hi.

Therefore,

B(x, r) ∩H = (B(x, r) ∩H) ∩

(
B(x, r) ∩

m⋃
i=1

Hi

)

= B(x, r) ∩H ∩
m⋃
i=1

Hi

= B(x, r) ∩
m⋃
i=1

(H ∩Hi) .

Assume, by contradiction, that for all i ∈ J1,mK we have H ≠ Hi. Then H ∩Hi is an affine space
of dimension less or equal to l − 2 so it has Hausdorff dimension smaller or equal to l − 2. A finite
union of sets of Hausdorff dimension smaller or equal to l− 2 has Hausdorff dimension smaller or equal
to l − 2. Thus, B(x, r) ∩ H = B(x, r) ∩

⋃m
i=1 (H ∩Hi) has Hausdorff dimension smaller or equal to

l − 2, which is absurd since x ∈ H so B(x, r) ∩H has Hausdorff dimension l − 1. Hence there exists
i ∈ J1,mK such that H = Hi.

We have shown
H ⊂ {Hi, i ∈ J1,mK}. (43)

− Let us show {Hi, i ∈ J1,mK} ⊂ H.
Let i ∈ J1,mK. Let us prove Hi ∈ H.
First, by condition C.b) we know that Ei ∩hlin(Ω̊) ̸= ∅, so there exists x ∈ Ω̊ such that hlin(x) ∈ Ei.

Since hlin(x) = Mx+ b and Ei is the space of vectors whose ith coordinate is 0, this is equivalent to

Mi,.x+ bi = 0,

or said otherwise x ∈ Hi. This proves that Hi ∩ Ω̊ ̸= ∅. We still need to prove Hi ∩ Ω̊ ⊂ X.
Let x ∈ Hi ∩ Ω̊. Let us prove x ∈ X.
Since M is full row rank, the line vectors M1,., . . . ,Mm,. are linearly independent, and thus for all

k ∈ J1,mK\{i}, Hk ∩Hi has Hausdorff dimension smaller or equal to l − 2.
Proposition 23 shows that

⋃
D∈Π ∂h

−1(D) is contained in a finite union of hyperplanes
⋃s
k=1 Ak.

Let I = {k ∈ J1, sK , Ak = Hi}. For all k ∈ J1, sK\I, Ak ∩Hi is either empty, or an intersection of two
non parallel hyperplanes, in both cases it is an affine space of dimension smaller than l − 2.

Thus,

Hi ∩

Ñ
(
⋃
k ̸=i

Hk) ∪ (
⋃
k/∈I

Ak)

é
has Hausdorff dimension strictly smaller than l − 1, so for any r > 0 there exists

y ∈ B(x, r) ∩Hi ∩ Ω̊\

Ñ
(
⋃
k ̸=i

Hk) ∪ (
⋃
k/∈I

Ak)

é
. (44)

In the rest of the proof, we show that such a y is an element of X. Once this is established, since it
is true for all r > 0, we conclude that x ∈ X and therefore Hi ∈ H.

If there exists D ∈ Π such that y ∈

◦︷ ︸︸ ︷
h−1(D), then

y ∈ Hi ∩

◦︷ ︸︸ ︷
h−1(D) ∩ Ω̊\

Ñ⋃
k ̸=i

Hk

é
therefore we can use Proposition 54 to conclude that f is not differentiable at y.
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Otherwise we can use Lemma 56 to find R1 > 0, D− and D+ ∈ Π such that

B(y,R1) ∩ {z ∈ Rl,Mi,.z + bi < 0} ⊂ h−1(D−)
B(y,R1) ∩ {z ∈ Rl,Mi,.z + bi > 0} ⊂ h−1(D+).

Since for all j ̸= i, y /∈ Hj and since these hyperplanes are closed, there exists R2 > 0 such that for
all j ̸= i, B(y,R2) ∩Hj = ∅. Let R = min(R1, R2) and denote B− = B(y,R) ∩ {z ∈ Rl,Mi,.z+ bi < 0}
and B+ = B(y,R) ∩ {z ∈ Rl,Mi,.z + bi > 0}.

For all z ∈ B−, using (38) with the fact that si(z) = 0 and sk(z) = sk(y) for all k ̸= i, we have

f(z) =
∑
k ̸=i

V.,k(D−)sk(y)(Mk,.z + bk) + c(D−). (45)

For all z ∈ B+, using this time that si(z) = 1, we have

f(z) =
∑
k ̸=i

V.,k(D+)sk(y)(Mk,.z + bk) + c(D+) + V.,i(D+)(Mi,.z + bi). (46)

If f was differentiable at y, we would derive from (45) the expression of the Jacobian matrix

Jf (y) =
∑
k ̸=i

V.,k(D−)sk(y)Mk,., (47)

but we would also derive from (46) the expression

Jf (y) =
∑
k ̸=i

V.,k(D+)sk(y)Mk,. + V.,i(D+)Mi,., (48)

hence subtracting (47) to (48) we would find∑
k ̸=i

(V.,k(D+) − V.,k(D−))sk(y)Mk,. + V.,i(D+)Mi,. = 0.

Since M is full row rank, this would imply that V.,i(D+) = 0.
However since h−1(D+) is closed and contains B+, we have y ∈ B+ ⊂ h−1(D+). Recalling (44) we

thus have
y ∈ Hi ∩ h−1(D+) ∩ Ω̊,

thus
h(y) ∈ Ei ∩D+ ∩ h(Ω̊),

which shows the latter intersection is not empty. By assumption C.c) this implies that V.,i(D+) ̸= 0,
which is a contradiction. Therefore f is not differentiable at y.

As a conclusion, we have showed that for all r > 0, there exists y ∈ B(x, r) such that f is not
differentiable at y and y ∈ Ω̊. In other words, x ∈ X.

Since x is arbitrary in Hi ∩ Ω̊, we have shown that for all i ∈ J1,mK,

Hi ∩ Ω̊ ⊂ X,

i.e., since we have already shown that Hi ∩ Ω̊ ̸= ∅,

Hi ∈ H.

Finally {Hi, i ∈ J1,mK} ⊂ H, and, using (43),

H = {Hi, i ∈ J1,mK}.

Proposition 58. For all i ∈ J1,mK, there exists ϵφ−1(i) ∈ {−1, 1} such that

M̃i,. = ϵφ−1(i)Mφ−1(i),. and b̃i = ϵφ−1(i)bφ−1(i).
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Proof. Let i ∈ J1,mK. We know that H̃i = Hφ−1(i), so the equations M̃i,.x+ b̃i = 0 and Mφ−1(i),.x+
bφ−1(i) = 0 define the same hyperplanes. This is only possible if the parameters of the equation
are proportional (but nonzero): there exists ϵφ−1(i) ∈ R∗ such that M̃i,. = ϵφ−1(i)Mφ−1(i),. and
b̃i = ϵφ−1(i)bφ−1(i). But since ∥M̃i,.∥ = ∥Mφ−1(i),.∥ = 1 by hypothesis, we necessarily have ϵφ−1(i) ∈
{−1, 1}.

Proposition 59. For all i ∈ J1,mK,
• M̃i,. = Mφ−1(i),.;

• b̃i = bφ−1(i).

Proof. By Proposition 58, we know that there exists (ϵi)1≤i≤m ∈ {−1, 1}m such that for all i ∈ J1,mK,

M̃i,. = ϵφ−1(i)Mφ−1(i),. and b̃i = ϵφ−1(i)bφ−1(i). (49)

We need to prove that for all i ∈ J1,mK, ϵφ−1(i) = 1.
Let i ∈ J1,mK.
Applying Proposition 23 to h and Π, we see that

⋃
D∈Π ∂h

−1(D) is contained in a finite union of
hyperplanes

⋃s
k=1 Ak. Applying it to h̃ and Π̃, we see similarly that

⋃
D̃∈Π̃ ∂h̃

−1(D̃) is contained in a
finite union of hyperplanes

⋃r
k=1 Bk.

Let I = {k ∈ J1, sK , Ak = Hi} and J = {k ∈ J1, rK , Bk = Hi}. For all k ∈ J1, sK\I, since Ak ≠ Hi,
Ak ∩Hi is either empty, or an intersection of two non parallel hyperplanes, in both cases it is an affine
space of dimension smaller than l − 2. The same applies for all k ∈ J1, rK\J to Bk ∩Hi. For all j ̸= i,
Hj ̸= Hi so Hj ∩Hi is also an affine space of dimension smaller than l − 2. Since Hi ∩ Ω̊ is nonempty
by C.b), we can thus find a vector

x ∈ Ω̊ ∩ Hi \

Ñ
(
⋃
k/∈I

Ak) ∪ (
⋃
k/∈J

Bk) ∪ (
⋃
j ̸=i

Hj)

é
.

Applying Lemma 56 with Π, h, Hi and (Mi,., bi), we find r1 > 0, D− and D+ ∈ Π such that

B(x, r1) ∩ {y ∈ Rl,Mi,.y + bi < 0} ⊂ h−1(D−)
B(x, r1) ∩ {y ∈ Rl,Mi,.y + bi > 0} ⊂ h−1(D+). (50)

Applying the same lemma with Π̃, h̃, Hi and (Mi,., bi) we find r2 > 0, D̃− and D̃+ ∈ Π̃ such that

B(x, r2) ∩ {y ∈ Rl,Mi,.y + bi < 0} ⊂ h̃−1(D̃−)
B(x, r2) ∩ {y ∈ Rl,Mi,.y + bi > 0} ⊂ h̃−1(D̃+). (51)

Since the hyperplanes Hj are closed, we can also find r3 > 0 such that for all j ̸= i, B(x, r3)∩Hj = ∅.
Taking r = min(r1, r2, r3) and denoting B+ = B(x, r) ∩ {y ∈ Rl,Mi,.y + bi > 0}, we derive from (50)
and (51) that

B+ ⊂ h−1(D+) ∩ h̃−1(D̃+).

Since r ≤ r3, we have B+ ∩
Ä⋃

j ̸=iHj

ä
= ∅, and by definition B+ ∩ {y ∈ Rl,Mi,.y + bi = 0} = ∅, so

B+ ∩Hi = ∅. We have B+ ∩
Ä⋃m

j=1 Hj

ä
= ∅, so for all j ∈ J1,mK, there exist δj ∈ {0, 1} such that for

all y ∈ B+, sj(y) = δj . We have
⋃m
j=1 H̃j =

⋃m
j=1 Hj so similarly, B+ ∩

⋃m
j=1 H̃j = ∅ and there exists

δ̃j ∈ {0, 1} such that for all j ∈ J1,mK, for all y ∈ B+, s̃j(y) = δ̃j .
For all y ∈ B+, we thus have, using (38),

m∑
j=1

V.,j(D+)δj (Mj,.y + bj) + c(D+) =
m∑
j=1

Ṽ.,j(D̃+)δ̃j
(
M̃j,.y + b̃j

)
+ c̃(D̃+).
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B+ is a nonempty open set so we have the equality
m∑
j=1

V.,j(D+)δjMj,. =
m∑
j=1

Ṽ.,j(D̃+)δ̃jM̃j,.

=
m∑
j=1

Ṽ.,j(D̃+)δ̃jϵφ−1(j)Mφ−1(j),.

=
m∑
j=1

Ṽ.,φ(j)(D̃+)δ̃φ(j)ϵjMj,.. (52)

The condition C.a) states that M is full row rank, so the vectors Mj,. are linearly independent. Applied
to (52), this information yields, for all j ∈ J1,mK,

V.,j(D+)δj = Ṽ.,φ(j)(D̃+)δ̃φ(j)ϵj ,

and in particular,
V.,i(D+)δi = Ṽ.,φ(i)(D̃+)δ̃φ(i)ϵi. (53)

Since h−1(D+) and h̃−1(D̃+) are closed, we have

B+ ⊂ h−1(D+) ∩ h̃−1(D̃+),

and since x ∈ B+, we have h−1(D+) ∩Hi ̸= ∅ and h̃−1(D̃+) ∩Hi ̸= ∅. The condition C.c) implies that
V.,i(D+) ̸= 0 and Ṽ.,φ(i)(D̃+) ̸= 0 (recall that Hi = H̃φ(i)). We also have ϵi ̸= 0, so from (53) we obtain

δi = 0 ⇔ δ̃φ(i) = 0.

By definition, the coefficient δi depends on the sign of Mi,.y+ bi: if Mi,.y+ bi is positive, δi = 1 and
if Mi,.y + bi is negative then δi = 0 (Mi,.y + bi cannot be equal to zero since y /∈ Hi). The coefficient
δ̃φ(i) depends similarly on the sign of M̃φ(i),.y + b̃φ(i). Thus, Mi,.y + bi and M̃φ(i),.y + b̃φ(i) have same
sign.

Since ϵi ∈ {−1, 1} and

M̃φ(i),.y + b̃φ(i) = ϵiMi,.y + ϵibi = ϵi (Mi,.y + bi) ,

we conclude that ϵi = 1.

We can now finish the proof of Lemma 53. It results from the above that:

M̃ = PφM

b̃ = Pφb.

We have by hypothesis, for all x ∈ Ω,

g̃(σ(M̃x+ b̃)) = g(σ(Mx+ b)),

but since M̃ = PφM and b̃ = Pφb we also have:

g̃(σ(M̃x+ b̃)) = g̃(σ(PφMx+ Pφb)) = g̃(Pφσ(Mx+ b)).

Combining these, we have for all x ∈ Ω,

g̃ ◦ Pφ(h(x)) = g(h(x)),

i.e. g̃ ◦ Pφ and g coincide on h(Ω).
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