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A Detailed View of the Gaussian-Lorentzian Sum and Product Functions, and their Comparison to a Voigt Function

The Gaussian-Lorentzian sum (GLS) and product (GLP) functions remain important in X-ray photoelectron spectroscopy (XPS) peak fitting. Here we present a detailed view of these functions, comparing them to each other and to the Voigt function (the 'LA(m)' function). First, we show the GLS, GLP, and LA(m) functions as a function of their mixing parameters, m, which reveals differences between them. We then illustrate the use of these functions to fit a series of spectra acquired at different pass energies (resolutions). Next, we show the underlying Gaussian and Lorentzian components of a series of GLS and GLP functions as a function of m, which confirms that the GLS is a simple linear combination of Gaussian and Lorentzian function. However, one of the two functions used to make the GLP can be very wide, i.e., at its extremes one of these functions has infinite width. We then discuss a plot of the areas of the GLS, GLP, and LA(m) functions as a function of m, which reveals the expected, linear increase in area of the GLS, but nonlinear changes in the areas of the other two functions. Finally, to better understand them, we fit these functions to each other. We end with recommendations for using these functions.

Introduction

X-ray photoelectron spectroscopy (XPS) is the most important and widely-used method for chemically analyzing surfaces. [START_REF] Van Der Heide | X-ray photoelectron spectroscopy: an introduction to principles and practices[END_REF][START_REF] Stevie | [END_REF][3] Over the past 20 years, its use has increased exponentially (an 8% annual growth rate). 4 In the year 2000, approximately 2000 papers mentioned 'XPS' in their title, abstract, or keywords. By 2019, this number had grown to about 11,000. This increase/growth is about one-and-a-half times that of the literature in general. XPS plays a critical role in advancing our understanding of the surfaces and materials related to thin film growth, corrosion, wetting, tribology, semiconductor manufacturing, biosensors, and chromatography.

XPS is based on the photoelectric effect. It is sensitive to the upper 5 -10 nm of condensed phase materials because the photoelectrons generated in them can only travel very short distances without being inelastically scattered. Gaseous samples can be analyzed using near ambient pressure (NAP) systems, where these materials have substantially longer inelastic mean free paths. 5 Information in XPS is typically derived from survey (wide) scans, 6 which reveal the elemental compositions of surfaces/materials, and narrow (detail) scans, which reveal the chemical/oxidation states of the elements in them. Chemical state information in XPS is obtained from chemical shifts, which are the result of different chemical/binding environments for an element. Chemical shifts can be very small (a small fraction of an eV) or quite large (5 -10 eV). However, because these energy differences (shifts) are of the same size/magnitude as the widths of the peaks in XPS, peak fitting is often required in XPS to extract chemical information from spectra. Good XPS peak fitting is regarded as both an art and a science. It requires appropriate, educated choices for the baseline and the number and type(s) of synthetic fit components, including their functional forms. Unfortunately, a significant amount of incorrect XPS data analysis has entered the scientific literature. [7][8][9] In response to this problem, the XPS community has been writing ISO and ASTM standards, as well as tutorial articles, for years. A recent series of guides on XPS covers many aspects of the technique. 3, 4, 10- 17 Arguably the most important synthetic peak for fitting XPS data is the Voigt function, which is a convolution of Gaussian and Lorentzian functions. 18 Here, the Lorentzian function accounts for the natural shape of photoemission, and the Gaussian function accounts for broadening due to the sample and instrument. For example, amorphous materials show broader peaks than crystalline materials because of the more varied/heterogeneous environments of the atoms in them. In addition, the X-rays themselves have some breadth that contributes to the final peak width, as do the finite widths of the slits/apertures and detector elements in an instrument. However, while the Voigt function is generally recognized as the most appropriate shape for fitting many XPS spectra, its calculation was difficult/expensive on early computers. Thus, two easier-to-calculate functions, the Gaussian-Lorentzian sum (GLS) and Gaussian-Lorentzian product (GLP) functions, were introduced as approximations to the Voigt function. [START_REF] Fairley | Surface Analysis by Auger and X-ray Photoelectron Spectroscopy[END_REF][START_REF] Jain | [END_REF][21][22][23] These functions are also referred to as the Gaussian-Lorentzian (GL) and sum Gaussian-Lorentzian (SGL) functions, which names are interchangeable with 'GLP' and 'GLS', respectively. In this article, all these terms will be used because they are in use in the literature and software packages. Our desire here is not to confuse the reader, but rather to help the reader become more comfortable with the conventions/abbreviations in current use. The GLS and GLP functions have been, and continue to be, widely used in XPS peak fitting because they perform adequately in many situations. Because it is a convolution, the Voigt function is generally considered to be more complex than the GLS and GLP functions. This is certainly true for the GLS, which is a linear combination of Gaussian and Lorentzian functions with equal widths. However, in both its derivation/formulation and other properties, the GLP is quite a bit more complex than the GLS -its complexity rivals that of the Voigt.

In this paper we explore the GLS and GLP functions at a detailed level, comparing them to each other and the Voigt function, where we use the LA(m) (single parameter Voigt) function in CasaXPS in this work. 24 First, we show and discuss the GLS, GLP, and LA(m) functions prepared/plotted over the full range of their mixing parameter, m (0 -1, or 0 -100%), which is used to control the amount of Gaussian and Lorentzian character in them. We employ two equivalent conventions for m here: 0 -1 and 0 -100%, because both are used in the literature and in fitting software. For clarity in this article, we use m s , m p , and m v for the sum, product, and Voigt mixing parameters, respectively. It is common, however, to simply see m used for these functions. Some differences between the GLS, GLP, and Voigt functions are apparent in their plots (Figure 1). Essentially identical plots for these functions have previously been reported. [START_REF] Fairley | Surface Analysis by Auger and X-ray Photoelectron Spectroscopy[END_REF][START_REF] Jain | [END_REF][21][22][23] Second, to illustrate the use of these functions, we fit a series of Ag 3d 5/2 signals acquired at different pass energies to them, noting how the mixing parameters of the fitting functions change as a function of the pass energy used to acquire the data. Third, we plot the underlying mathematical components/functions of the GLS and GLP as a function of their mixing parameter. This breakdown reveals that the formation of the GLP is more complex than that of the GLS, where the GLP involves the product of two functions that can have very different widths. Fourth, we show how the areas of the three functions vary as a function of their mixing parameters. As expected, this relationship is simple and linear for the GLS. However, it is rather complex and non-linear for the GLP and LA(m). Finally, to understand how they relate to each other, we fit these functions to each other. Other than the first item on this list, which is important for introducing the functions, all of this information is new. In summary, this study should provide the XPS practitioner with a more in-depth/advanced understanding/perspective of the GLS, GLP, and Voigt functions, which, as noted, are widely and successfully used for XPS peak fitting.

Theory

The GLS and GLP functions used herein are the same as in Jain et al.'s paper on this topic. [START_REF] Jain | [END_REF] The Gaussian, G, and Lorentzian, L, functions can be defined as follows:

(1) (2) where x is the variable, and the parameters in the equations are: , the full width at half maximum (FWHM), , the position of the peak (in energy), and h, the height of the function. Based on these definitions, the GLS and GLP functions have been defined as:

(3) and (4) .

A Voigt function is a convolution of a Lorentzian with a Gaussian. The relative widths of these functions determine the shape the Voigt function they create. In this study, we use the single-parameter Voigt function in CasaXPS (the LA(m) function), which is defined in terms of the multiparameter/polymorphic LA function (also in CasaXPS), as follows:

(5) LA (m) = LA (1, 1, 1401 -(m / 100) * 1401),

where LA (1,1, n) has been defined previously. 25 Here, n alters the width of the Gaussian relative to the Lorentzian such that as n increases the Gaussian width relative to the Lorentzian increases. Thus LA(0) is computed using the maximum allowed Gaussian width in the LA (1,1,n) line shape, namely the Gaussian width defined by n = 1401. Note that a Voigt function computed numerically by these means yields a line shape that is not a pure Gaussian for m = 0.

Experimental

The figures and calculations in this work were created and performed using CasaXPS 2.3.25 (Casa Software Ltd) and MATLAB R2019b (MathWorks). The data of the silver foil were acquired with a K Alpha XPS from ThermoFisher.

Results and Discussion

Figure 1 shows plots of GLS (SGL), GLP (GL), and LA(m) (Voigt) functions as a function of their respective mixing paramters. Similar plots of the GLS and GLP functions, which reveal the structures of these functions, have previously appeared in the literature. [START_REF] Fairley | Surface Analysis by Auger and X-ray Photoelectron Spectroscopy[END_REF][START_REF] Jain | [END_REF][21][22][23] In Figure 1, the mixing parameters, m, range from 0, where the functions are pure Gaussians, or have the highest amount of Gaussian character they can have, to 100, where they are pure Lorentzians, or have the highest amount of Lorentzian character they can have. As noted, in some fitting software, and sometimes in the literature, these mixing parameters are expressed as a fraction (from 0 -1). In this work, we use both conventions. Based on the traces in Figure 1, the following observations can be made about the GLS, GLP, and LA(m) functions. First, as expected, the starting points/innermost traces (the Gaussians where m = 0) and ending points/outermost traces (the Lorentzians where m = 1) are identical for the GLS and the GLP functions (see Equations 3 and 4). Second, the GLS function broadens steadily/monotonically with increasing m s , while the GLP traces stay closer to the Gaussian function for larger values of m p . That is, in contrast to the GLS, the GLP function retains a significant amount of Gaussian character even for a relatively high value of the mixing parameter (the GLP is a more compact function at intermediate values of m p ). Third, the differences in the structures of these functions occurs away from their centers -at their edges. Indeed, as shown in Figure 2, which shows the edges of the three functions for m = 20 and m = 80, the edges of the GLS, GLP, and LA(m) functions are not the same. Indeed, Figure 2 confirms that for m = 20, the GL function is the narrowest/most compact/lowest function (see comments above). For this value of the mixing parameter, the LA(m) function resembles the GLS function somewhat more closely than the GLP function. However, for m = 80, the LA(m) function more closely resembles the GLP function,

where both functions fall below the GLS function. Thus, Figures 1 and2 reveal that these three functions are not equivalent to each other/fully interchangeable. The fact that these functions are different at their 'wings' is important because the edges/wings of an XPS narrow scan are often the place where they are most difficult to fit -it is useful to have different functions that fit this part of the data differently. Fourth, the FWHM values of GLS, GLP, and LA(m) functions stay essentially constant as m is varied. Again, the 'action' in these functions takes place at their wings.

Figure 1. The SGL (GLS), GL (GLP), and LA(m) (Voigt) functions as a function of their mixing parameter, m, which is varied here from 0 to 100% in steps of 3.33333. To illustrate the use of the GLS, GLP, and Voigt functions in practical XPS peak fitting, a series of Ag 3d 5/2 peaks obtained from a silver foil that had been analyzed at different pass energies was fit with Shirley backgrounds that extended over both peaks. As expected, Figure 3 shows that (i) the peaks obtained at higher PE are broader, and (ii) the signals obtained at higher PE have more Gaussian character (lower values of m), while the ones acquired at lower PE have more Lorentzian character (higher values of m). Nevertheless, while this figure shows monotonic increases in the mixing parameter as pass energy decreases, the m values for the GLP and LA(m) are much higher than the SGL mixing parameter. In other words, Figure 2 underscores the fact that the mixing parameter means different things in the different functions.

GL(20) SGL(20)

LA( 20 We next plot the underlying functions that generate the GLS and GLP. An obvious similarity between the GLS and the GLP is that they both contain two terms: a Gaussian term and a Lorentzian term (see Equations 3 and4). Of course, a key difference between them is that the GLS is based on the sum of a Gaussian and the Lorentzian, while the GLP is based on a product between them. Figure 4 shows the underlying Gaussian and Lorentzian functions that are used to make a series of GLS and GLP functions. As expected, Figure 4 shows that the GLS is a simple linear combination of Gaussian and Lorentzian functions. That is, going down the 'GLS Components' column of this figure, we see the Gaussian component of the GLS decrease while the Lorentzian part of it increases. The sum of these two functions is shown in the second column of this figure, which reveals a steady change of the function from m s = 0 (a pure Gaussian) to m s = 1 (a pure Lorentzian). In contrast, in the case of the GLP, the third column of Figure 4 shows that at m p = 0, the GLP is created by multiplying a Gaussian by unity (an infinitely wide Lorentzian with a value everywhere of one), while at m p = 1, the GLP is created by multiplying a Lorentzian by unity (an infinitely wide Gaussian with a value everywhere of one). As m is changed from 0 to 1, the Lorentzian changes from being infinitely wide to having a finite width, and the Gaussian changes from having a defined width to being infinitely wide. To the best of our knowledge, this is the first time such a plot has been shown/presented in the Literature. Of course we grant that this information is probably not very useful to those doing basic peak fitting with a GLS or a GLP function. However, this information does become useful when one begins to think in detail about these underlying functions. That is, if one were to design new functions for fitting XPS peak envelopes, which is a current topic of research, understanding the fundamental, underlying, mathematical nature of the GLS and GLP becomes much more important. Another fact that may not be well understood about the GLS, GLP, and Voigt functions is revealed in Figure 5. This plot shows the areas of a series of GLS, GLP, and LA(m) functions as a function of their mixing parameters. It is first observed that, for all cases, the more Gaussianlike GLS, GLP, and Voigt functions (those with lower values of m) have smaller areas than the analogous functions with higher values of m. This point follows from the definitions/shapes of these functions (see Figure 1). Second, it is seen that, as expected, the area of the GLS changes linearly with the mixing parameter m s , which is obviously not the case for the other two functions. That is, the area of the GLP and LA(m) functions increase more slowly with m, only to rise rapidly as m approaches one. The fact that the LA(m)/Voigt function only increases slowly in area with m, for lower values of m, is consistent with the fact that the convolution of a Gaussian with a narrow Lorentzian, i.e., little Lorentzian character in the Voigt function, will return a function that quite closely resembles the original Gaussian.

Figure 6 represents an attempt to understand the Gaussian and Lorentzian contributions to the GLS and GLP functions from a different perspective. Here, series of GLS, GLP, and LA(m) functions were fitted to the same three types of functions, and the mixing parameter for the fitting function was recorded. Obviously, when the function was fit to one of its same type, the mixing parameter of the original function and the one fit to it are the same. However, of greater interest, these results confirm the observation made above that at low values of m, the GLS more closely resembles the LA(m)/Voigt function, while at higher values of m, the GLP does. That is, in Figure 6a (fit of the GLP function), we observe that neither the GLS nor the LA(m) function closely resembles the GLP at low values of m, but the Voigt does at high values of m. In Figure 6b, we see the Voigt function better fitting the GLS function at lower values of m, and both functions fitting the GLS to about the same degree at higher values of m. Finally, in Figure 6c, we clearly see the GLS better fitting the Voigt function at lower values of m and the GLP better fitting it at higher values.

Conclusions/Recommendations

Because peak fitting is essential in much XPS data analysis, it is important to understand the functions that are commonly used to represent chemical states. The GLS, GLP, and Voigt functions have been employed in XPS peak fitting for many years and continue to be widely used. In this work we have shown and discussed the well-known plots of these functions as a function of their mixing parameter, m (Figure 1). We then showed a practical example of how the GLS can be used in XPS peak fitting (Figure 3), where, as expected, the mixing parameter, m, of the fit functions increased as the pass energy used to acquire the data decreased. Next, in Figure 4, we plotted the underlying Gaussian and Lorentzian contributions to the GLS and GLP functions, which revealed that the GLS is composed of two functions of equal width, but the GLP function is often made from two functions with very different widths. In Figure 5 we plotted the areas of the functions as a function of m. The area of the GLS increased linearly, while the areas of the GLP and LA(m) functions remained below that of the corresponding GLS function, suggesting that the GLP and LA(m) retain significant amount of Gaussian character, even for large values of m. Figure 6 confirms that at low values of m, the GLS more closely resembles the LA(m) function, while at higher values of m, the GLP does. It is probably a good idea to remember these relationships between these functions when using the GLS and GLP to approximate the Voigt function. Nevertheless, the exact implementation of the Voigt function will depend on the software being used, so this conclusion should be checked against the functions being employed, and it should be remembered that while there are values of m where these functions are similar to each other, they are not truly interchangeable. These results also confirm that the commonly used GLP(30) function is very similar to a Gaussian function. In addition, it should be emphasized that a mixing parameter of, say 60 for a Voigt or GLP function does not indicate that the function is 60% Lorentzian, i.e., the mixing parameters of the function provide a means of varying the functions, but do not necessarily indicate that they have a certain amount of Gaussian or Lorentzian character -the mixing parameter has a different meaning for each line shape. Nevertheless, in each case, a smaller mixing parameter corresponds to a more Gaussian line shape and a larger one corresponds to a more Lorentzian one. Overall, we believe that this study will be useful to those who wish to have a more detailed understanding of the GLS, GLP, and Voigt functions, which are important in XPS peak fitting, and for other applications as well.
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 2 Figure 2. Plots of the edges of the GL(m), SGL(m), and LA(m) functions for m = 20 (top) and 80 (bottom).
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 3 Figure 3. (a) Ag 3d XPS spectra (the Ag 3d 5/2 and 3d 3/2 signals) obtained at different pass energies -the broader peaks were obtained at higher PEs and the narrower peaks at successively lower PEs. (b) The same Ag 3d XPS spectra as presented in (a), but with the counts normalized to 1 to emphasize the peak broadening -the peaks become broader as the pass energy increases. (c) An iterative Shirley background was placed under these data and the larger of these two peaks was fit with a GLS, GLP, or LA(m) signal. The resulting mixing parameters for these functions are presented in this panel.
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 4 Figure 4. Columns 1 and 3 in this plot show the Gaussian and Lorentzian contributions of Equations 3 and 4 to a series of GLS and GLP functions with different mixing parameter values, m. Columns 2 and 4 show the corresponding sums or products of the functions in Columns 1 and 3, respectively. Dashed, blue lines signify Gaussian contributions. The red, solid lines signify the Lorentzian contributions. The values for the x-axes in these plots are in eV.
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 5 Figure 5. The areas of a series of GLP, GLS, and LA(m) functions, when normalized to line shape maximum, as a function of their respective mixing parameters.
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 6 Figure 6. Results (mixing parameters) obtained by fitting the GLS, GLP, and Voigt functions to each other.