
HAL Id: hal-03501398
https://hal.science/hal-03501398v1

Submitted on 23 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relational concept analysis for circular link key
extraction

Jérôme Euzenat, Manuel Atencia, Jérôme David, Amedeo Napoli, Jérémy
Vizzini

To cite this version:
Jérôme Euzenat, Manuel Atencia, Jérôme David, Amedeo Napoli, Jérémy Vizzini. Relational concept
analysis for circular link key extraction. [Contract] 1.2, ELKER. 2021, pp.1-57. �hal-03501398�

https://hal.science/hal-03501398v1
https://hal.archives-ouvertes.fr

ANR-17-CE23-0007

ELKER

Enhancing link keys: extraction and reasoning
Étendre les clés de liage: extraction et raisonnement

D1.2 Relational concept analysis for
circular link key extraction

Coordinator: Jérôme Euzenat
With contributions from: Manuel Atencia, Jérôme David, Jérôme Euzenat, Amedeo

Napoli, Jérémy Vizzini

Quality reviewer: Specify quality controller
Reference: ELKER/D1.2/v1.0
Project: ELKER ANR-17-CE23-0007
Date: December 9, 2021
Version: 1.0
State: final
Destination: public

EXECUTIVE SUMMARY

Linked data aims at publishing data expressed in RDF (Resource Description Framework) at the scale
of the worldwide web. These heterogeneous datasets interoperate by publishing links which identify
individuals across them.

Such links may be found by using a generalisation of keys in databases, called link keys, which
apply across datasets. They specify the pairs of properties to compare for linking individuals belonging
to different classes of the datasets.

Here, we extend the work presented in Deliverable 1.1 by dealing with circular dependencies be-
tween concepts and thus link keys.

For that purpose, we use relational concept analysis (RCA), an extension of FCA taking relations
between concepts into account. This yields an elegant formulation of extracting link keys in presence
of circular dependencies (§3). We show that it enables to extract the optimal link keys even in the
presence of cyclic dependencies. Moreover, the proposed process does not require information about
the alignments of the ontologies to find out from which pairs of classes to extract link keys.

However, further investigation show that the RCA process, as it is currently defined may fall short
in finding useful link keys. In practice, this observation is not really a problem to RCA because in most
data sets, there are explicit data able to ground a solution. However, from a theoretical perspective such
problems are worth investigating.

To illustrate this problem, we define a ultra-simplified version of RCA that we call RCA0. RCA0

concentrates on dependencies between formal contexts. Introducting RCA0 has several advantages: it
provides examples in which the raised problems are clearly apparent; it thus allows to analyse directly
what the sources of such problems are; and finally it makes the presentation of the results and solutions
more simple.

To pinpoint the source of the problem, we provide examples of RCA shortcomming in a collection
of examples using classical RCA or the link key extraction formulation (§4).

We redefine the semantics of RCA with respect to the notion of closed concepts (§5). A solution
to an RCA problem is characterised as a fixed-point of a specific function called expansion function.
This requires to precisely define the semantics of scaling which raises problems in case of circularity.
We show that the previously available semantics, which we call well-founded semantics, only computes
the least fixed-point. This semantics is extended by introducing the notion of self-supported lattices,
whose attributes only refer to concepts of this lattice. Interesting lattices for RCA are self-supported
fixed points.

We consider alternative to the RCA algorithm to find other solutions (§6). In particular, we develop
an algorithm complementary to the RCA algorithm. It starts with the power set lattice of the set of
objects and filters out non-self supported concepts. It has the drawback of starting with a large lattice.
We show that it computes the greatest fixed-point. We also discuss algorithms and hints to generate all
valid lattices for RCA0.

This work leaves currently some questions open: (i) Does this apply to more complex setting than
RCA0? (ii) How to apply this to link key extraction.

Chapter 3 of this report have been published in [Atencia et al. 2020]. Chapter 4 and 5 are extensions
of [Euzenat 2021]. The rest is unpublished.

2

DOCUMENT INFORMATION

Project number ANR-17-CE23-0007 Acronym ELKER
Full Title Enhancing link keys: extraction and reasoning

Étendre les clés de liage: extraction et raisonnement
Project URL https://project.inria.fr/elker/

Document URL

Deliverable Number 1.2 Title Relational concept analysis for circular link key extrac-
tion

Work Package Number 1 Title Link key extraction

Date of Delivery Contractual M36 Actual 23/07/2021
Status final final ⊠
Nature prototype ◻ report ⊠ dissemination ◻
Dissemination level public ⊠ consortium ◻

Authors (Partner) Manuel Atencia, Jérôme David, Jérôme Euzenat, Amedeo Napoli, Jérémy Vizzini

Resp. Author Name Jérôme Euzenat E-mail Jerome.Euzenat@inria.fr
Partner LIG

Abstract
(for dissemination)

A link key extraction procedure in case of circular dependencies is presented. It uses
relational concept analysis and extends the procedure of Deliverable 1.1. This leads to
investigate more closely the semantics of relational concept analysis which is given in
terms of fixed points. Extracting all fixed points may offer more link key candidates to
consider.

Keywords Formal Concept Analysis, Relational Concept Analysis, Linked data, Link key, Data
interlinking, Resource Description Framework

Version Log
Issue Date Rev No. Author Change
03/05/2019 1 J. Euzenat Initial version
09/05/2019 2 J. Euzenat Inclusion of RCA material from the DAM paper
19/11/2020 3 J. Euzenat Revision of the content
02/12/2020 4 J. Euzenat Inclusion of material from ongoing fixed-point paper
08/12/2020 5 J. Euzenat Reorganised the outline
18/04/2021 6 J. Euzenat Included content of ICFCA paper (and extra)
05/05/2021 7 J. Euzenat Developed Q∞ ○E∞; cleaned up the paper
19/05/2021 8 J. Euzenat Revamped the whole paper; finished gfp algorithm
14/07/2021 9 J. Euzenat Finished the full algorithm; revised the whole paper
23/07/2021 10 J. Euzenat Completed all missing parts
09/12/2021 11 J. Euzenat Taken into account quality control remarks

3

TABLE OF CONTENTS

1 INTRODUCTION 5

2 PRELIMINARIES 7
2.1 Basics of formal concept analysis . 7
2.2 Extending formal concept analysis . 7
2.3 A very short introduction to RCA . 11
2.4 RCA0 . 13

3 DEALING WITH CYCLIC DEPENDENT LINK KEYS THROUGH RELATIONAL CONCEPT ANALY-
SIS 15
3.1 RCA encoding of the extraction of dependent link key candidate 15
3.2 Implementation and complexity considerations . 17

4 PROBLEMS WITH CIRCULAR DEPENDENCIES 19
4.1 Base example . 19
4.2 Running example . 20
4.3 Interleaved references . 22
4.4 Link key extraction example . 23

5 A FIXED-POINT SEMANTICS FOR RCA0 25
5.1 Semantics and properties: the context approach . 25
5.2 Semantics and properties: the lattice approach . 27
5.3 Well-grounded and least fixed-point semantics . 29
5.4 Self-supported fixed points . 31
5.5 Structure of fixed points . 34
5.6 FCA and hierarchical RCA . 38

6 ALTERNATIVE FIXED-POINT EXTRACTION METHODS 41
6.1 Computing the greatest fixed point . 41
6.2 Extracting all fixed points in RCA0 . 45

7 CONCLUSION 55

8 BIBLIOGRAPHY 56

4

1. Introduction

Linked data aims at publishing data expressed in RDF (Resource Description Framework) at the scale of
the worldwide web [Bizer et al. 2009; Heath and Bizer 2011]. These datasets interoperate through links
which identify individuals across heterogeneous datasets. Data interlinking, the problem of linking pairs
of nodes corresponding to the same resource in RDF graphs, is an important task for linked open data.

Different approaches and methods have been proposed to address the problem of automatic data
interlinking [Ferrara et al. 2011; Nentwig et al. 2017]. Most of them are based on numerical methods
that measure a similarity between entities and consider that the closest the entities, the more likely they
are the same [Volz et al. 2009; Ngonga Ngomo and Auer 2011]. Other work takes a logical approach
to data interlinking and can leverage reasoning methods [Saı̈s et al. 2007; Al-Bakri et al. 2015; Hogan
et al. 2012].

We introduced the notion of link keys as a way to identify such node pairs [Euzenat and Shvaiko
2013; Atencia et al. 2014]. Link keys generalise keys in relational algebra in three ways: (1) they apply
across two data sets instead of a single one, (2) they take into account multiple values for the same
attribute, and (3) attribute values may be other objects. The latter makes link keys eventually dependent
on each others.

Link keys specify the pairs of properties to compare for linking individuals belonging to different
classes of the datasets. An example of a link key is:

{⟨auteur,creator⟩}{⟨titre,title⟩} linkkey ⟨Livre,Book⟩

stating that whenever an instance of the class Livre has the same values for property auteur as an instance
of class Book has for property creator and they share at least one value for their property titre and title,
then they denote the same entity.

Clearly, such a link key may depend on another one as, for instance, properties auteur and creator

have values in the Écrivain and Writer classes respectively. Identifying their values will then resort to
another link key:

{⟨prénom,firstname⟩}{⟨nom, lastname⟩} linkkey ⟨Écrivain,Writer⟩

This situation may be rendered even more intricate if Écrivain and Writer were instead identified from
the values of their properties ouvrages and hasWritten refering to instances of Livre and Book. We would
then face interdependent link keys.

We have already proposed an algorithm for extracting some types of link keys [Atencia et al. 2014].
This method may be decomposed in two distinct steps: (1) identifying link key candidates, followed by
(2) selecting the best link key candidates according to quality measures. In Deliverable 1.1, we have
shown how to encode the functional link key extraction problem in relational databases into Formal
concept analysis so that candidate link keys correspond to formal concepts [Atencia et al. 2014]. Formal
Concept Analysis (FCA [Ganter and Wille 1999]) is a useful tool for inducing a classification structure
from data.

Relational Concept Analysis (RCA [Rouane-Hacene et al. 2013a]) is one of its extensions allowing
to take advantage of relationships between objects to extract dependent concept lattices. One of its
strong point is its ability to deal with circular dependencies between objects. However, RCA aims at
identifying and characterising concepts within data, though our goal is to identify link keys across two
datasets. Hence, the framework has to be adapted to this end with specific scaling operators.

In this report, we show how relational concept analysis can be used to deal with circular dependen-
cies and hence to extract directly families of interdependent link key candidates from RDF data sets
[Atencia et al. 2020]. This method generalises directly the one presented for non dependent link keys
[Atencia et al. 2014] and link keys over the relational model [Atencia et al. 2014]. In this context,

5

the concepts of extracted lattices are link key candidates which will be selected on the basis of two
independent measures [Atencia et al. 2014].

Although the result returned by RCA is solid and useful, it may not be the only possible result.
The relational structure, when containing circuits, has the capability to induce richer lattice structures.
Indeed, in the absence of information or of reason to separate objects, RCA classifies them within
the same concept. On the contrary, in the absence of information or of reason to aggregate objects,
it is possible to assign them to different concepts, though generating stable concept lattices. A good
compromise may sometimes reside in between these two extremes. As a data mining procedure, RCA
can be useful in returning all possible structures and not necessarily the safest ones.

This problem is not specific to link key extraction but apply to RCA in general. However, in the
target RCA application, extracting the core classes of a description logic ontology, this may not be
critical. On the contrary, for the extraction of link key candidates which will be evaluated to find the best
one, not having them all may be a problem. As a data mining task, RCA is more useful if it generates
all the possible link key candidates.

Hereafter, we illustrate the considered problem on RCA0, a minimal version of RCA. Although
RCA0 is simply a convenient way to illustrate the problem it requires solutions that will apply to RCA
as a whole.

Understanding the nature of the problem and its relation with RCA leads to consider its semantics.
The standard semantics of RCA [Rouane-Hacene et al. 2013b] focusses on the grounding of the process.
We redefine this semantics on properties directly characterising the solutions.

We first consider the core function involved in the classical RCA algorithm and identify acceptable
results as the fixed points of this function. We show, in the case of RCA0, that the classical RCA
semantics corresponds to extracting its least fixed point.

We also provide a direct way to generate the greatest fixed point. However, although RCA extracts
the minimal fixed point in its simplest form, this is not the case of the greatest fixed point: it would make
reference to non-existent concepts. Hence we introduce the notion of self-supported concept lattice, so
that the acceptable RCA results would be self-supported fixed points.

Outline The outline of the report is as follows. Related work has been addressed in Deliverable 1.1
and Deliverable 1.3, hence we first introduce the problem and notations used in the paper as well as
the basics of formal and relational concept analysis (§2). This allows us to generalise the notion of
scaling that will be useful later. Then, we provide the RCA encoding of the problem of cyclic dependent
link key candidate extraction through the definition of a relational context and specific scaling operators
(§3). All this ends the coverage of [Atencia et al. 2020]. Then we provide examples of problems raised
by the solutions provided by RCA (§4). In order to explain these examples, we provide a fixed-point
semantics for RCA based on a context-expansion function which allows to characterise the classical
RCA semantics (§5). However, this semantics does not fully characterise interesting lattices, so we
introduce the complementary notion of self-supported concept lattices. These self-supported fixed points
are those lattices that can be returned by an extended RCA. Finally, we provide algorithms able to extract
the greatest self-supported fixed-point and the set of all self-supported fixed points in this restriction of
RCA (§6).

Acknowledgements

We thank Petko Valtchev for comments and suggestion on an earlier version of this work. We thank
Philippe Besnard for pointing to the Knaster-Tarski theorem.

6

2. Preliminaries

We mix preliminaries with related works for reasons of space, but also because the paper directly builds
on this related work.

Table 2.1 provides a list of symbols used in this deliverable.

2.1 Basics of formal concept analysis

Formal Concept Analysis (FCA) [Ganter and Wille 1999] starts with a binary context ⟨G,M,I⟩ where G
denotes a set of objects, M a set of attributes, and I ⊆ G×M a binary relation between G and M, called
the incidence relation. The statement gIm is interpreted as “object g has attribute m”. Two operators ⋅↑
and ⋅↓ define a Galois connection between the powersets ⟨2G,⊆⟩ and ⟨2M,⊆⟩, with A ⊆G and B ⊆M:

A↑ = {m ∈M ∣ gIm for all g ∈ A}
B↓ = {g ∈G ∣ gIm for all m ∈ B}

The operators ⋅↑ and ⋅↓ are decreasing, i.e. if A1 ⊆ A2 then A↑2 ⊆ A↑1 and if B1 ⊆ B2 then B↓2 ⊆ B↓1.
Intuitively, the less objects there are, the more attributes they share, and dually, the less attributes there
are, the more objects have these attributes. It can be checked that A ⊆ A↑↓ and that B ⊆ B↓↑, that A↑ = A↑↓↑

and that B↓ = B↓↑↓.
For A ⊆ G, B ⊆ M, a pair ⟨A,B⟩, such that A↑ = B and B↓ = A, is called a formal concept, where A is

the extent and B the intent of ⟨A,B⟩. Moreover, for a formal concept ⟨A,B⟩, A and B are closed sets for
the closure operators ⋅↑↓ and ⋅↓↑, respectively, i.e. A↑↓ = A and B↓↑ = B.

Concepts are partially ordered by ⟨A1,B1⟩ ≤ ⟨A2,B2⟩⇔A1 ⊆A2 or equivalently B2 ⊆B1. With respect
to this partial order, the set of all formal concepts is a complete lattice called the concept lattice of
⟨G,M,I⟩.

Formal concept analysis can be considered as a function that associates to a formal context ⟨G,M,I⟩
its concept lattice ⟨C,≤⟩ = FCA(⟨G,M,I⟩) (or B(G,M,I) [Ganter and Wille 1999]). By abuse of lan-
guage, when a variable L denotes a concept lattice ⟨C,≤⟩, L will also be used to denote C.

2.2 Extending formal concept analysis

Formal concept analysis is defined on relatively simple structures hence many extensions of it have been
designed. The may allow FCA to (a) deal with more complex input structure, and/or (b) generate more
expressive and interpretable knowledge structures.

2.2.1 Scaling: a generalisation

Scaling is one type of extension of type (a). A scaling operation ς ∶X ↦ 2D generates boolean attributes
named after a language D from a structure Σ ∈X . In scaled contexts, this language can be interpreted so
that the incidence relation I is immediately derived from the attribute m following:

Σ ⊧ gIm

In FCA, D =M and I is provided by its matrix:

K ⊧ gIm iff ⟨m,g⟩ ∈ I

Hence, adding attributes to a context under such a structure may be performed as:

KΣ

+M′(⟨G,M,I⟩) = ⟨G,M∪M′,I∪{⟨g,m⟩ ∈G×M′ ∣ Σ ⊧m(g)}⟩

7

G set of objects (g ∈G)
M set of attribute (⊆D, m ∈M)
I incidence relation (⊆M×G)
J ‘ternary’ element used in conceptual scaling
R set of relations (⊆G×G′, r ∈ R)
K formal contexts
Ω set of scaling operations (ς ∈Ω)

N(G) concept names (given after extent, ⊆ 2G)
D property language for expressing attributes (inspired from Pattern structure)
L concept lattice
C set of formal concepts (⊆ 2G×M, c ∈C)
A description logic ABox
T description logic TBox
Σ demantic structure grounding scaling

Table 2.1: Some symbols used in this document.

and suppressing them as:

KΣ

−M′(⟨G,M,I⟩) = ⟨G,M∖M′,I∖{⟨g,m⟩ ∈G×M′ ∣ Σ ⊧m(g)}⟩

Applying a scaling operation ς to a formal context K following a structure Σ can be thus decomposed
into (i) determining the set of attributes ς(Σ) to add, and (ii) extending the context with such attributes:

σς(K,Σ) =KΣ

+ς(Σ)
(K)

This unified view of scaling may be applied to many available scaling operators. We discuss these
below.

2.2.2 Conceptual scaling

Attributes found in data sets typically do not range in Booleans, but instead in numbers, intervals, strings.
Such data can be represented as a many-valued context Σ = ⟨G,M,W,J⟩, where G is a set of objects, M a
set of attributes, W a set of values, and J a ternary relation defined on the Cartesian product G×M×W .
The fact ⟨g,m,w⟩ ∈ J or simply m(g) = w means that object g takes the value w for the attribute m. In
addition, when ⟨g,m,w⟩ ∈ J and ⟨g,m,v⟩ ∈ J then w = v [Ganter and Wille 1999]: in FCA, “many-valued”
means that the range of an attribute may include more than two values, but for any object, the attribute
can only have one of these values.

Conceptual scaling can be used for transforming such a many-valued context into a one-valued
context. For example, if Wm = {w1,w2, . . .wp} ⊆W denotes the range of the attribute m, then a scale
of elements “m = wi,∀wi ∈ Wm” is used for binarising the initial many-valued context. Intuitively, a
scale splits the range Wm of a many-valued attribute m into a set of p binary attributes “m = wi, i =
1, . . . , p”. There are many possible scalings and some of them are detailed in [Ganter and Wille 1999]
(see Table 2.2).

For instance, for nominal scaling, given a set W of values and a set N of properties taking these val-
ues, we can define D=

N,W = {n =w∣n ∈N and w ∈W}. Then, given a many-valued context Σ = ⟨G,N,W,J⟩.
Attributes of N are nominaly scaled on D=

N,W so that, ∀n ∈N:

⟨G,N,W,J⟩ ⊧ gI(n =w) iff ⟨g,n,w⟩ ∈ J

or, more precisely, it is scaled through a nominal scale S which is the relational context corresponding
to the equality relation on W .

8

name language (D) scale (S) Σ condition (m(g))
FCA m - I m(g)
dichotomic n = v monocolumn ⟨G,N,W,J⟩ n(g) = v
nominal n =w diagonal ⟨G,N,W,J⟩ n(g) =w ∀w ∈W
ordinal n ≤w triangular ⟨G,N,W,J⟩ n(g) ≤w ∀w ∈W
inter-ordinal n ≤w, n ≥w - ⟨G,N,W,J⟩ n(g) ≤w or n(g) ≥w ∀w ∈W
contranominal n ≠w antidiagonal ⟨G,N,W,J⟩ n(g) ≠w ∀w ∈W

Table 2.2: Conceptual scaling operators (inspired from [Ganter and Wille 1999]).

The same can be built for other type of scaling, e.g.

⟨G,N,W,J⟩ ⊧ gI(n ≤w) iff ⟨g,n,v⟩ ∈ J∧v ≤w

for ordinal scaling.
These scaling operations only use a simple structure, i.e. Σ = ⟨G,M,W,J⟩ in which everything is

stored in J and D is expressed as predicates, e.g. ⋅ = v for nominal scaling or ⋅ ≤ n for ordinal scaling. ⊧
is the evaluation of the predicate for the value, hence they can be called structural scaling.

2.2.3 Relational scaling

Relational scaling operations (σς) considered in [Rouane-Hacene et al. 2013a] are based on a struture
Σ = ⟨R,L⟩ made of a set of relations R = {ry}y∈Y , i.e. relations ry ⊆ Gx×Gz between two sets of objects,
and a family L = {Lx}x∈X of concept lattices whose extent is a subset of Gx.

Given the finite set of objects Gx from which each lattice is built, the set of concepts that can be
created from such contexts is finite and moreover each concept can be identified by its extent. Hence,
N(Gx) = 2Gx is the set of all concept names that may be used in any such concept lattice1; the extent of
a so-named concept will be the set of objects in its name. The set of attributes that can be scaled from ς

on r of codomain Gz is thus Dς ,r,N(Gz) = {ςr.c ∣ c ∈N(Gz)}.
For example, qualified existential scaling (∃) adds attributes ∃r.c for r ∈ R, r ⊆ Gx×Gz, c ∈ Lz and ⊧

checks that
⟨R,L⟩ ⊧ gI∃r.c iff ∃g′;⟨g,g′⟩ ∈ r∧g′ ∈ extent(c)

Various relational scaling operations are used in RCA, such as existential, strict and wide universal,
min and max cardinality, which all follow the classical role restriction semantics of description logics
[Baader et al. 2003] (see Table 2.3). The set of attributes obtained from relational scaling may be large
but remains finite. Cardinality constraints may entail infinite sets of concepts in theory, but in practice
the set of meaningful concepts are bound by ∣Gz∣ which is finite.

In fact, RCA may be considered as a very general way to apply scaling across contexts. New
operators may be provided [Braud et al. 2018; Wajnberg 2020], such as those that we used for extracting
link keys [Atencia et al. 2020].

2.2.4 Logical scaling

Logical scaling [Prediger 1997] has been introduced for more versatile languages such as description
logics and SQL. It introduces query results within formal contexts. In this case, Σ is a logical theory or
database tables, D the set of formulas of the logic or queries (Q) and ⊧ is entailment or query evaluation.

Σ ⊧ gIQ iff Σ ⊧Q(g)
1A similar remark is made in [Wajnberg 2020, §4.1.2].

9

name language (D) scale (S) Σ condition (m(g))
existential ∃r R r(g) ≠∅
universal (wide) ∀r.C R,L r(g) ⊆ extent(C)
strict universal ∀∃r.C R,L r(g) ≠∅∧ r(g) ⊆ extent(C)
contains (wide) ∀C.r R,L extent(C) ⊆ r(g)
strict contains ∀∃C.r R,L extent(C) ≠∅∧extent(C) ⊆ r(g)
qualified existential ∃r.C R,L r(g)∩extent(C) ≠∅
qualified min cardinality ≤n r.C R,L ∣r(g)∩extent(C)∣ ≤ n
qualified max cardinality ≥n r.C R,L ∣r(g)∩extent(C)∣ ≥ n
∀-condition ∀⟨r,r′⟩k R×R′,LC×C′ r(g) =k r′(g′)
∃-condition ∃⟨r,r′⟩k R×R′,LC×C′ r(g)∩k r′(g′) ≠∅

Table 2.3: Relational scaling operators (inspired from [Rouane-Hacene et al. 2013a; Braud et al. 2018])
and additional link key condition scaling operators operators (see Section 3.1).

Here, the nearly identical notation shows the relevance of this generalisation. We expressed it here with
respect to one individual g, so it applies to unary queries or formulas with one variable placeholder.
However, it is useful to generalise to contexts in which individuals in G are elements of the products of
sets of individuals.

2.2.5 Relational scaling as logical scaling

The type of scaling used by RCA, relational scaling, can be though of as an extension of logical scaling
based on description logic.

Relational scaling is based on a set of contexts {⟨Gx,Mx,Ix⟩}x∈X , the corresponding lattices {Lx}x∈X =
{FCA∗(⟨Gx,Mx,Ix⟩)}x∈X and a set of relations R = {ry}y∈Y . This input, denoted by Σ, can be encoded as
sets of description logic axioms by:

∣Kx∣ = {m(g) ∣ m ∈Mx∧g ∈Gx∧gIxm}
∣ry∣ = {ry(g,g′) ∣ g ∈Gx∧g′ ∈Gz∧ ⟨g,g′⟩ ∈ ry}
∣Lx∣ = {c(g) ∣ c ∈ Lx∧g ∈ extent(c)}

∥Lx∥ = {c ≡ ⊓d∈intent(C)d ∣ c ∈ Lx}

The elements in ∣ ⋅ ∣ are part of an ABox and those in ∥ ⋅∥ are part of a TBox. They may be combined into
a description logic knowledge base Σ = ⟨TΣ,AΣ⟩ such that:

TΣ = ⋃
x∈X

∥Lx∥

AΣ = ⋃
x∈X

∣Kx∣∪⋃
y∈Y

∣ry∣∪⋃
x∈X

∣Lx∣

The attributes provided by relational scaling are description logic concept descriptions, i.e. unary
predicates. They can be interpreted with respect to the knowledge base associated to Σ:

Σ ⊧ gI ∀∃ p.c iff Σ ⊧ (∀p.c⊓∃p)(g)

This way of interpreting relational scaling opens the door to introducing arbitrary description logic
axioms within the scaling operation and thus to use background knowledge.

10

2.2.6 Other extensions

There are other extensions of formal context analysis for providing it with more expressiveness without
scaling. We mention them here briefly.

Pattern structures

It is also possible to avoid scaling and to directly work on complex data, using the formalism of “pattern
structures” [Ganter and Kuznetsov 2001; Kaytoue et al. 2011]. Pattern structures are a generalisation
of FCA in which 2M is replaced by elements of a meet-semilattice ⟨D,⊓⟩ [Ganter and Kuznetsov 2001;
Kuznetsov 2009]. The formal context is now ⟨G,D,δ ⟩ with δ ∶G↦D a mapping.

In this case, the two operators ⋅↑ and ⋅↓ define a Galois connection between ⟨2G,⊆⟩ and ⟨D,⊑⟩ with
A ⊆G and d ∈D:

A↑ = ⊓g∈Aδ(g)
d↓ = {g ∈G ∣ d ⊑ δ(g)}

such that c ⊑ d ≡ c⊓d = c.
This requires to define: (a) how to order its elements ⊑ and (b) how to test that an object satisfies an

attribute expression gId for d ∈D. This can be rewritten as for scaling:

⟨D,⊑⟩ ⊧ gId iff d ⊑ δ(g)

Pattern structures [Ganter and Kuznetsov 2001; Kuznetsov 2009] provide a more structured attribute
language without scaling. However, its use is not directly related to the problem of context dependencies
considered here as the attributes do not refer to concepts.

Relational extensions

On the contrary, other approaches [Kötters 2013; Ferré and Cellier 2020] aim at extracting conceptual
structures from n-ary relations without resorting to scaling. Their concepts have intents that can be
thought of as conjunctive queries and extents as tuples of objects, i.e. answers to these queries. Hence,
instead of being classes, i.e. monadic predicates, concepts correspond to general polyadic predicates.
For that purpose, they rely on more expressive input, e.g. in Graph-FCA [Ferré and Cellier 2020] the
incidence relation is a hypergraph between objects, and produce a more expressive representation. A
comparison of RCA and Graph-FCA is provided in [Keip et al. 2020]. Graph-FCA adopts a different
approach than RCA but should, in principle, suffer from the same problem as the one illustrated here.
However, intents would need to refer to concepts so created, i.e. named subqueries. This remains to be
studied.

2.3 A very short introduction to RCA

Here, we briefly introduce the principles of relational concept analysis, which will be used to extract
link key candidates.

Relational Concept Analysis (RCA) [Rouane-Hacene et al. 2013a] extends FCA to the processing
of relational datasets and allows inter-object relations to be materialised and incorporated into formal
concept intents. RCA is a way to induce a description logic TBox from a simple ABox [Baader et al.
2003], using specific scaling operations. It may also be though of as a general way to deal with circular
references using different scaling operations.

11

2.3.1 Operations

RCA applies to a relational context2 ⟨K0,R⟩, composed of a family of formal contexts K0 ={⟨Gx,M0
x ,I

0
x ⟩}x∈X

and a set of binary relations R = {ry}y∈Y . A relation ry ⊆ Gx×Gz connects two object sets, a domain Gx

(dom(ry) =Gx, x ∈ X) and a range Gz (ran(ry) =Gz, z ∈ X).
RCA applies relational scaling operations from a set Ω to each Ki

x ∈ Ki and all relations ry ⊆ Gx×Gz

from the set of concepts in corresponding Lz = FCA(Ki
z).

For performing its operations, RCA thus relies on FCA and σς . More precisely it uses FCA∗ and
σ
∗

Ω
defined as:

FCA∗({⟨Gx,Mx,Ix⟩}x∈X) = {FCA(⟨Gx,Mx,Ix⟩)}x∈X

σ
∗

Ω({⟨Gx,Mx,Ix⟩}x∈X ,R,{Lx}x∈X) =
⎧⎪⎪⎨⎪⎪⎩

ς∈Ω

⊕
ry∈R ∣ r⊆Gx×Gz

σς(⟨Gx,Mx,Ix⟩,ry,Lz)
⎫⎪⎪⎬⎪⎪⎭x∈X

such that ⊕ς∈Ω

ry∈R ∣ r⊆Gx×Gz
scales, with all operations in Ω, the given context with all the relations starting

from x (to any z).

2.3.2 Algorithm

RCA starts from the initial formal context family K0 and thus iterates the application of the two opera-
tions:

Ki+1 = σ
∗

Ω(Ki,R,FCA∗(Ki))

until reaching closure, i.e. reaching n such that Kn+1 =Kn. Then, RCAΩ(K0,R) = FCA∗(Kn).
Thus, the RCA algorithm proceeds in the following way:

1. Initial formal contexts: {⟨Gx,M0
x ,I

0
x ⟩}x∈X ← {⟨Gx,Mx,Ix⟩}x∈X .

2. {Lt
x}x∈X ← FCA∗({⟨Gx,Mt

x,I
t
x⟩}x∈X) (or, for each formal context, ⟨Gx,Mt

x,I
t
x⟩ the corresponding con-

cept lattice Lt
x = FCA(⟨Gx,Mt

x,I
t
x⟩) is created using FCA).

3. {⟨Gx,Mt+1
x ,It+1

x ⟩}x∈X ← σ
∗

Ω
({⟨Gx,Mt

x,I
t
x⟩}x∈X ,R,{Lt

x}x∈X) (i.e. relational scaling is applied, for each
relation ry whose codomain lattice has new concepts, generating new contexts ⟨Gx,Mt+1

x ,It+1
x ⟩ in-

cluding both plain and relational attributes in Mt+1
x).

4. If ∃x ∈ X ;Mt+1
x ≠Mt

x (scaling has occurred), go to Step 2.
5. Return: {Lt

x}x∈X .
By abuse of notation, we note ⟨G,M,I⟩ ⊆ ⟨G,M′,I′⟩ whenever M ⊆ M′ and I = I′∩ (G×M). In this

case, because I is the incidence relation between the same G and M ⊆ M′, the relation only depends on
M and M′. This is generalised to formal context families {⟨Gx,Mx,Ix⟩}x∈X ⊆ {⟨Gx,M′

x,I
′

x⟩}x∈X whenever
∀x ∈ X , Mx ⊆M′

x.

2.3.3 Properties and semantics

The RCA process always reaches a closed formal context family for reason of finiteness [Rouane-Hacene
et al. 2013a] and the sequence (Ki)n

i=0 is non-(intent-)contracting, i.e. ∀i ≥ 0,Ki ⊆Ki+1 [Rouane-Hacene
et al. 2013b].

The RCA semantics characterises the set of concepts in resulting RCA lattices as all and only those
grounded on initial contexts (K0

x) based on relations (R) [Rouane-Hacene et al. 2013b]. It thus can be
considered as a well-grounded semantics: an attribute is scaled and applied to an object at iteration i+1
only if its condition applies at stage i. Hence, everything is ultmately relying on iteration K0.

2We use the term ‘relational context’ instead of ‘relational context family’.

12

RCA0

HRCA0

RCA1

HRCA1=FCA

RCA2

HRCA2

RCA

HRCA

RCA0 RCA1 RCA2 RCA

Figure 2.1: Relation between different restrictions of RCA (arrows mean: “can be rewritten into”). Bold
labels denote the restriction with the same name interpreted with the semantics that will be developed
here.

[Rouane-Hacene et al. 2013b] established that RCA indeed finds the Kn satisfying these constraints
through correctness (the concepts of FCA∗(Kn) are grounded in K0 through R) and completess (all
so-grounded concepts are in Kn).

2.4 RCA0

In order to explain some specific phenomena in a clearer way, we will restrict some explanations to
RCA0, a special case of RCA. It is restricted in two ways:
– It contains only one formal context (∣X ∣ = 1),
– which has no attribute (M0

x =∅).
Additionally, we will consider in the examples below only one single scaling operator: qualified exis-
tential scaling (Ω = {∃}).

In fact, it is possible to define several restrictions of RCA. They are noted RCA and FCA as usual,
and HRCA for Hierarchical RCA when the dependency graph, whose edges are relations and vertices
are contexts, is acyclic. In addition, an exponent indicates the maximum number of contexts authorised:
– FCA0=HRCA0: FCA with empty contexts is clearly not interesting
– FCA=HRCA1: standard formal concept analysis
– HRCA: RCA with only hierarchical relations.
– RCA0: RCA with one empty formal context
– RCA1: RCA with one formal context
– RCAn: RCA with n formal contexts
– RCA=∃n;RCA = RCAn

These are organised in Figure 2.1.
Because RCA0 is a restriction of RCA, we will use the same notation as defined above, thought it

operates on simpler structures.
In RCA0, the process is simplified because Ω = {∃} and there is only one formal context to deal

with. It is thus:

L0 = FCA(K0)
Li+1 = FCA(σ

∗

{∃}
(K0,R,Li))

Although RCA0 seems very simple3, FCA can be encoded into RCA0. Indeed, given a formal
context ⟨G,M,I⟩, for each attribute m ∈ M in the formal context, a relation Rm ⊆ G×G can be created
such that ∀g ∈ G,⟨g,g⟩ ∈ Rm if and only if gIm. Starting with K0 = ⟨G,∅,∅⟩, it can be checked that

3An anonymous ICFCA reviewer complements the remarks of §2.2.6 noting that RCA0 is also very related to Graph-FCA
as they both have only one context and using existential scaling.

13

σ
∗

∃
(K0,R,FCA∗(K0)) will simply add to K0 one attribute ∃rm.⊺ per m ∈M which will exactly correspond

to m.
It is also possible to encode RCA0 into FCA using the following trick: Given an RCA0 relational

context ⟨{⟨G,∅,∅⟩},{Rp ⊆G×G}p∈P⟩, it can be encoded in a single FCA:
– G remains the same;
– M = {po∣p ∈ P∧o ∈G};
– o′I po iff ⟨o′,o⟩ ∈ Rp.

It is clear that all the information from the relational context has been preserved and FCA should be able
to return an result analogous to RCA0

{∃}
.

Introducing RCA0 is sufficient to hint at the problems and solutions that we want to illustrate.

Conclusion

We introduced the necessary material to deal with cyclic dependencies in link key extraction using FCA
extensions. We will now consider how this can be achieved (Chapter 3) and what issues this raises
(Chapter 4).

14

3. Dealing with cyclic dependent link keys through relational concept analysis

In Deliverable 1.1, we provided algorithms able to extract hierarchically dependent link keys [Euzenat et
al. 2019]. However, classes are not always hierarchically organised. Object properties may loop through
the set of classes. Even if this does not affect resulting link key candidates, this cannot be ruled out.

We show how to extend the definitions of Deliverable 1.1 to account for cyclic dependencies and
extracting dependent link keys.

3.1 RCA encoding of the extraction of dependent link key candidate

To solve this problem we used RCA [Rouane-Hacene et al. 2013a]. Accordingly, the problem is mod-
elled, as in RCA, through the set of formal contexts corresponding to pairs of classes and a set of rela-
tional contexts corresponding to pairs of object properties. We thus diverge from the definition of formal
contexts for independent link key candidates, provided in Definition 11 of Deliverable 1.1, by initially
recording only datatype properties within the formal contexts (as in Definition 9 of Deliverable 1.1) and
using relational contexts for object properties.

Definition 1 (Relational contexts for dependent link key candidates). Given two datasets D of signature
⟨R,P,C⟩ and D′ of signature ⟨R′,P′,C′⟩ and an alignment A ⊆C×C′, given two pairs of classes ⟨c,c′⟩
and ⟨d,d′⟩ of A and a pair of object properties ⟨r,r′⟩ of R×R′, the relational context associated with r
and r′ in D and D′ is defined by ⟨cD×c′D

′

,dD×d′D
′

,I⟨r,r′⟩⟩ such that:

⟨x,x′⟩ I⟨r,r′⟩ ⟨y,y′⟩ iff y ∈ rD(x) and y′ ∈ r′D
′(x′)

The main difference with RCA is that RCA is designed for extracting conceptual descriptions of
classes, though we aim at extracting link key candidates. The former describes classes, the latter de-
scribes how to identify instances. Another difference is that coherent families of link key candidates
have no analogous notion in RCA as all class descriptions may coexist: no compatibility is requested.
However, at the technical level of concept discovery, the process is the same. In particular, the rela-
tional contexts are exactly the same. They are simply extended to pairs of properties and thus pairs of
instances.

Scaling operators for generating link key conditions were defined in [Atencia et al. 2020] as follows.

Definition 2 (Link key condition scaling operators). Given two datasets D of signature ⟨R,P,C⟩ and D′

of signature ⟨R′,P′,C′⟩, and a relational context ⟨cD×c′D
′

,dD×d′D
′

,I⟨r,r′⟩⟩ for a pair of object properties
⟨r,r′⟩ ∈ R×R′,
– the universal scaling operator f∀r,r′ ∶ (cD × c′D

′)×Kr,r′ → B is defined by f∀r,r′(⟨o,o′⟩,k) iff rD(o) =k

r′D
′(o′),

– the existential scaling operator f ∃r,r′ ∶ (cD × c′D
′)×Kr,r′ → B is defined by f ∃r,r′(⟨o,o′⟩,k) iff rD(o)∩k

r′D
′(o′) ≠∅.

We can now redefine them in the framework of Section 2.2.1.

Definition 3 (Link key condition scaling operators). Given two datasets D of signature ⟨R,P,C⟩ and
D′ of signature ⟨R′,P′,C′⟩ and LC×C′ a structure associating a concept lattice with each pair of classes
in C×C′, let ⟨r,r′⟩ ∈ R×R′ be a pair of relations, ⟨o,o′⟩ ∈ dom(r)×dom(r′) a pair of objects and k a
concept of the lattice associated to ran(r)× ran(r′) by LC×C′ ,

⟨R×R′,LC×C′⟩ ⊧ ⟨o,o′⟩I∀⟨r,r′⟩k iff rD(o) =k r′D
′(o′)

⟨R×R′,LC×C′⟩ ⊧ ⟨o,o′⟩I∃⟨r,r′⟩k iff rD(o)∩k r′D
′(o′) ≠∅

15

o1:Person

o1:z1

o1:z2

o1:z3

o1:House

o1:h1

o1:h2

o1:h3

o2:Inhabitant

o2:i1

o2:i2

o2:i3

o2:Place

o2:a1

o2:a2

o2:a3

Dupont

Thomas

Dubois

Lisa

Grenoble

Paris

o1:lastname

o1:lastname

o1:las
tname

o2:giv
en

o2:given

o2:given

o2:name

o2:name

o2:name

o1:homeo1:owner o2:ownedByo2:address

o1:city

o1:city

o1:ci
ty

o2:city

o2:city

o2:city

Figure 3.1: Datasets illustrating mutual dependencies between classes.

The universal and existential scaling operators scale the formal contexts of Definition 9 of Deliver-
able 1.1 upon the ∀-conditions and ∃-conditions on the object property pairs of the relational contexts
in Definition 1.

Hence, a relational context [Rouane-Hacene et al. 2013a] can be associated to two datasets and an
alignment:

Definition 4 (Relational context for dependent link key candidates). Given two datasets D of signature
⟨R,P,C⟩ and D′ of signature ⟨R′,P′,C′⟩, and an alignment A⊆C×C′, the relational context for dependent
link key candidate extraction between D and D′ through A is composed of:
– all the formal contexts corresponding to pairs of classes in A,
– all the relational contexts corresponding to object property pairs in R×R′ relating pairs of classes

from A.

The solution to the problem is a collection of concept lattices, one per pair of aligned classes in A,
from which the coherent families of link key candidates may be extracted exactly like in Section 6 of
Deliverable 1.1. The algorithm is that of relational concept analysis, using the link key condition scaling
operators (Definition 2 or 2):
1. Start with the formal contexts corresponding to aligned classes.
2. Apply formal concept analysis to all contexts.
3. Apply the scaling operators on the relational contexts to add columns in the formal contexts depend-

ing on the already extracted keys.
4. If scaling has occurred, go to Step 2.
5. Extract the coherent families by picking one link key candidate per pair of classes in A, as long as

they are compatible.
The link set associated with a coherent family of link keys is the set of links in the extent of these link
keys.

Example 1 illustrates the extraction of cyclic link key candidates.

Example 1 (Cyclic link key candidate extraction). Figure 3.1 provides an example of two datasets con-
taining circular dependencies. In the first, left-hand side, dataset, classes Person and House mutually
depend on each other through relations home and owner. Respectively, in the second, right-hand side,

16

∃⟨
la

st
na

m
e,

gi
ve

n⟩
∃⟨

la
st

na
m

e,
na

m
e⟩

∀⟨
la

st
na

m
e,

gi
ve

n⟩
∀⟨

la
st

na
m

e,
na

m
e⟩

⟨z1, i1⟩ × ×
⟨z1, i2⟩
⟨z1, i3⟩
⟨z2, i1⟩
⟨z2, i2⟩ × ×
⟨z2, i3⟩ × ×
⟨z3, i1⟩
⟨z3, i2⟩ × ×
⟨z3, i3⟩ × ×

∃⟨
ci

ty
,c

it
y⟩

∀⟨
ci

ty
,c

it
y⟩

⟨h1,a1⟩ × ×
⟨h1,a2⟩
⟨h1,a3⟩
⟨h2,a1⟩
⟨h2,a2⟩ × ×
⟨h2,a3⟩ × ×
⟨h3,a1⟩
⟨h3,a2⟩ × ×
⟨h3,a3⟩ × ×

Figure 3.2: Formal contexts for the pairs of classes ⟨Person,Inhabitant⟩ and ⟨House,Place⟩ in
Figure 3.1.

R
ow

ne
r,o

w
ne

dB
y

⟨z 3
,i

1⟩
⟨z 3

,i
2⟩

⟨z 3
,i

3⟩
⟨z 2

,i
1⟩

⟨z 2
,i

2⟩
⟨z 2

,i
3⟩

⟨z 1
,i

1⟩
⟨z 1

,i
2⟩

⟨z 1
,i

3⟩

⟨h1,a1⟩ ×
⟨h1,a2⟩ ×
⟨h1,a3⟩ ×
⟨h2,a1⟩ ×
⟨h2,a2⟩ ×
⟨h2,a3⟩ ×
⟨h3,a1⟩ ×
⟨h3,a2⟩ ×
⟨h3,a3⟩ ×

R
ho

m
e,

ad
dr

es
s

⟨h
3,

a 2
⟩

⟨h
3,

a 3
⟩

⟨h
3,

a 1
⟩

⟨h
2,

a 2
⟩

⟨h
2,

a 3
⟩

⟨h
2,

a 1
⟩

⟨h
1,

a 2
⟩

⟨h
1,

a 3
⟩

⟨h
1,

a 1
⟩

⟨z1, i1⟩ ×
⟨z1, i2⟩ ×
⟨z1, i3⟩ ×
⟨z2, i1⟩ ×
⟨z2, i2⟩ ×
⟨z2, i3⟩ ×
⟨z3, i1⟩ ×
⟨z3, i2⟩ ×
⟨z3, i3⟩ ×

Figure 3.3: Relational contexts for pairs of relations ⟨owner,ownedBy⟩ and ⟨home,address⟩ in Fig-
ure 3.1.

dataset, classes Inhabitant and Place also mutually depend on each other through relations address
and ownedBy. The relational context is made of formal contexts presented in Figure 3.2 and relations
given in Figure 3.3. It is iteratively scaled using the scaling operators of Definition 3. It converges
to a fixed point after six iterations. The final lattices are given in Figure 3.4. We obtain two pairs of
compatible concepts, namely C1−C2 and C4−C6. The coherent family of link key candidates C4−C6
generates all and only relevant links.

3.2 Implementation and complexity considerations

The prototype described in Deliverable 1.11 is able to deal with relational concept analysis.
The RCA processing has been implemented by iteratively applying the scaling operators to the

formal contexts.
1The implementation is available from https://moex.inria.fr/software/linkky/.

17

https://moex.inria.fr/software/linkky/

∀∃⟨lastname,given⟩

∀∃⟨home,address⟩C8

⟨z1, i3⟩, ⟨z3, i1⟩

∀∃⟨home,address⟩C4

⟨z2, i2⟩,
⟨z1, i1⟩, ⟨z3, i3⟩

∀∃⟨home,address⟩C0,
∀∃⟨lastname,name⟩

⟨z3, i2⟩, ⟨z2, i3⟩

∀∃⟨home,address⟩C1

∀∃⟨home,address⟩C5

⟨z1, i2⟩, ⟨z2, i1⟩

C2

C3

C6

C7C9

∀∃⟨owner,ownedBy⟩C6

⟨h2,a2⟩,
⟨h3,a3⟩, ⟨h1,a1⟩

∀∃⟨owner,ownedBy⟩C9,
∀∃⟨city,city⟩

⟨h3,a2⟩, ⟨h2,a3⟩

∀∃⟨owner,ownedBy⟩C7

⟨h3,a1⟩, ⟨h1,a3⟩

∀∃⟨owner,ownedBy⟩C2

∀∃⟨owner,ownedBy⟩C3

⟨h2,a1⟩, ⟨h1,a2⟩

C0

C1

C4

C5C8

Figure 3.4: Concept lattices obtained from the relational context of Figures 3.2 and 3.3 after six itera-
tions.

The example has been computed by the developed system. The relational contexts and concept
lattices have been directly generated by this implementation (we only changed node colours and patterns
for legibility).

The remarks on complexity and scalability apply to this work as well. It is very likely that the
worst-case complexity of our algorithms is that of RCA.

Using RCA, the number of relational attributes may be higher than 4n2
P since it depends on the

number of concepts in the range lattices. It remains however bounded by 2n2
I . Hence, the worst-case

complexity should still be exponential in O(n4
I 2n2

I) (nI is the number of individuals in one dataset and
nP is the number of properties and relations).

Conclusion

The use of relational concept analysis provides a satisfactory answer to the extraction of circularly
dependent link keys. However, the link key lattices are relatively reduced and it seems that more risks
could be taken (and evaluated later by measures). This led us to reconsider the semantics of RCA in
order to offer more link key candidates.

18

4. Problems with circular dependencies

Problems may occur when using RCA on data sets more dependent on relations than attributes. These are
illustrated here based on RCA0. Moreover, all examples are provided with one single scaling operator
(which may differ from example to example).

The essence of the considered examples is as follows: Consider a population of individuals about
which nothing is known except that some are married to others, and some have others as child. Can we
classify them as parents, as spouses, as married parents? We can, but apparently RCA cannot unless it
knows about their favorite pizza topping.

4.1 Base example

Consider a single class: Person with attribute spouse (sp)

A = {⊺(a),⊺(b),sp(a,b),sp(b,a)}

Can be encoded as an empty formal context for ⊺ and the relational self-context:

Rsp a b
a ×
b ×

The empty context will generate the single lattice:

a,b

⊺

The application of the scaling operation provides the attribute ∀∃ sp.⊺ which generates a new con-
text:

∀∃ sp.⊺
a ×
b ×

Leading to the final lattice:

∀∃ sp.⊺

a,b

⊺

However, the following lattice would not be less good:

∀∃sp.⊺

∀∃sp.A

b

∀∃sp.B

a

⊺

AB

�

19

This corresponds to two different knowledge bases:

T1 = {A ⊑∀∃ sp.B,B ⊑∀∃ sp.A}
A1 = {A(a),B(b),sp(a,b),sp(b,a)}

and

T2 = {⊺ ⊑∀∃ sp.⊺}
A2 = {⊺(a),⊺(b),sp(a,b),sp(b,a)}

The former one, may not be the most stupid one, especially if one considers that A is Woman and B
is Man for instance (yes, a very conservative interpretation).

Hence the question: if the goal of RCA is to extract class descriptions, why does it only generate
the second one? The answer may be semantic or technical. We assume that semantically, it extracts
least fixed-point. Technically, it uses an intent-agglomerative/extent-divisive algorithm which will ag-
glomerate concept description and, thus, separate their instances. Since it starts with a set containing all
objects, if there is no reason to separate two objects, they will remain in the same extent.

4.2 Running example

Consider the following ABox:
A = {⊺(a),⊺(b),⊺(c),⊺(d), p(a,b), p(b,a), p(c,d), p(d,c), p(a,a), p(b,b)}
This can be encoded as an empty formal context and the relation of Figure 4.1 (left). The empty

context will generate the single lattice of Figure 4.1 (right) (names are assigned to concepts according
to their extent).

Scaling with ∃ and p provides the attribute ∃p.ABCD which generates the new context of Figure 4.2
(left), leading to the lattice of Figure 4.2 (right) which is the one returned by RCA.

However, the concept lattices of Figure 4.3 are other valid lattices worth considering.
They correspond to different knowledge bases:

T1 = {ABCD ⊑ ∃p.ABCD}
A1 = {ABCD(a),ABCD(b),ABCD(c),ABCD(d),

p(a,b), p(b,a), p(c,d), p(d,c), p(a,a), p(b,b)}

and

T2 = {AB ⊑ ⊺⊓∃p.AB,CD ⊑ ⊺⊓∃p.CD,ABCD ⊑ ∃p.ABCD}
A2 = {AB(a),AB(b),CD(c),CD(d), p(a,b), p(b,a), p(c,d), p(d,c), p(a,a), p(b,b)}

p a b c d
a × ×
b × ×
c ×
d ×

a,b,c,d ABCDL0:

Figure 4.1: Relation (left) and initial concept lattice (right).

20

∃p.ABCD
a ×
c ×
b ×
d ×

∃p.ABCD

a,b,c,d
ABCDL1:

Figure 4.2: Scaled context (left) and final concept lattice L1 (right).

∃p.ABCD

∃p.AB

a,b

∃p.CD

c,d

ABCD

AB CD

�

L2:

∃p.ABCD

∃p.ABD ∃p.ABC ∃p.CD

∃p.AB

a,b

∃p.D

c

∃p.C

d

ABCD

ABC ABD

AB

CD

C D

�L3:

Figure 4.3: Alternative concept lattices (L2 and L3).

∃p.ABCD

∃p.ABD ∃p.ABC

∃p.AB

a,b

∃p.D

c

∃p.C

d

ABCD

ABC ABD

AB

C D

�L4:

Figure 4.4: Another alternative concept lattices (L4).

21

and

T3 = {AB ⊑ ABC⊓ABD⊓∃p.AB,C ⊑ ABC⊓CD⊓∃p.D,D ⊑ ABD⊓CD⊓∃p.C,

ABC ⊑ ABCD⊓∃p.ABD,ABD ⊑ ABCD⊓∃p.ABC,CD ⊑ ABCD⊓∃p.CD,

ABCD ⊑ ∃p.ABCD}
A3 = {AB(a),AB(b),C(c),D(d), p(a,b), p(b,a), p(c,d), p(d,c), p(a,a), p(b,b)}

In addition to extracting the TBox, these extend the ABox. However, in RCA and FCA, objects are also
assigned to the created concepts. In this case, this assignment has consequences on the scaled attributes
taken into account and hence the resulting lattice.

As in classical RCA, each concept of these lattices is closed with respect to the specific formal
context scaled by ∃ and p from the concepts of the lattice. Moreover, the lattices are self-supported in
the sense that their attributes refer only to the concepts of the lattice.

4.3 Interleaved references

Here is an example showing the effect of longer dependencies (it is written with ∀∃ but would work
with ∃). Consider a single class ⊺ with attributes p. The ABox is provided as:

ABox = {⊺(a),⊺(b),⊺(c), p(a,b), p(b,c), p(c,a)}

Which will be encoded in the empty formal context for ⊺ and the relational self-context:

Rp a b c
a ×
b ×
c ×

The empty context will generate the single lattice:

a, b, c

ABC

The application of the scaling operation provides the attribute ∀∃ p.⊺which generates a new context:

∀∃ p.ABC
a ×
b ×
c ×

Leading to the final lattice:

∀∃ p.ABC

a, b, c

ABC

Here, all the concepts of the powerset lattice are closed.

22

∀∃p.ABC

∀∃p.AB∀∃p.CA ∀∃p.CB

∀∃p.A

c

∀∃p.B

a

∀∃p.C

b

ABC

ACBC

AB

A

C

B

�

4.4 Link key extraction example

Consider a single pair-of-classes ⊺⊺′ with attributes p and p′ (let say spouse and conjoint). Our ABox
is provided as:

A = {⊺(a),⊺(b), p(a,b), p(b,a),⊺′(a′),⊺′(b′), p′(a′,b′), p′(b′,a′)}

Which will be encoded in the empty formal context for ⟨⊺,⊺′⟩ and the relational self-context:

R⟨p,p′⟩ ⟨a,a′⟩ ⟨a,b′⟩ ⟨b,a′⟩ ⟨b,b′⟩
⟨a,a′⟩ ×
⟨a,b′⟩ ×
⟨b,a′⟩ ×
⟨b,b′⟩ ×

The empty context will generate the single lattice:

⟨a,a′⟩, ⟨a,b′⟩,
⟨b,a′⟩, ⟨b,b′⟩

⊺⊺
′

The application of the scaling operation provides the attribute ∀∃ ⟨p, p′⟩ which generates a new
context:

∀∃ ⟨p, p′⟩.⊺⊺′
⟨a,a′⟩ ×
⟨a,b′⟩ ×
⟨b,a′⟩ ×
⟨b,b′⟩ ×

Leading to the final lattice:

∀∃ ⟨p, p′⟩.⊺⊺′

⟨a,a′⟩, ⟨a,b′⟩,
⟨b,a′⟩, ⟨b,b′⟩

⊺⊺
′

23

concept discriminability F-measure coverage
ABCD .5 .66 1

AB 1 1 1
CD 1 1 1

B 1 .66 .5
A 1 .66 .5
D 1 .66 .5
C 1 .66 .5
� 1 0 0

Table 4.1: Discriminability, F-measure and coverage of all concepts of the lattice of Section 4.4.

From the coverage standpoint this is quite nice because we obtain links for every objects. However,
this is quite bad from the discriminability standpoint: all objects are equal!

Here again, the link keys identified in the following graph may be more interesting:

∀∃⟨p, p′⟩.ABCD

∀∃⟨p, p′⟩.AB ∀∃⟨p, p′⟩.CD

∀∃⟨p, p′⟩.A

⟨b,b′⟩

∀∃⟨p, p′⟩.B

⟨a,a′⟩

∀∃⟨p, p′⟩.C

⟨b,a′⟩

∀∃⟨p, p′⟩.D

⟨a,b′⟩

ABCD

AB CD

AB D C

�

Table 4.1 shows the discriminability and coverage measures [Atencia et al. 2014] of all concepts of
this lattice. It shows that ABCD, the only concept returned by RCA, is not necessarily the best link key
(f-measure=.66), and that concepts AB and CD have a perfect discriminability and coverage.

The reader can observe that the example provided for concept extraction equally applies for link key
extraction. It is sufficient to find which pairs of data sets this encodes.

Conclusion

As shown in Chapter 3, it is possible to extract link keys. However, the examples above show that not
all link key candidates are found. This is a problem because the algorithm is supposed to judge on them
all which one is the best (Deliverable 1.3, [Atencia et al. 2014]).

We have restricted ourselves to simple examples, however it should even be possible to find examples
in which RCA may be used to extract both description logic classes and link keys. In such a case, link
key candidates may depend on induced classes and induced classes may depend on link key candidates.

The problem applies to RCA as a whole as RCA0 is included in RCA. Hence the question: Why does
RCA returns only one lattice, and which one? Answering it requires to reconsider the RCA semantics.

Hence, we will try to address the following questions:
– Which of those solution are extracted by RCA algorithms? (Chapter 5)
– Is it possible to obtain them all? (Chapter 6)

For this, it is necessary to dig deeper in RCA semantics.

24

5. A fixed-point semantics for RCA0

In order to investigate the semantics of relational concept analysis, we adopt a functional standpoint in
which RCA is defined as a function in a precisely defined space. In Sections 5.1 and 5.2 we provide
two alternative, and equivalent, characterisations of that space, which provide the semantics for RCA0.
In Section 5.3.1, we relate the well-grounded RCA semantics to these two semantics by showing that
RCA computes the least fixed point of these functions. We then discuss a further extension of that
semantics intended to better characterise the interesting fixed points that could be considered by an
extension of RCA. This is achieved through the notion of self-supported lattices (Section 5.4) which
is characterised as the fixed points of another function that can be seen as complementary to that used
by RCA. Finally, we discuss the precise characterisation of the space of interesting solutions, fixed
points of these complementary functions, by considering the composition of the corresponding closures
(Section 5.5).

Warning: a nest of fixed points FCA is a domain of fixed points, hence it is easy to get lost among
the various fixed points involved:
– In description logics, on which RCA relies, the semantics of concepts is given by (least) fixed points

when circularities occur [Nebel 1990];
– FCA’s goal is to compute fixed points: concepts are the result of a closure operator which is also a

fixed point [Belohlávek 2008];
– finally, when confronted to cycles, the RCA concept lattice is the fixed point of the function that

grows a lattice family from the previous one.
The present work is concerned with the fixed points of the latter function.

5.1 Semantics and properties: the context approach

We first adopt the standpoint of the formal contexts. We define precisely the space of contexts in which
RCA is computed and the functions underlying RCA in that space.

5.1.1 The lattice K of RCA0 contexts

The contexts considered by RCA are formal context families scaled from the initial context using the
scaling operations. They are determined by three elements given once and for all: K0 = {⟨Gx,M0

x ,I
0
x ⟩}x∈X ,

R = {ry}y∈Y , and Ω. This is even more specific for RCA0 with K0 = ⟨G,∅,∅⟩ and Ω = {∃}, but for most
of this section we will ignore it.

Through these operations, only Mi
x and Ii

x change, the latter depending directly from the former
(Property 1).

Property 1 (The incidence matrix depends only on the relations). For a relational scaling operation ς

and a relation r ⊆Gx×Gz, an attribute m ∈Dς ,r,N(Gz) determines the incidence on objects of Gx.

Proof. m is scaled from a scaling operator ς , a relation r and a concept C (eventually a cardinal n). From
Table 2.3, it only depends on ς , r and the extent of C. However, ς and r are the same in all situations,
they are not interpreted contextually. The concept C is identified by a name which denotes its extent.
Hence, its extent is not depending on the context either. So wether an object of Gx satisfies this attribute
or not depends solely on the attribute.

The attribute language DΩ,R,N(G) is fully determined by the non-changing parts Gx, R and Ω. More
precisely, a finite set of relations R and scaling operations Ω determines the finite set DΩ,R,N(G) =
⋃ς∈Ω

r∈R Dς ,r,N(G) of possible scaled attributes in RCA0.

25

Hence, the formal contexts considered by RCA are those obtained by adding subsets of DΩ,R,N(G):

K
⟨G,M0,I0⟩,R,Ω = {K⟨R,N(G)⟩

+M (⟨G,M0,I0⟩) ∣ M ⊆DΩ,R,N(G)}

with K⟨R,N(G)⟩
+M (.) the operation defined in §2.2.1.

Given K,K′ ∈K
⟨G,M0,I0⟩,R,Ω such that K = ⟨G,M0∪M,I0∪I⟩ and K′ = ⟨G,M0∪M′,I0∪I′⟩, K∨K′ and

K∧K′ are defined as:

K∨K′ = ⟨G,M0∪(M∪M′),I0∪(I∪ I′)⟩(join)

K∧K′ = ⟨G,M0∪(M∩M′),I0∪(I∩ I′)⟩(meet)

KK0,R,Ω is thus closed by meet and join.

Property 2. ⟨KK0,R,Ω,∨,∧⟩ is a complete lattice.

Proof. ∨ and ∧ satisfy commutativity, associativity and the absorption laws directly from the union and
intersection on sets, so this is a lattice. It is complete because finite.

Property 3. ∀K,K′ ∈KK0,R,Ω,K ⊆K′ iff K =K∧K′

Proof. This property also comes directly from its set theoretic counterpart application to M and M′:
K ⊆K′⇔M ⊆M′⇔M =M∩M′⇔K =K∧K′

5.1.2 The context expansion function F

We reformulate RCA as based on a main single function, FK0,R,Ω, the context expansion function1 at-
tached to a relational context ⟨K0,R⟩ and a set Ω of scaling operations.

Definition 5 (Context expansion function). Given a relational context ⟨K0,R⟩ and a set of relational
scaling operations Ω, the function FK0,R,Ω ∶KK0,R,Ω↦KK0,R,Ω is defined by:

FK0,R,Ω(K) = σ
∗

Ω(K,R,FCA∗(K)))

The function expression is independent from K0, K0 is used to restrict the domain of the function
so that its elements cover K0. From now on, we will abbreviate KK0,R,Ω as K and FK0,R,Ω as F . This
is legitimate because, for a given relational context, K0, R and Ω do not change. F is an extensive and
monotone internal operation for K:

Property 4. ∀K ∈K, F(K) ∈K
Proof. Scaling only adds attributes from DΩ,R,N(G).

Property 5 (F is extensive and monotone). The function F attached to a relational context and a set of
scaling operator satisfies:

K ⊆ F(K)(extensivity)

K ⊆K′⇒ F(K) ⊆ F(K′)(monotony)

Proof. extensivity holds because F eventually adds to each formal context in K new attributes scaled
from FCA∗(K). The set of attributes can thus not be smaller. monotony holds because K ⊆ K′ means
that M ⊆ M′. This entails that the set of concepts of FCA∗(K) is included in that of FCA∗(K′), hence
the set of attributes A scaled from K is included in the set A′ scaled from K′. Since, they are added to M
and M′, then M∪A ⊆M′∪A′, hence F(K) ⊆ F(K′).

Extensivity corresponds to the non-contracting property of the well-grounded semantics [Rouane-
Hacene et al. 2013b] and monotony is also called order-preservation.

1Named “complete relational extension” in [Rouane-Hacene et al. 2013b].

26

5.1.3 Fixed points of F

Given F , it is possible to define its sets of fixed points, i.e. the sets of formal contexts closed for F , as:

Definition 6 (fixed point). A formal context K ∈K is a fixed point for a context expansion function F, if
F(K) =K. We call fp(F) the set of fixed points for F.

We can define:
lfp(F) = ⋀

K∈fp(F)
K and gfp(F) = ⋁

K∈fp(F)
L

Since K is a complete lattice and F is order-preserving (or monotone) on K, then the Knaster-Tarski
theorem applies:

Theorem 6 (Knaster-Tarski theorem [Tarski 1955]). Let K be a complete lattice and let F ∶K↦K be
an order-preserving function. Then the set of fixed points of F in K is also a complete lattice.

This theorem applies to any complete lattice and order-preserving function. We used K and F
because this is to what it is applied here. It will be latter applied to

In particular, this warrants that there exists least and greatest fixed points of F in K (called lfp(F)
and gfp(F)).

5.2 Semantics and properties: the lattice approach

In this section, we approach RCA from the lattice standpoint and we show, unsurprisingly, that it is
remarkably parallel to the context approach.

5.2.1 The lattice L of RCA0 concept lattices

From KK0,R,Ω, one can define LK0,R,Ω as the finite set of images of KK0,R,Ω by FCA∗. These are concept
lattices obtained by applying FCA∗ on K0 extended with a subset of DΩ,R,N(G):

L
⟨G,M0,I0⟩,R,Ω = {FCA∗(⟨G,M0∪M,I0∪ I⟩) ∣ M ⊆DΩ,R,N(G)}

We define a specific type of homomorphisms between two concept lattices when concepts are simply
mapped into concepts with the same extent and possibly increased intent.

Definition 7 (Lattice homomorphism). A concept lattice homomorphism h ∶ ⟨C,≤⟩↦ ⟨C′,≤′⟩ is a function
which maps each concept c ∈C of into a corresponding concept h(c) such that:
– ∀c ∈C, intent(c) ⊆ intent(h(c)) (or intent(c) ⊒ intent(h(c)) if these are considered as description

logic concept descriptions),
– ∀c ∈C, extent(c) = extent(h(c)), and
– ∀c,d ∈C, c ≤ d⇒ h(c) ≤′ h(c).

We note L ⪯ L′ if there exists a homomorphism from L to L′. In principle, L ≃ L′ if L ⪯ L′ and L′ ⪯ L,
but here, ≃ is =.

The order between concept lattices is straigthforwardly extended to families of concept lattices such
that: {Lx}x∈X ⪯ {L′x}x∈X iff ∀x ∈ X , Lx ⪯ L′x.

There exists an implicit function κ ∶LK0,R,Ω↦KK0,R,Ω such that ∀L ∈LK0,R,Ω, L=FCA(κ(L)). Since
≃ is the same as = which identifies lattices containing concept having exactly the same intent and extent.
κ(L) can be induced by collecting the attributes present in L intents to build the unique M, from which
the corresponding I is obtained [Ganter and Wille 1999]. It is straightforwardly generalised as

κ
∗({Lx}x∈X) = {κ(Lx)}x∈X

27

Because K ⊆K′⇒FCA∗(K)⪯FCA∗(K′), we can define ∧ and ∨ onLK0,R,Ω. Given L,L′ ∈L
⟨G,M0,I0⟩,R,Ω,

such that L = FCA∗(K) and L′ = FCA∗(K′):

L∨L′ = FCA∗(K∨K′)(join)

L∧L′ = FCA∗(K∧K′)(meet)

It is clear that LK0,R,Ω is closed by meet and join.

Property 7. ⟨LK0,R,Ω,∨,∧⟩ is a complete lattice.

Proof. ∨ and ∧ satisfy commutativity, associativity and the absorption laws directly from the union and
intersection on (attribute) sets, so this is a lattice. It is complete because finite.

Property 8. ∀L,L′ ∈LK0,R,Ω,L ⪯ L′ iff L = L∧L′

Proof. First, for any m ∈ DΩ,R,N(G) belonging to both M and M′, the pairs of the incidence matrices I
and I′ for m are the same, because they are extracted from the same relations R (Property 1).
⇒ L ⪯ L′ means that ∀c ∈ L, ∃h(c) ∈ L′ such that extent(c) = extent(h(c)) and intent(c) ⊆ intent(h(c)).

This means that M =⋃c∈L intent(c)∖M0 and M′ =⋃c∈L′ intent(c)∖M0, hence M ⊆M′ (and I ⊆ I′ due
to Property 1). Hence, L = L∧L′ because the contexts on which they are built are the same.

⇐ L = L∧L′ means that M ⊆ M′ (and then I ⊆ I′ according to Property 1). Hence, ∀c ∈ L, the attributes
satisfied by extent(c) in L′ include those satisfied by extent(c) in L and others belonging to M′∖M.
Thus, extent(c) is the extent of a concept in L′ because it contains the only objects satisfying these
attributes (it is closed). Consequently, ∃h(c) ∈ L′ such that extent(c) = extent(h(c)) and intent(c) ⊆
intent(h(c)) as h(c) may satisfy additional attributes belonging to M′∖M, but it satisfies at least all
those of intent(c). So, L ⪯ L′.

5.2.2 The lattice expansion functions E

Instead of considering that RCA(K0) = FCA∗(F∞(K0)), it is possible to consider a function E ∶L↦L,
such that RCA(K0) =F∞(FCA∗(K0)). In principle, the definition of E amounts to first scaling and then
applying FCA, though F does the opposite (see Figure 5.1).

We define EK0,R,Ω, the lattice expansion function attached to a relational context ⟨K0,R⟩ and a set Ω

of scaling operators.

Definition 8 (Lattice expansion function). Given a relational context ⟨K0,R⟩ and a set of relational
scaling operations Ω the function EK0,R,Ω ∶LK0,R,Ω↦LK0,R,Ω is defined by:

EK0,R,Ω(L) = FCA∗(σ
∗

Ω(κ
∗(L),R,L))

Here again, K0 is only used to constrain the domain of the function, not its expression. From now
on, we will abbreviate LK0,R,Ω as L and EK0,R,Ω as E. In consequence, E is the function corresponding
to F in the sense that E = FCA○F ○κ

∗.
E is an extensive and monotone internal operation for K:

Property 9. ∀L ∈L, E(L) ∈L

Proof. κ
∗(L) ∈K. K = σ

∗

Ω
(κ

∗(L),R,L) adds attributes from DΩ,R,N(G) to κ
∗(L), hence K ∈K. Conse-

quently, E(L) = FCA∗(K) ∈L.

Property 10 (E is monotone and extensive). The function E attached to a relational context and a set
of scaling operator satisfies:

L ⪯ L′⇒ E(L) ⪯ E(L′)(monotony)

L ⪯ E(L)(extensivity)

28

K L= FCA∗(K)

K′ L′= FCA∗(K′)
F E

FCA∗

κ
∗

σ
∗

FCA∗

K L

Figure 5.1: Relations between F and E through the alternation of FCA∗ and σ
∗

Ω
.

Proof. monotony L ⪯ L′ entails that all concepts of L are found in L′ with a larger intent. Consequently,
DΩ,R,N(G)(L) ⊆ DΩ,R,N(G)(L′). This entails that σ

∗

Ω
(K,R,L′) extends K with more attributes than

σ
∗

Ω
(K,R,L). Hence E(L) ⪯ E(L′) because E(L), like L is the application of FCA∗ to the same

formal context, to which has been added attributes.
extensivity L =FCA∗(K) for K ∈K, thus K ⊆σ

∗

Ω
(K,R,L). E(L) =FCA∗(σ

∗

Ω
(K,R,L)) so it will have at

least all concepts generated by K (identified by extent) because E(L) is closed by ’meet’. Thus, for
each concept c ∈ L there exists h(c) ∈ E(L) (with extent(c) = extent(h(c)) eventually with a larger
intent, i.e. intent(c) ⊆ intent(h(c))), generated by the new scaled attrubutes. Hence, L ⪯ E(L).

Monotony is also called order-preservation. It corresponds to the non-(intent-)contracting concept
property of [Rouane-Hacene et al. 2013b].

5.2.3 Fixed points of E

Given E, it is possible to define its set of fixed points, i.e. the sets of concept lattices closed for E, as:

Definition 9 (fixed point). A concept lattice L ∈ L is a fixed point for a lattice expansion function E, if
E(L) ≃ L. We call fp(E) the set of fixed points for E.

We can define:
lfp(E) = ⋀

L∈fp(E)
L and gfp(E) = ⋁

L∈fp(E)
L

Since L is a complete lattice and E is order-preserving (or monotone) on L, then we can apply the
Knaster-Tarski theorem. This warrants that there exists least and greatest fixed points of E in L.

5.3 Well-grounded and least fixed-point semantics

RCA may be redefined as
RCAΩ(K0,R) = FCA∗(F∞(K0))

i.e. RCA iterates F from K0 until closure, and ultimately applies FCA∗. Alternatively, RCA may be
redefined as

RCAΩ(K0,R) = E∞(FCA∗(K0))

i.e. RCA iterates E from FCA∗(K0) until closure.
The definition of E first applies scaling and then FCA, though F does the opposite. In consequence,

E is the function corresponding to F in the sense that FCA∗ ○E = F ○FCA∗ (see Figure 5.1). It seems
thus that RCA returns a fixed point of E. Hence the question: which fixed point is returned by RCA’s
well-grounded semantics?

29

5.3.1 The RCA well-grounded semantics is the least fixed-point semantics

Since K0 belongs to K and FCA(K0) belongs to L, then RCA is indeed based on E and F fixed points.
These are the least fixed points.

Proposition 11 (The RCA algorithm computes the least fixed point). Given F the context expansion
function and E the lattice expansion function associated to K0, R and Ω,

RCAΩ(K0,R) = FCA∗(lfp(FK0,R,Ω))

and

RCAΩ(K0,R) = lfp(EK0,R,Ω)

Proof. Concerning the first equation, RCAΩ(K0,R) =FCA∗(Fn(K0)) for some n at which F(Fn(K0)) =
Fn(K0) [Rouane-Hacene et al. 2013a]. Let K∞ =Fn(K0), K∞ ∈ fp(F) (Definition 9). ∀K ∈ fp(F), K ∈K,
thus K0 ⊆ K because all the contexts in K contain M0. By monotony (Property 5), K∞ = Fn(K0) ⊆
Fn(K) = K, because K is a fixed point. Thus, K∞ is a fixed point more specific than all fixed points: it
is the least fixed point.

Concerning the second equation, RCAΩ(K0,R)=En(K0) for some n at which E(En(K0))=En(K0))
[Rouane-Hacene et al. 2013a]. E(K0) ∈L, hence (by Property 9), En(K0) ∈L. Moreover, E(En(K0)) =
En(K0)) thus En(K0)) ∈ fp(E). In addition, ∀L ∈ fp(E), E(K0) ⪯ L because the context from which L is
created contains at least all attributes of K0. But if E i(K0) ⪯ L, then E i+1(K0) ⪯ L because by monotony
(Property 10), E i+1(K0) = E(E i(K0)) ⪯ E(L) and E is idempotent on fixed points (by Definition 9).
Thus, RCAΩ(K0,R) is a fixed point more specific than all fixed points: it is the least fixed point.

5.3.2 Greatest fixed point

A natural question is how to obtain the greatest fixed point. In fact, under this approach this is (theoreti-
cally) surprisingly easy.

Proposition 12. gfp(F
⟨G,M0,I0⟩,R,Ω) =K⟨R,N(G)⟩

+DΩ,R,N(G)
(⟨G,M0,I0⟩)

Proof. This context is the greatest element of K as it contains all attributes of DΩ,R,N(G). It is also a
fixed point because F is extensive and internal.

The lattice corresponding to the greatest fixed point will be L = FCA∗(gfp(FK0,R,Ω)).
This result is easy but very uncomfortable. The obtained lattice may contain many useless attributes.

Indeed, ∃r.c is well defined by the incidence relation, but it is of no use to RCA if c does not belong to
L.

For instance, in the example of Section 4.2, the attribute ∃p.A belongs to DΩ,R,N(G) though A does
not belong to the maximal lattice L3, because it is not closed. The fact that both a and b satisfy this
attribute makes that it will find its place in the intent of AB. If one considers the lattice in isolation,
this is perfectly valid because the scaled context is well-defined: ∃p.A is just an attribute among others
satisfied by a and b. However, if the lattice is transformed in a description logic TBox, this is not correct
to refer to an undefined class (here A).

On the contrary, there exist problems, such as the one provided in §4.3, in which the greatest fixed
point is the powerset lattice, i.e. in which all attributes are supported, and the least fixed point is directly
FCA∗(K0).

This problem is even more embarrassing if one wants to enumerate all fixed points, which are as
many solutions to the RCA problem: many of these will feature such non-supported attributes.

30

5.4 Self-supported fixed points

In order to define more interesting results for RCA we introduce the notion of support, and more specif-
ically in RCA0 of self-support. It specifies that a concept lattice is supported if its intents only refer to
concepts in this lattice. We describe a function Q which suppresses non supported attributes and whose
closure provides self-supported lattices. We then identify the interesting results as self-supported fixed
points.

The problem is that both F and E are extensive functions. Hence, it is possible, starting from
anywhere in K or L, to consider attributes that do not refer to concepts and these attributes will be
preserved. As a consequence, there are fixed points with these unwanted attributes and they are also
found in the greatest fixed point. This is not the result that we expect: we need the results to be self-
supported.

One may consider identifying such attributes from the greatest fixed point and forbidding them.
However, these meaningless attributes are contextual: one supported attribute in the greatest fixed point,
may be non supported in a smaller lattice. This is a difficulty for enumerating these fixed points.

Instead, we consider only self-supported lattices, i.e. lattices whose intents only refer to their own
concepts.

Definition 10 (Self-supported lattices). A concept lattices L is self-supported if ∀c ∈ L, intent(c) ⊆
DΩ,R,L.

The set of interesting lattices that may be returned by RCA0 can be circumbscribed as the self-
supported fixed points of E. Such lattices are both stable and self-supported. Moreover, by construction
of K and L, they cover K0, i.e. they contain all attributes in M0.

But the definition of self-supported lattices does not provide a direct way to transform a non self-
supported lattice into a self-supported one. Simply suppressing non-supported attributes from intents
could result in non concepts (with non-closed extents). One possible way to solve this problem consists
of extracting only the attributes currently in the lattice and applying FCA∗ to the resulting context.

For that purpose, we introduce a filtering or purging function π ∶ L↦K which suppresses from the
induced context (κ(L)) those attributes non supported by the lattice:

π(L) =K⟨R,L⟩
−DΩ,R,N(G)∖L

(κ(L))

such that κ(L) = ⟨G,M,I⟩. This can be generalised for RCA and as for σΩ and FCA, it is possible to
introduce π

∗:

π(L,{Lx}x∈X) =K⟨R,{Lx}x∈X ⟩

−∪
ς∈Ω

r∈R∣r⊆G×Gz
Dς ,r,N(G)∖Lz

(κ
∗(L)

π
∗({Lx}x∈X) = {π(Lx,{Lz}z∈X)}x∈X

One can define Q ∶L↦L, such that

Q(L) = FCA∗(π
∗(L))

or P ∶K↦K, such that P(K) = π
∗(FCA∗(K)), see Figure 5.2.

Contrary to E, Q is anti-extensive and monotone:

Property 13 (Q is anti-extensive and monotone). The function Q satisfies:

Q(L) ⪯ L(anti-extensivity)

L ⪯ L′⇒Q(L) ⪯Q(L′)(monotony)

31

K L= FCA∗(K)

K′ L′= FCA∗(K′)
P Q

FCA∗

κ
∗

π
∗

FCA∗

K L

Figure 5.2: Relations between P and Q through the alternation of FCA∗ and π
∗.

Proof. anti-extensivity π
∗(L) ⊆ κ

∗(L) because π
∗ simply suppresses attributes from κ

∗(L). Hence,
FCA∗(π

∗(L)) ⪯ FCA∗(κ
∗(L)) because the latter contain all concepts of the former (identified by

extent) eventually featuring the removed attributes. Moreover, FCA∗(κ
∗(L)) = L by definition, thus

Q(L) = FCA∗(π
∗(L)) ⪯ FCA∗(κ

∗(L)) = L.
monotony If L ⪯ L′, then κ

∗(L) ⊆ κ
∗(L′), otherwise FCA∗ would not generate a smaller lattice. In

addition, L ⪯ L′ entails N(G)∖L ⊇N(G)∖L′ which entails DΩ,R,N(G)∖L ⊇DΩ,R,N(G)∖L′ , which finally
together leads to M∖DΩ,R,N(G)∖L ⊆M′∖DΩ,R,N(G)∖L′ . Then, π

∗(L) ⊆ π
∗(L′) because a smaller con-

text supported by a smaller lattice cannot result in a larger context. Hence, Q(L) = FCA∗(π
∗(L)) ⪯

FCA∗(π
∗(L′)) =Q(L′).

Like E, Q is not a closure operator as it is not idempotent. However, with the same arguments
as [Rouane-Hacene et al. 2013a], it can be argued that the repeated application of Q converges to a
self-supported concept lattice.

Property 14. ∀L ∈L, ∃n; Qn(L) =Qn+1(L).

Proof. First, L is a finite concept lattice. Moreover, Q(L) ⪯ L, hence it not possible to build an infinite
chain of non converging application of Q since at each iteration, either π

∗ suppresses no attribute (and
then closure has been reached), or it suppresses at least one attribute and then a strictly smaller context
is reached. Ultimately, the least fixed point lfp(Q) = FCA∗(K0) is reached. It is a fixed point because
κ
∗(FCA∗(K0)) =K0 contains no scaled attribute.

By convention, we note Q∞ the closure function associated with Q and fp(Q), the set of fixed points
of Q. Like with E, it is possible to apply the Knaster-Tarski theorem to show that ⟨fp(Q),⪯⟩ is a complete
lattice.

The fixed points of Q are exactly those self-supported lattices in L:

Property 15. For any L ∈L, L is self-supported iff L ∈ fp(Q).

Proof. Any fixed point for Q is self-supported because if Q(L) = L, this is because π
∗ does not find any

non-supported attribute in the lattice intents. This means that all of them are supported by L. Conversely,
each self-supported lattice L ∈ L is such that π

∗(L) = κ
∗(L) because all concepts of L only refer to

attributes of L, so π
∗ does not suppress any attribute from the context. Thus, Q(L) = FCA∗(π

∗(L)) =
FCA∗(κ

∗(L)) = L (by construction of κ
∗), hence L ∈ fp(Q).

To complete the description of Q, it is possible to establish that its least fixed point is FCA∗(K0).

Property 16. lfp(Q) = FCA∗(K0).

Proof. κ
∗(FCA∗(K0)) =K0 hence π

∗(FCA∗(K0)) =K0 because, it is not possible to suppress attributes
from K0 which being a formal context does not refer to any concept (and in RCA0 this set of attributes
is reduced to ∅). Thus, Q(FCA∗(K0)) = FCA∗(π

∗(FCA∗(K0))) = FCA∗(K0). Moreover, ∀L ∈ L,
FCA∗(K0) ⪯ L. Hence, FCA∗(K0) is a fixed point of Q and all other fixed points are greater.

32

K0

lfp(F)

fp(F)

S(K)

gfp(F)

K F∞

P∞

FCA∗(K0)

lfp(E)

fp(E)

S(L)

gfp(E)

LE∞

Q∞

FCA∗

σ
∗

Ω

FCA∗

σ
∗

Ω
/π∗

FCA∗

σ
∗

Ω
/π∗

FCA∗

π
∗

Figure 5.3: The L (resp. K) lattice and effects of E and Q (resp. F and P) for characterising fp(E) and
S(L) (resp. fp(F) and S(K)).

We end up with two operations, E and Q, the former extensive and the latter anti-extensive. If we
consider concept lattices from the standpoint of the extents, Q decreases the set of concepts of a lattice
and E increases them.

An interesting property of the functions Q and E is that they preserve each other stability:

Property 17 (Q is internal to fp(E)). ∀L ∈ fp(E), Q(L) ∈ fp(E)

Proof. If L ∈ fp(E), this means that E(L) = L and, in particular, that σ
∗

Ω
does not scale new attributes

based on the concepts in L. Q(L) ⪯ L, so that Q(L) contains not more concepts than L. Q(L) having
not more concepts than L, σ

∗

Ω
cannot scale new attributes either (σ∗

Ω
(Q(L)) ⊆ σ

∗

Ω
(L) = ∅). Hence,

Q(L) ∈ fp(E).

E has the advantage of preserving self-supportivity.

Property 18 (E is internal to fp(Q)). ∀L ∈ fp(Q), E(L) ∈ fp(Q).

Proof. If L ∈ fp(Q), all attributes in intents of L are supported by concepts in L (Property 15). L ⪯ E(L),
so these concepts are still in E(L). Moreover, E = FCA∗ ○σ

∗

Ω
and σ

∗

Ω
first adds to κ

∗(L) attributes
which are supported by L. Hence, the attributes in κ

∗(L) and those scaled by σ
∗

Ω
are still supported by

E(L).

In addition, the closure operations associated with the two functions preserve its extrema.

Property 19. Q∞(gfp(E)) = gfp(Q) and E∞(lfp(Q)) = lfp(E)

Proof. ∀L ∈L, L ⪯ gfp(E) (from Proposition 12) and Q and thus Q∞ is order preserving (Property 13),
hence Q∞(L) ⪯Q∞(gfp(E)). Moreover, Q∞(gfp(E)) ∈ fp(Q), thus Q∞(gfp(E)) = gfp(Q).

Similarly, ∀L ∈ L, lfp(Q) ⪯ L (Property 16) and E and thus E∞ is order preserving (Property 10),
hence E∞(lfp(Q)) ⪯ E∞(L). Moreover, E∞(lfp(Q)) ∈ fp(E), thus E∞(lfp(Q)) = lfp(E).

33

The interesting solutions for RCA are the self-supported fixed points of E, or said otherwise, the
elements of fp(E)∪ fp(Q).

These functions are instrumental to provide the infimum and supremum of our desired lattices (see
also Figure 5.3):

Proposition 20. ∀L ∈ fp(E)∩ fp(Q), lfp(E) ⪯ L ⪯ gfp(Q).

Proof. lfp(E) is the lower bound for fp(E). Assume that lfp(E) /∈ fp(Q), then there would exist
Q∞(lfp(E)) ∈ fp(Q) (by Property 14). By Property 17, Q∞(lfp(E)) ∈ fp(E) and due to Property 13
(anti-extensivity), Q∞(lfp(E)) ⪯ lfp(E). This contradicts that lfp(E) is the lower bound for fp(E).
Hence, lfp(E) ∈ fp(E)∩ fp(Q) and is its infimum.

Similarly, gfp(G) is the upper bound for fp(Q). Assume that gfp(G) /∈ fp(E), then there would exist
E∞(gfp(G)) ∈ fp(E) [Rouane-Hacene et al. 2013a]. By Property 18, E∞(gfp(G)) ∈ fp(Q) and due to
Property 10 (extensivity), gfp(G) ⪯ E∞(gfp(G)). This would mean that gfp(G) is not the upper bound
for fp(Q). Hence, gfp(Q) ∈ fp(E)∩ fp(Q) and is its supremum.

The elements of fp(E)∩ fp(Q) thus belong to the interval sublattice [lfp(E) gfp(Q)]. However they
do not cover it. The converse of Proposition 20 does not hold in general as shown by the example of
Section 4. Indeed L3 is lfp(E) and not all sublattices of L3 are solutions. For instance, the lattice of
Figure 5.6 belongs to the interval, but not to fp(E)∩ fp(Q).

5.5 Structure of fixed points

Thus we are interested by characterising better the elements of fp(E)∩ fp(Q). Figure 5.4 shows how
this set can be found in our depiction of L.

We use the closure of E and Q, E∞ and Q∞ to provide functions which maps elements of L into a
stable lattice in fp(E)∩ fp(Q). Both are closure operators.

We show that their elements can be obtained from any element of L by applying the two closure
operators Q∞ and E∞ in a row.

Property 21. Q∞ ○E∞ (resp. E∞ ○Q∞) is order-preserving and idempotent:

∀L,L′ ∈L,L ⪯ L′⇒Q∞ ○E∞(L) ⪯Q∞ ○E∞(L′)(order-preservation)

Q∞ ○E∞ ○Q∞ ○E∞(L) =Q∞ ○E∞(L)(idempotence)

Proof. We prove it for Q∞ ○E∞, the E∞ ○Q∞ case is strictly dual.
order-preservation is obtained as the combination of order-preservation of the two others: L ⪯ L′, hence

E(L) ⪯ E(L′) (Property 10) and also E∞(L) ⪯ E∞(L′), thus Q∞ ○E∞(L) ⪯ Q∞ ○E∞(L′) (Prop-
erty 13).

idempotence is obtained from Property 22: ∀L ∈L, Q∞ ○E∞(L) ∈ fp(E)∩ fp(Q), hence Q∞ ○E∞(L) =
L and Q∞ ○E∞(L)○Q∞ ○E∞(L) = L, thus Q∞ ○E∞ ○Q∞ ○E∞(L) =Q∞ ○E∞(L).

It does not seems that these functions are neither extensive nor anti-extensive (see Figure 5.5 and
eventually the example of Figure 5.6 and 5.7). Hence, they would not be closure operators.

The set of self-supported fixed points are those elements in the image of L by the composition of
these two closure operations, in any order.

Property 22. Im(Q∞ ○E∞) = fp(E)∩ fp(Q) = Im(E∞ ○Q∞)

Proof. We show it for Q∞ ○E∞, the other part is dual:
⊆ By definition, Im(Q∞ ○E∞) ⊆ Im(Q∞) = fp(Q). Moreover, Im(E∞) = fp(E), but by Property 17, if

L ∈ fp(E), then Q∞(L) ∈ fp(E). Hence, Im(Q∞ ○E∞) ⊆ fp(E)∩ fp(Q).

34

FCA∗(K0)

gfp(E)

L

fp(E) = Im(E∞)

fp(Q) = Im(Q∞)

lfp(E)

gfp(Q)

E∞

Q∞

E∞

Q∞

E∞

Q∞

E∞

Q∞

E∞

Q∞

E∞

Q∞

Figure 5.4: Illustration of Properties 19, 20, 21, 22, 23, 25 and 26. The figure displays four times L and
the images of gfp(E) (red), a random lattice (blue) and lfp(Q) = FCA∗(K0) (green) through Q∞ (left)
and E∞ (right). fp(E) is drawn in vertical lines; fp(Q) in horizontal lines and the grey area depicts the
interval [lfp(E) gfp(Q)].

35

⋅⋅
⋅

⋅

⋅⋅

⋅

⋅

E

Q

E

Q

E

Q

E

Q

Q∞

E∞

Q∞

E∞

Q∞

E∞

⪯

Figure 5.5: Illustration of the convergence of Q∞○E∞ and E∞○Q∞ depending on their original position
(in dotted, L, in dashed fp(E)∪ fp(Q), in plain fp(E)∩ fp(Q)).

⊇ ∀L ∈ fp(Q)∩ fp(E), L ∈ fp(E), thus E∞(L) = L ∈ fp(Q), hence Q∞(L) = L. Thus L ∈ Im(Q∞ ○E∞),
hence fp(Q)∩ fp(E) ⊆ Im(Q∞ ○E∞).

The fact that the image of these functions is in their fixed points is a good news, because it means
that applying one of these function to whatever lattice L ∈L converges to fp(E)∩ fp(Q).

So the structure of fp(E)∩ fp(Q) is that of a complete lattice:

Property 23. ⟨fp(E)∩ fp(Q),⪯⟩ is a complete sublattice of ⟨L,⪯⟩.

Proof. fp(E)∩ fp(Q) = Im(Q∞ ○E∞) (Property 22) and Im(Q∞ ○E∞) = fp(Q∞ ○E∞) due to idem-
potence (Property 21), hence the Knaster-Tarski theorem can be applied based on Property 21 (order-
preservation), concluding that it is a complete lattice. It is obviously included in L, thus this is a sublat-
tice of ⟨L,⪯⟩.

For any lattice within the fixed points, i.e. fp(E) or fp(Q), the two functions are equal.

Property 24. ∀L ∈ fp(E)∪ fp(Q),Q∞ ○E∞(L) = E∞ ○Q∞(L)

Proof. These can be found on Figure 5.5. For any lattice L belonging to fp(E)∩ fp(Q) (the gray area),
Q(L) =E(L) = L, hence Q∞ ○E∞(L) =E∞ ○Q∞(L) = L. Similarly, for any lattice L belonging to fp(E),
then E∞(L)=L, so Q∞○E∞(L)=Q∞(L). However, by Property 18, since L ∈ fp(E), so Q∞(L) ∈ fp(E).
This means that E∞ ○Q∞(L) =Q∞(L) as well. The same can be proved for L ∈ fp(Q) with Property 17.

In particular, this applies to the bounds of fp(E)∩ fp(Q):

Property 25. Q∞○E∞(gfp(E))=E∞○Q∞(gfp(E))=gfp(Q) and Q∞○E∞(lfp(Q))=E∞○Q∞(lfp(Q))=
lfp(E)

Independent proof. For the first term of the first equation E∞(gfp(E)) = gfp(E), and then by Prop-
erty 19(a), Q∞ ○E∞(gfp(E)) = gfp(Q), moreover for the second term by Property 19(a) Q∞(gfp(E)) =
gfp(Q) and then by Property 17, gfp(Q) ∈ fp(E), hence E∞(gfp(Q))=gfp(Q), thus E∞○Q∞(gfp(E))=
gfp(Q).

Similarly, the second equation relies on Property 19(b). For the first term by Property 19(b) E∞(lfp(Q))=
lfp(E) and then by Properties 18 and 15, lfp(E) ∈ fp(Q), hence Q∞(lfp(E)) = lfp(E), thus Q∞ ○

36

∃p.AB ∃p.ABD ∃p.C ∃p.D ∃p.ABCD
a × × ×
b × × ×
c × × ×
d × ×

∃p.ABCD

∃p.ABD ∃p.C

d

∃p.AB

a,b

∃p.D

c

ABCD

ABC

AB

C

D

�

Figure 5.6: Counter-example to the conjecture: the context K# (left) and the corresponding concept
lattice L# = FCA∗(K#) (right).

∃p.AB ∃p.ABD ∃p.ABC ∃p.C ∃p.D ∃p.ABCD
a × × × ×
b × × × ×
c × × ×
d × × ×

∃p.AB ∃p.C ∃p.D ∃p.ABCD
a × ×
b × ×
c × ×
d × ×

Table 5.1: Contexts obtained by σ
∗

∃
(L#) and π

∗(L#).

E∞(lfp(Q))= lfp(E). Moreover, for the second term Q∞(lfp(Q))= lfp(Q), and then by Property 19(b),
E∞ ○Q∞(lfp(Q)) = lfp(E).

However, this does not generally holds as illustrated by Example 2.

Example 2 (Counterexample to equality). Consider the example given in Figure 5.6. K# ∈ K be-
cause all attributes belong to DΩ,R,N(G). FCA∗ generates the corresponding lattice L# ∈ L. In fact,
L# ∈ [lfp(E) gfp(Q)]∖(fp(E)∩fp(Q)). Applying scaling or purging will provide the two contexts of Ta-
ble 5.1 which correspond to the two lattices of Figure 5.7 (E(L#) and Q(L#)). These two lattices belong
to fp(E)∩ fp(Q), hence they are in full closed form: E(L#) =Q∞ ○E∞(L#) and Q(L#) = E∞ ○Q∞(L#).
Yet they are not isomorphic... What can be said, in this case, is that E∞ ○Q∞(L#) ⪯Q∞ ○E∞(L#). This
is the result of σ eventually adding needed support and π suppressing unsupported attributes.

It seems correct that when Q is first applied, it suppresses non-supported attributes which cannot
be recovered by scaling. On the other side, E applied first may scale attributes which may support
previously non-supported attributes (ABC in Example 2). These will not be suppressed any more.

∃p.ABCD

∃p.ABD ∃p.ABC

∃p.AB

a,b

∃p.D

c

∃p.C

d

ABCD

ABC ABD

ABC D

�

∃p.ABCD

∃p.AB

a,b

∃p.D

c

∃p.C

d

ABCD

AB

C

D

�

Figure 5.7: Lattices obtained from the contexts of Table 5.1 by E(L#) = FCA∗(σ
∗

∃
(L#)) and Q(L#) =

FCA∗(π
∗(L#)).

37

What is shown by Property 26, is that, in addition there is still a homomorphism between the two
resulting lattices.

Property 26. ∀L ∈L,E∞ ○Q∞(L) ⪯Q∞ ○E∞(L)

Proof. Q(L) ⪯ L entails Q∞(L) ⪯ L. But E is monotonous, so is E∞, hence E∞ ○Q∞(L) ⪯ E∞(L). Q
is also monotonous, thus Q∞ ○E∞ ○Q∞(L) ⪯ Q∞ ○E∞(L). However, Q∞ ○E∞(L) ∈ fp(E)∪ fp(Q) so
Q∞ ○E∞ ○Q∞(L) = E∞ ○Q∞(L). This means that E∞ ○Q∞(L) ⪯Q∞ ○E∞(L).

Alternative proof. The same reasoning can be held from L ⪯ E(L). This entails L ⪯ E∞(L). E and Q
being monotonous still entails that E∞ and Q∞ are. Hence, Q∞(L) ⪯ Q∞ ○E∞(L) and E∞ ○Q∞(L) ⪯
E∞ ○Q∞ ○E∞(L). But, Q∞ ○E∞(L) ∈ fp(E)∪ fp(Q), thus E∞ ○Q∞ ○E∞(L) = Q∞ ○E∞(L). Thus,
E∞ ○Q∞(L) ⪯Q∞ ○E∞(L).

It is thus unclear what to do with E∞ ○Q∞ and Q∞ ○E∞ in general. For instance, if one needs an
operation to map elements of L to fp(E)∩ fp(Q), which one is preferable? There may be an interest
in studying the interval [E∞ ○Q∞(L),Q∞ ○E∞(L)]. Does it contain only fixed points? Are these the
image of other lattices?

Similar questions may be raised with respect to the use of (E ○Q)∞ and (Q○E)∞, and first of all if
these are well defined.

It is also possible to consider the congruence induced by these functions. Indeed, Q∞ ○E∞ or
E∞ ○Q∞ may be considered as a lattice homorphisms in L. The equivalence relation they induce is
defined by: ker h = {⟨x,y⟩ ∈L×L ∣ h(x) = h(y)}. Let us call L∣ker Q∞○E∞ the subset of L containing the
common image of each class in ker Q∞ ○E∞. L∣ker Q∞○E∞ is exactly Im(Q∞ ○E∞). The same holds for
L∣ker E∞○Q∞ = Im(E∞ ○Q∞).

5.6 FCA and hierarchical RCA

In FCA, a single concept lattice corresponds to a context. All support is provided in this context and
there is no room to introduce new concept without breaking closedness. Moreover, FCA is external to
the kind of fixed points that we are considering.

Subsequently in RCA without circular dependencies, or hierarchical RCA (HRCA), all contexts may
be organised in strata so that a context belongs to the stratum above all those of the contexts it depends
on. Contexts of the first stratum only rely on FCA since R = ∅. They thus only have a single fixed
point (actually, there is no scaling so G is reduced to one single context, K0). Contexts of each strata
can be processed once for all when the previous strata have been processed2. Since the contexts do not
depend on other contexts of the same stratum, it is not necessary to run FCA∗ before scaling the context.
Scaling on Stratum i will occur once to add the new attributes depending on Ω, R and the lattices of
the previous strata (L<i). But since these will not change any more, further scaling will not bring new
attributes (Property 27). It is thus a single FCA performed in this scaled context.

Property 27. In HRCA, E = E∞ and Q =Q∞

Proof. E performs σ
∗

Ω
and then FCA∗. In hierarchical RCA, σ

∗

Ω
adds to κ

∗(L) the attributes of DΩ,R,L<i .
Applying E once again, would not change the result since, there will be no attributes to add because Ω

and R do not change and L<i are not recomputed. Hence, E(E(L)) = E(L).
Similarly, Q performs π

∗ and then FCA∗. In hierarchical RCA, π
∗ removes from κ

∗(L) the at-
tributes of the range of relations that do not belong to DΩ,R,L<i . Applying Q once again, would not
change the result since, there will be no more attributes to remove because Ω and R do not change and
L<i are not recomputed. Hence, Q(Q(L)) =Q(L).

2This differs from the classical RCA process, but the result will be strictly equivalent.

38

K0

lfp(F) = gfp(P) =K⟨R,N(G)⟩
+DΩ,R,L

<i

K⟨R,N(G)⟩
+DΩ,R,N(G)

K
F∞ = F

P∞ = P

FCA∗(K0)

lfp(E) = gfp(Q)

L
E = E∞

Q =Q∞

FCA∗

σ
∗

Ω
/π∗

FCA∗

σ
∗

Ω

FCA∗

π
∗

σ ∗

Ω

π
∗

Figure 5.8: Hierarchical RCA. All functions are their own closures and they return the same fixed point
(lfp(E) = gfp(Q)).

Moreover, the least fixed point of E will be the same as the greatest fixed point of Q (Property 28).
Hence, there is only one self-supported fixed point.

Property 28. In HRCA, gfp(Q) = lfp(E).

Proof. First, all contexts of K contains the attributes of K0. lfp(E) = E∞(FCA∗(K0)) = E(FCA∗(K0))
and gfp(Q) =Q∞(FCA∗(K⟨R,N(G<i⟩

DΩ,R,N(G
<i
(K0))) =Q(FCA∗(K⟨R,N(G<i⟩

DΩ,R,N(G
<i
(K0))) (Property 27). E = FCA∗ ○σ

∗

Ω

and Q=FCA∗○π
∗. σ

∗

Ω
adds to K0 all the attributes of DΩ,R,L<i and π

∗ removes from DΩ,R,N(G<i all the at-

tributes not in DΩ,R,L<i (and DΩ,R,L<i ⊆DΩ,R,N(G<i). Thus, σ
∗

Ω
(FCA∗(K0)) = π

∗(FCA∗(K⟨R,N(G<i⟩

DΩ,R,N(G
<i
(K0)))

and lfp(E) = FCA∗(σ
∗

Ω
(FCA∗(K0))) = FCA∗(π

∗(FCA∗(K⟨R,N(G<i⟩

DΩ,R,N(G
<i
(K0)))) = gfp(Q).

A lattice L ∈L is in one of the following cases:
– L = lfp(E) = gfp(Q).
– lfp(E) ≺ L, which when purged, suppress all attributes in DΩ,R,N(G)∖DΩ,R,L<i , so that Q(L) = gfp(Q).
– L ≺ gfp(Q) which, when scaled, receive all attributes in DΩ,R,L<i , so that E(L) = lfp(E).
– L /⪯ gfp(Q)∧ lfp(E) /⪯ L, non comparable to lfp(E) nor gfp(Q), these lattices are obtained from con-

texts which do not contain all attributes of DΩ,R,L<i and do contain attributes of DΩ,R,N(G)∖DΩ,R,L<i .
For these scaling will provide them with all DΩ,R,L<i and the purging will suppress those elements of
DΩ,R,N(G)∖DΩ,R,L<i . In fact, E ○Q(L) =Q○E(L) = lfp(E).
The arguments provided in this section apply to RCA and not to RCA0 (by definition, a hierarchical

RCA0 context is a FCA context without attribute which is not particularly appealing). The notion of
support has replaced that of self-support.

Even with RCA and circular dependencies (between the objects or between the contexts), in many
cases, there is only one supported fixed point which is the one computed by the RCA algorithm. But the
example of Section 4 shows that, even in RCA0, there may be several non isomorphic fixed points for E
and F .

39

Conclusion

We determined the dual spaces, of contexts and lattices, in which RCA evolves. We identified the
functions, F and E, at the core of RCA and determined that RCA computes the least fixed points of
function E.

This result does not mean that RCA is wrong. In FCA, conceptual scaling has been considered
as a human-driven analysis tool: a knowledgeable person could provide attribute in this language for
describing better the data to be analysed. In RCA, scaling is used as an extraction tool, with the drawback
to potentially generate many attributes. By only extracting the least fixed point, RCA avoids generating
too many of them. This is useful when generating a description logic TBox because all concepts are
well-defined and necessary.

In search or the greatest fixed point, we defined the notion of self-supported lattices and the functions,
P and Q, whose fixed points compute these. They are complementary to F and E. The set of interesting
results for RCA is characterised as the intersection of the fixed points of such functions (fp(E)∩ fp(Q)).
We then discussed the combination of Q∞ and E∞ to circumscribe this set.

The definitions and results of this chapter have been restricted to RCA0 for the sake of clarity.
Although, this remains to be proved, they should hold for RCA as a whole. Indeed, all definitions can be
applied to families of contexts and lattices, the order between them being the product order induced by
the piece-wise conjunction. All operations remain monotone and extensive (or anti-extensive) as soon
as the selected scaling operations are. This is enough to preserve the results.

We will now consider methods for extracting these other fixed points.

40

6. Alternative fixed-point extraction methods

Our initial goal was to define which concept lattices could be considered as the result of RCA on a
relational context. These are those elements of fp(E)∩ fp(Q). RCA provides a practical algorithm
(based on F or E and FCA∗) to find out the smallest of these: lfp(E). We will first discuss the definition
of effective procedures to compute this greatest fixed point: gfp(Q) (§6.1). This procedure is structurally
isomorphic to RCA. We will then discuss the strategies to obtain all fixed points for RCA0 (§6.2).

6.1 Computing the greatest fixed point

The RCA algorithm returns the least fixed point of the induced F function. We first discuss on the
opportunity to obtain the greatest fixed point. For that purpose, we first discuss a method commonly
used with RCA to obtain a greater least fixed point (§6.1.1) and we consider two approaches: computing
the function Q (§6.1.2) or dualising RCA (§6.1.3).

6.1.1 Forcing the greatest fixed point

One way to approach the greatest fixed point with the classical RCA is to biase the algorithm1. Indeed,
we argued that RCA is based on separating two objects as soon as there is a reason for it and keeping
them together otherwise. It is possible to provide a reason to separate objects in RCA by simply adding
an extra attribute that is distinct for each object (which may be turned into an FCA context through
nominal scaling, see Section 2.2.2).

This approach will generate all singleton classes (one per element of G) and all concepts correspond-
ing to 2G (because each combination of scaled attributes will generate a different extent). Unfortunately,
this is not the greatest fixed point for Q, but the greatest fixed point for E, that can be obtained directly
(see Section 5.3.2). Indeed, this approach will separate objects which are indeed not distinguishable
from the initial data set.

6.1.2 Implementing Q as the inverse of RCA

Computing the greatest fixed point is now quite easy thanks to the investigation into the Q function
(Section 5.4). Indeed, this can be considered as the complete inverse of the E function on which RCA is
based:
– It starts with largest context, instead of the smallest one.
– It applies P = FCA∗+π

∗, instead of F = FCA∗+σ
∗

Ω
.

– It stops when no purge occurs.
In summary:
– RCA (F and E) uses an expansive approach: starting with the minimal context K0 and adding con-

cepts which have support (created by the scaling operation);
– (P and Q) adopts a contracting approach: starting with a maximal lattice 2G and suppressing those

proto-concepts which have no support.

Algorithm

This algorithm can be described as:
1. Initial formal contexts: {⟨Gx,M1

x ,I
1
x ⟩}x∈X ← {K⟨R,∪z∈X N(Gz)⟩

+∪
ς∈Ω

r∈R∣r⊆Gx×Gz
Dς ,r,N(Gz)

(⟨Gx,M0
x ,I

0
x ⟩)}x∈X .

1Marianne Huchard, 2021-07-01.

41

2. {Lt
x}x∈X ← FCA∗({⟨Gx,Mt

x,I
t
x⟩}x∈X) (or, for each formal context, ⟨Gx,Mt

x,I
t
x⟩ the corresponding con-

cept lattice Lt
x = FCA(⟨Gx,Mt

x,I
t
x⟩) is created using FCA).

3. {⟨Gx,Mt+1
x ,It+1

x ⟩}x∈X ← π
∗({⟨Gx,Mt

x,I
t
x⟩}x∈X ,R,{Lt

x}x∈X) (i.e. purging is applied, for each relation ry

whose codomain lattice had retracted concepts, generating new contexts ⟨Gx,Mt+1
x ,It+1

x ⟩ including
both plain and relational attributes in Mt+1

x).
4. If ∃x ∈ X ;Mt+1

x ≠Mt
x (purging has occurred), go to Step 2.

5. Return: {Lt
x}x∈X .

This is exactly the same as the RCA algorithm. The only changes are (a) the starting point ({K⟨R,∪z∈X N(Gz)⟩

+∪
ς∈Ω

r∈R∣r⊆Gx×Gz
Dς ,r,N(Gz)

(⟨Gx,M0
x ,I

0
x ⟩)}x∈X

which replaces K0 at 1), and (b) the purging operation (π∗) which replaces scaling (σ∗

Ω
) at 3).

Just like RCA(K0,R,Ω)=E∞(FCA∗(K)), this algorithm computes gfp(Q)=Q∞(FCA∗(⟨G,DΩ,R,N(G),I⊺⟩)).
By Proposition 20, this is the greatest element of fp(E)∩ fp(Q)

Example

This algorithm may be applied to the example of Section 4.2, starting with an ABox containing four
objects:

A = {⊺(a),⊺(b),⊺(c),⊺(d), p(a,b), p(b,a), p(c,d), p(d,c), p(a,a), p(b,b)}

The relation may be encoded as the relation:

p a b c d
a × ×
b × ×
c ×
d ×

Which leads to the following context scaled to D
{p},{∃},2G :

∃p
.A

BC
D

∃p
.A

BC
∃p

.A
B

D
∃p

.A
C

D
∃p

.B
C

D
∃p

.C
D

∃p
.B

D
∃p

.B
C

∃p
.A

D
∃p

.A
C

∃p
.A

B
∃p

.A
∃p

.B
∃p

.C
∃p

.D

a × × × ×
b × × × ×
c × × × × × × × ×
d × × × × × × × ×

Which when applied FCA provides:

∃p.ABCD

∃p.ABD ∃p.ABC ∃p.CD ∃p.ACD
∃p.BCD

∃p.AB

a,b

∃p.D ∃p.AD
∃p.BD

c

∃p.C ∃p.AC ∃p.BC

d

∃p.A ∃p.B

ABCD

ABC ABD

AB

CD

C D

�

42

In this lattice, the attributes:
– ∃p.ACD and ∃p.BCD in CD,
– ∃p.AD and ∃p.BD in C,
– ∃p.AC and ∃p.BC in D, and
– ∃p.A and ∃p.B in �,

are not supported and thus should be purged from the initial context (in Step 3) which becomes:

∃p
.A

BC
D

∃p
.A

BC
∃p

.A
B

D
∃p

.C
D

∃p
.A

B
∃p

.C
∃p

.D

a × × × ×
b × × × ×
c × × × ×
d × × × ×

From which FCA (in Step 2) yields the Lattice L3 of Figure 4.3 (Section 4.2).

Analysis

The complexity of this approach depends on the size of the set of attributes 2∣G∣× ∣R∣× ∣Ω∣. Considering
that ∣R∣×Ω ≪ ∣G∣, the worst case should occur when the algorithm suppresses a minimal number of
elements at each iteration. However, for an iteration to induce another iteration, it is necessary that at
least one concept is suppressed. Hence, the number of iterations is bound by the number of concepts,
i.e. 2∣G∣. Assuming, that the complexity of the operations, σ

∗ and FCA∗ in the loop is not higher, the
complexity of this algorithm, for RCA0 should thus be considered in O(2∣G∣).

6.1.3 Dualisation

Petko Valtchev2 suggested to use the dual lattice and added inverting 1 and 0. This would have the
advantage to enable the use of the same RCA algorithm for computing both E∞ and Q∞ by performing
something like: Q∞(L) = (E∞(LD))D in which ⋅D is a dualisation operator.

In formal concept analysis, dualisation has a precise meaning: objects become attributes, attributes
become objects and the incidence relation is inverted (one uses: ⟨M,G,I−1⟩). The provided result is an
isomorphic lattice (top and bottom inverted if drawn as a standard concept lattice).

This raises one question: what is the dual of an RCA problem? This question is interesting in itself.
It is obvious that it should take the dual of FCA into account.

This also raises one remark: since it will provide an isomorphic lattice and not a different lattice,
this does not seems to be what we are after.

In RCA0, this would lead to concepts lattices made of:

a,b,c,d

⊺

instead of:

a,b,c,d

⊺

2Personal communication, 2019-09-25.

43

The problem is then that there are no objects to be related by the relational contexts. There is thus a
deeper issue which is the definition of the dual of RCA.

We tried below to apply this to the independent problem to use the complement of the relational
contexts, but this does not provide any insight.

Algorithm

Hence, the result obtained by dualisation would be:
1. Take the complement relational context (replacing 1 by 0);
2. Perform RCA on it;
3. Take the dual of the result.

Example

Let see how it works on the example above (Section 4.2). We start with an abox containing four objects:
A = {⊺(a),⊺(b),⊺(c),⊺(d), p(a,b), p(b,a), p(c,d), p(d,c)}

The dual is thus: A={⊺(a),⊺(b),⊺(c),⊺(d), p̄(a,a), p̄(a,c), p̄(a,d), p̄(b,b), p̄(b,c), p̄(b,d), p̄(c,a),
p̄(c,b), p̄(c,c), p̄(d,a), p̄(d,b), p̄(d,d),}

Which can be encoded as an empty formal context for ⊺ and the relational self-context:

R p̄ a c b d
a × × ×
c × × ×
b × × ×
d × × ×

The empty context will generate the singleton lattice:

a,b,c,d

⊺

The application of the scaling operation provides the attribute ∀∃ p̄.⊺which generates a new context:

∀∃ p̄.⊺
a ×
c ×
b ×
d ×

Since this is the same as in Section 4.2, this will return the same result:

∀∃ p̄.⊺

a,b,c,d

⊺

At that point, it is not very clear what applying dualisation again means. It is very likely that instead
of using σ∀∃ we should have applied a dual scaling operation. However, it is unclear how to define it.

Hence, this approach does not work, at least for RCA0, but RCA0 belongs to RCA so this approach
(and any variant taking the dual of the formal context does not work either).

However this dualising idea is interesting and should work at some point.

44

6.2 Extracting all fixed points in RCA0

Besides the least and greatest fixed point, it is interesting to be able to extract all elements of fp(E)∩
fp(Q). Unfortunately, as shown in Property 20, this is not the interval sublattice [lfp(E) gfp(Q)].

We discuss different methods to compute them.

6.2.1 Näıve strategy: the full lattice approach

We end up with two functions, complementary in their structure, one expanding the context, the other
contracting it. In the perspective of enumerating all self-supported fixed points, it is tempting to either
start from lfp(E) and use E or start from gfp(Q) and use Q. Unfortunately, these starting points being
fixed points for these very functions, this leads nowhere. It is necessary to escape the fixed points.

The naı̈ve strategy would simply consist of generating all elements of the interval and testing them
for being fixed points. There are several questions to answer in doing so:
– Where to perform the exploration? In L or K.
– How to perform the exploration? Starting from the least fixed point and adding concepts/attributes

or starting from the greatest fixed point and suppressing concepts/attributes.
– How to perform the test?

As illustrated by the example of Section 4.3, the extrema of L may also be those of fp(E)∩ fp(Q).
In consequence, it may be necessary to explore the whole space L or K. It is more efficient in theory to
perform the exploration on lattices because the number of concepts is bounded by 2∣G∣, so the number of
lattices to test is bounded by 22∣G∣ . In the context space, this number is the same in RCA0, however as
soon as more relations or scaling operators are considered, it can be larger.

Performing the exploration from the greatest fixed point or least fixed point does not matter and
can be performed in the same manner. The interval can be generated by suppressing from gfp(Q) a
subset of gfp(Q)∖ lfp(E). Alternatively, it can be obtained by adding to lfp(E) the same subsets of
gfp(Q)∖ lfp(E).

Concerning the test, from these lattices of the interval it is necessary to suppress those: (a) which are
not concept lattices; (b) which are not self-supported, i.e. fixed points for Q; (c) which are not closed,
i.e. fixed points for E. Given L and knowing κ

∗(L), it is simpler to test:
– if FCA∗(κ

∗(L)) = L, then L is a valid concept lattice, and
– if σ

∗

Ω
(L) = κ

∗(L), then L ∈ fp(E), and
– if π

∗(L) = κ
∗(L), then L ∈ fp(Q).

Algorithm

The naı̈ve algorithm is:
1. Initialisation: R←∅
2. For each C ⊆ gfp(Q)∖ lfp(E) do

(i) L← lfp(E)∪C (or gfp(Q)∖C)
(ii) if σ

∗

Ω
(L) = κ

∗(L) and π
∗(L) = κ

∗(L) and FCA∗(κ
∗(L)) = L, then R← R∪{L}

3. return R
An example is provided for the next approach as it extends this one in a more interesting way.

6.2.2 A navigation-based approach

The functions π
∗ and σ

∗

Ω
used in the test are those of the function E and Q respectively. Hence, it should

be worth exploiting the information they provide and not stop here. Indeed:
– if L ∈ fp(E)∩ fp(Q), then L is a fixed point,

45

– if L ∈ fp(E), then apply Q until a fixed point is reached, this is still a fixed point for E (Property 17),
– if L ∈ fp(Q), then apply E until a fixed point is reached, this is still a fixed point for Q (Property 18),
– otherwise, E and Q can be applied in parallel, one and then the other, this may lead to two different

fixed points (Property 26), but actually, the best strategy is to do nothing.

Algorithm

This suggests an algorithm marking each lattice:
1. Initialisation: R←∅
2. For each C ⊆ gfp(Q)∖ lfp(E) do

(i) L← lfp(E)∪C (or gfp(Q)∖C)
(ii) if ¬marked(L) then

– mark(L)
– if σ

∗

Ω
(L) = κ

∗(L), then
– if π

∗(L) = κ
∗(L) and FCA∗(κ

∗(L)) = L, then R← R∪{L}
– else

* L′←Q(L)
* while L′ ≠ L∧¬marked(L′) do

· mark(L′)
· L← L′
· L′←Q(L);

* if L = L′ and FCA∗(κ
∗(L)) = L, then R← R∪{L}

– elseif π
∗(L) = κ

∗(L), then
– L′← E(L)
– while L′ ≠ L∧¬marked(L′) do

* mark(L′)
* L← L′

* L′← E(L);
– if L = L′ and FCA∗(κ

∗(L)) = L then R← R∪{L}
3. return R

Example

Here it is applied to the example of Section 4.2. gfp(Q) is L3 and lfp(E) is L1, hence gfp(Q)∖ lfp(E)
is {�,C,D,AB,CD,ABC,ABD}. This set contains 128 subsets. Each of these must be added to L1 and
tested for closure. Let consider some of them:
– Let start with ∅, lfp(E)∪∅ = L1, which can be marked and added to R as it is known to be a fixed

point.
– Then consider {C}, L = L1 ∪{C} is not marked. σ

∗

Ω
(L) ≠ κ

∗(L) because it would add the attribute
∃p.C and π

∗(L) ≠ κ
∗(L) because ∃p.D in C is not supported.

– . . .
– Consider L = L1∪{AB}, this time σ

∗

Ω
(L) = κ

∗(L) and π
∗(L) = κ

∗(L), moreover, it is a valid concept
lattice, so it is marked and added to L.

– . . .
– Consider L = L1 ∪ {C,D}, then σ

∗

Ω
(L) = κ

∗(L) and π
∗(L) = κ

∗(L), but this is not a valid concept
lattice, hence it is marked,

– we turn into L = L1∪{C,D,C∧D} = L1∪{C,D,�}, which is a valid concept lattice satisfying σ
∗

Ω
(L) =

κ
∗(L) = π

∗(L), so it is marked and added to R.
– . . .

This example only convers a few cases: a self-supported lattice, an invalid concept lattice, a concept
lattice which is neither closed nor self supported. Hence, it triggers no navigation. The problem is that
concepts are either self-supported, or supported by a concept which depends on itself, hence, as soon
as one of them is missing the resulting lattice is neither self-supported nor closed. This remark actually
applies to all the examples of Chapter 4.

46

p a b c d
a × × ×
b × × ×
c
d

q a b c d
a ×
b ×
c
d

∃p.ABCD

a,b

∃q.CD

c,d

ABCD

CD

Figure 6.1: a and b are undistinguishable; c and d are recursively undistinguishable: they are not in
relation with the same objects, but with undistinguishable objects.

Analysis

The complexity of this approach is given by the size of the initial lattice (2∣G∣). It is the worst case
because the lattice cannot grow. This worst case for RCA0 is actually the worst case for RCA1 as adding
properties does not allow to add more concepts (at least if ∣M∣≪ ∣G∣) and the worst case for RCA (because
2n > 2m+2n−m).

Is there a possibility to reduce the initial lattice size? Yes of course, like for FCA it suffices to not
consider undistinguishable objects (and non distinguishable properties and relations). In FCA, undistin-
guishable objects are those corresponding to the same row in the incidence table and undistinguishable
properties those which correspond to the same column. For properties, this does not change. Moreover,
we may also consider as undistinguishable relations those which have the same relational context. How-
ever, what would reduce the size of the lattice are undistinguishable objects. Here, what makes objects
undistinguishable (Example 3) is that they have (a) the same property values (if we are not in RCA0),
and (b) that they are related to the exact same objects (or recursively, undistinguishable objects). If they
are embedded in an isomorphic structure, they are not undistinguishable because it is sufficient to have
distinct classes for each objects for making them distinguishable. Note that

Example 3 (Recursively undistinguishable objects). Consider an ABox given by
{p(a,b), p(a,a), p(b,a), p(b,b), p(c,a), p(d,b)}. a and b are undistinguishable because they have the
same column in p’s relation. This is not the case of c and d, the former being only in relation with a
and the latter with b. However, since a and b are undistinguishable, there will be no concept in the
extent of which a is and not b. Hence, it will never be possible to distinguish between c and d either.
Worse, c and d are, in this case, non distinguishable from a and b (that could be different, for instance
by adding a relation q such that q(c,d) and q(d,d), then c and d would still be undistinguishable, but
distinguishable from a and b, see Figure 6.1).

Note that the notion of undistinguishability is strongly dependent on Ω.

6.2.3 The closedness condition

In a concept lattice, there is one minimal concept in which each object belong and a maximal concept in
which one attribute belong. Any sublattice which does not satisfy these conditions is proscribed.

This means that
– when suppressing the minimal concept for an object, there must remain a single minimal super-

concept of it, and
– when suppressing the maximal concept for an attribute, there must remain a single maximal sub-

concept of it.
Said otherwise, for each minimal concept (resp. maximal concept), there must remain a single most
specific subsumer (resp. most general subsumee). This is illustrated by Figure 6.2.

47

p

a

q

b

r
c

B

BD BE

ABDE

ABDEGABDEF

ABCDEFG

p,q

b

r
a,c ABCDEFG

B

Figure 6.2: What must happen for suppressing a set of concepts: it is not possible to suppress ABDE if
BD abd BE remain or if ABDEF and ABDEG remain

Example

In L3 (Figure 4.3), there are three minimal concepts AB, C and D. It is also possible to treat � as minimal
because if it does not satisfy this condition, then its suppression does not return a lattice. This indicates
that:

R1 it is not possible to suppress AB if ABC and ABD are present;
R2 it is not possible to suppress C if ABC and CD are present;
R3 it is not possible to suppress D if ABD and CD are present;
R4 it is not possible to suppress � if AB and C or AB and D or C and D are present.
Keeping track of these dependencies avoids testing violations.

In L3 all concepts but � are maximal. However, when suppressing a set of concept it is only necessary
to take care of those attributes which are preserved by the suppression, i.e. those who refer to non
suppressed concepts. In particular, those attributes which refer to their maximal concepts do not have to
be taken into account. There are only four attributes and as many concepts not in this case in L3:
– ∃p.C in D
– ∃p.D in C
– ∃p.ABC in ABD
– ∃p.ABD in ABC

The rule above indicates that:
– C and D each having one single subsumee, they could be suppressed without violating this constraint;

R5 it is not possible to suppress ABC if AB and C are present;
R6 it is not possible to suppress ABD if AB and D are present.
This means, for instance, that if one wants to suppress ABD, AB or D and CD must be suppressed.

These constraints have to be generalised because, on larger lattices, a concept suppression may
depend on a large variety of constraint suppressions. For instance, it may seem from above that � can
be suppressed if there does not remain two of AB, C and D. This is not true, actually it is not possible to
suppress C, D and � only since the result would still not be a lattice. This is hidden by the fact that we
also know that C or D cannot be suppressed for other reasons.

As we will see in the next section, there will be other constraints applying.

48

Algorithm

This can be summarised as a predicate closed(C) applying to a set of contexts:

min(C,g) = µ≤{c ∈C∣o ∈ extent(c)}
max(C,m) = µ≥{c ∈C∣m ∈ intent(c)}
closed(C) iff ∀g ∈G, ∣min(C,g)∣ = 1∧∀m ∈M, ∣max(C,m)∣ = 1

Analysis

Such measure does not affect the wost case complexity but can reduce the number of lattices to test.
This is summarised on the running example below:

Theoretical worst case Example
number of classes in gfp(Q) 2∣G∣−1 = 15 7
number of lattice to check 22∣G∣−1 = 32758 28−1 = 128
number of lattices cancelled by minimum (R1–4) 46
number of lattices cancelled by maximum (R5–6) 28
number of lattices cancelled by both 10
number of lattices remaining to check 64

6.2.4 The support graph approach

A smarter strategy consists of analysing the sets of concepts in gfp(Q) that support each others through
references, and adding these one by one to lfp(E) or suppressing them from gfp(Q).

Indeed, the previous approaches suppress concepts from gfp(P) or add them to lfp(F) one by one.
However, unless self-supported, i.e. refering only to concepts that depend on itself, a concept will not
be supported.

It would be more worthy to determine sets of concepts that supports each others and add such sets of
concepts. Of course, this is not very simple because some set of concepts may be required to introduce
or suppress others.

For that purpose, we introduce a dependency graph between concepts requiring other concepts to be
introduced. Precisely, this graph is the graph of the relation↝⊆C×C defined as:

c↝ c′ iff ∃r;(∃r.c′) ∈ intent(c)

Two concepts which relate to each others through this relation cannot be suppressed or added inde-
pendently. This can be generalised to the strongly connected components of the graph of↝. This simple
observation leads to add or suppress concepts components per components and not concept per concept.

Moreover, the result of adding or suppressing a component from a lattice, should lead to a new
lattice. In particular, it must satisfy the closedness condition (Section 6.2.3). The rules considered in
Section 6.2.3 have now to be applied to components:
– when suppressing the component of the minimal concept for an object, there must remain a single

minimal super concept of it, and
– when suppressing the component of the maximal concept for an attribute, there must remain a single

maximal subconcept of it.
This entails that there must remain a single sub/super-component, but in addition that it must not contain
more than a single sub/super-concept.

Although these principles work well on the example below, the derived algorithm is unlikely to be
correct in all cases. Indeed, in FCA, the attributes in concepts may be present for two reasons: because

49

SCC name intent sup sub depends
0 ABCD ∃p.ABCD * ABC, ABD, CD
1 ABC ∃p.ABCD, ∃p.ABD ABCD AB, C 0

ABD ∃p.ABCD, ∃p.ABC ABCD AB, D 0
2 CD ∃p.ABCD, ∃p.CD ABCD C, D 0
3 AB ∃p.ABCD, ∃p.ABD, ∃p.ABC, ∃p.AB ABC, ABD � 1
4 C ∃p.ABCD, ∃p.ABD, ∃p.CD, ∃p.D ABC, CD � 1,2

D ∃p.ABCD, ∃p.ABC, ∃p.CD, ∃p.C ABD, CD � 1,2
5 � ∃p.ABCD, ∃p.ABD, ∃p.ABC, AB, C, D 2,4

∃p.AB, ∃p.CD, ∃p.D, ∃p.C

Table 6.1: The nodes of L3 organised in strongly connected components.

they are necessary to the existence of the concept (typically because the concept is a meet of two other
concepts), or because they are accidental, i.e. they happen to apply to all objects of the extent, but
the concept is justified by the other attributes. In principle, defining the dependency graph based on
necessary attributes is sufficient. However, an accidental attribute in one lattice may be necessary (for
the same concept) in a different lattice. Hence, the graph and its strongly connected components may
change. This calls for further studies to go beyond RCA0.

Algorithm

The algorithm first computes gfp(Q) and lfp(E) in order to take them as a starting point and to determine
which concepts have to be considered. Then it determines the set of strongly connected components of
the↝ relation. Finally it enumerates the subsets of this set which can be added to gfp(G) or suppressed
from lfp(E).
1. Compute gfp(Q) and lfp(E)
2. C← gfp(Q)∖ lfp(E)
3. Compute S the set of strongly connected components of the graph of↝ over C.
4. R←∅
5. For each S′ ⊆ S do

– L← lfp(E)∪⋃S′

– if closed(L), then R← R∪{L}
6. Return R

The same algorithm could be described as suppressing the components from gfp(Q) as used in the
example below.

The algorithm uses a test that the union of the strongly connected components satisfies the closedness
condition. However, this can be implemented more efficiently (see below).

Example

Take the example of Section 4.2, gfp(Q) = L3 (and lfp(E) = L1). The concepts of L3 are enumerated in
Table 6.1.

In principle, there are 25 = 32 possible suppressions (the concepts of lfp(E), here ABCD cannot be
suppressed). Note that, among these 32 items (Table 6.2), the lattice L# displayed in Figure 5.6, which
belongs to the interval, is not even considered.

The minimal and maximal concept constraints identified in the previous section, can now be applied
to the components to which the concepts belong. Looking at the dependency graph of Figure 6.3, it
happens that:

50

∃p.ABCD

∃p.ABD ∃p.ABC ∃p.CD

∃p.AB

a,b

∃p.D

c

∃p.C

d

ABCD

ABC

ABD

AB

CD

C

D

�L3:

ABCD

ABC ABD CD

AB C D

�

0

1 2

3 4

5

Figure 6.3: The strongly connected components of the dependency graph of gfp(Q) = L3.

r1 3 cannot be suppressed if 1 is preserved (previous R1);
r2 5 cannot be preserved if 4 is preserved (part of previous R3);
r3 5 cannot be preserved if 2 and 3 are preserved (extension of previous R3);
r4 4 cannot be preserved if 1 and 2 are preserved (merge of R2 and R3).
The maximal rules, concerning attributes, must be adapted. As before, when suppressing a set of con-
cepts, it is only necessary to take care of those attributes which are preserved by the suppression, i.e.
those who refer to non suppressed concepts. Here since concepts ABC and ADB belong to the same
component, they are always suppressed together. Hence, rules R5 and R6 are not necessary. This is
certainly due to the same reason as observed before: when a concept refers to another, this one refers
back to the initial one in these examples.

These rules can be checked on the 32 configurations of Table 6.2.
The 15 remaining fixed points are presented in Figure 6.4. This illustrates Property 23 that it is a

complete sublattice of [lfp(E),gfp(Q)].

Analysis

In principle, the number of classes in gfp(Q) is in O(2∣G∣). Hence the number of lattices to test for
closedness is in O(22∣G∣). The number of strongly connected components of the dependency graph is
still in O(2∣G∣) (for instance with the diagonal relation matrix). Hence, the number of lattice to consider
is still in O(22∣G∣).

In practice, on the given example, designed far before the algorithms, L3 = gfp(Q) contains 8 classes
and L1 = lfp(E) contains only one, hence there are 128 lattices in the interval [lfp(E),gfp(Q)]. Strongly
connected components leads to deal with only 5 components hence 25 = 32 alternatives. In fact, using
the depdendency techniques, we directly have the 15 alternatives.

This is summarised below:

Theoretical worst case Example
number of classes in gfp(Q) 2∣G∣−1 = 15 7
number of lattice to check 22∣G∣−1 = 32758 28−1 = 128
number of strongly connected components 2∣G∣ = 16 6
number of lattices to check 22∣G∣ = 65536 26−1 = 32
number of lattices cancelled by minimum (r1–r4) 17
number of lattices cancelled by maximum 0
number of fixed points 15

51

Name Suppressed SCC r1 r2 r3 r4 Added SCC
L3 ∅ 12345

1 2345
L4 2 1345

3 × 1245
4 × 1235
5 × × 1234

Q(L#) 12 12
13 13

L2 14 235
15 × × 234
23 × 145
24 × × 135
25 134
34 × × 125
35 × × 124
45 × × 123
123 45
124 35
125 × × 34
134 25
135 × × 24
145 × × 23
234 × 15
235 × × 14
245 245
345 × × × 13
1234 5
1235 × 4
1245 3
1345 2
2345 × 1

L1 12345 ∅

Table 6.2: All possible subsets of strongly connected components and the constraints that they eventually
violate.

52

ABCD

ABC ABD CD

AB C D

�ABCD

CD

AB C D

�

ABCD

ABC ABD

ABC D

�ABCD

CD

C D

�

ABCD

CDAB

�

ABCD

AB C D

�

ABCD

ABC ABD

AB

�

ABCD

CD

�

ABCD

C D

�

ABCD

AB

�

ABCD

ABC ABD

AB

ABCD

CD

ABCD

AB

ABCD

�

ABCD

Figure 6.4: All the lattices belonging to fp(E)∩ fp(Q) in the example of Section 4.2.

53

Conclusion

We provided effective procedures to compute gfp(Q) and fp(E)∩ fp(Q) in RCA0. The former should
easily be extended to RCA contexts as it is very closed to RCA. It will be more difficult to apply the
latter to RCA due to dependencies across lattices. It should first be tested with several scaling operators
and several properties, before adding numerous contexts.

Concerning the extraction of all fixed points, dependencies between different contexts will have to
be taken into account.

Moreover, if the goal is to extract exactly one link key from each concept lattices, this can be used
to reduce the number of strongly connected components. Indeed, all components containing more than
one concepts have to be discarded since they will not provide a link key to be retained in the family.

54

7. Conclusion

We discussed the difficult issue of circular dependencies when extracting link keys. We showed (Chap-
ter 3) that the results of Deliverable 1.1 for link key extraction with RCA can be extended to extract
families of link keys in the presence of circular dependencies.

It is also an illustration of the general-purpose aspect of RCA techniques, usually achieved by in-
troducing new scaling operators [Braud et al. 2018]. It is exploited here to extract link key candidates
instead of concept descriptions.

However, Chapter 4 raised issues about the nature of the results provided in this case. The problem
concerning link key extraction is that not all valid link keys may be returned. More generally, the prob-
lem is that RCA does not necessarily returns all valid (closed) concepts. This motivated a reformulation
of the RCA semantics in terms of fixed points of the functions at the core of RCA.

We studied this problem in a minimalistic version of RCA called RCA0. In Chapter 5, we gave a
new, fixed-point based, semantics for RCA0 and proved that the traditional RCA algorithm computes
the least fixed point. However, the extraction of other fixed points may be interesting, so we discussed
alternative RCA algorithms, first returning the greatest fixed point (useful for link key extraction). We
also identified as self-supported fixed points those other fixed points of interest. The least fixed point
being the smaller of these. This led to develop another function which allows extracting the greatest of
them as an alternative to RCA.

In Chapter 6, we also presented an algorithm, inverse of RCA, to extract the greatest fixed point. We
discussed techniques by which it is possible to enumerate all relevant fixed points.

Applying these results to link key extraction, the least fixed point contains all grounded links; the
greatest fixed point contains self-supported links (or rather recursively-supported links). The approach
taken by RCA is a cautious/skeptical approach accepting only links within the least fixed-point seman-
tics. A more risky/credulous position would adopt those links which are in the greatest fixed point. As
shown by the example of Section 4.4, the most promising link key candidates may be found within the
greatest fixed point.

This is not something specific to link key extraction, RCA users often have to provide extra attributes
in order to increase discrimination and thus biasing the RCA results to a greater least fixed point (see
Section 6.1.1). An interesting remark is that if the identification of objects has to be given through
relations and not a simple set of attributes, then this is a key and this key may be induced by the method
provided in Chapter 3. Then a fixed point has to be sought between the key identifying objects, used
to generate concepts, and concepts, used to generate key candidates. This interaction between key and
concept extraction may be considered in the context of the logical interpretation of relational scaling
(Section 2.2.5) which provides a way to integrate keys as extra knowledge used in concept and key
extraction.

There are two remaining issues more directly related to this work to address next:
– Extending these results to RCA as a whole,
– Applying them to link key extraction.

We are confident that the theoretical results provided here can be directly extended to RCA. The al-
gorithms will require some more care as they will necessitate to investigate the dependencies between
different contexts and lattices.

55

8. Bibliography

Al-Bakri, Mustafa, Manuel Atencia, Steffen Lalande, and Marie-Christine Rousset (2015). “Inferring
same-as facts from Linked Data: an iterative import-by-query approach”. In: Proc. 29th AAAI Con-
ference on Artificial Intelligence, Austin (TX US). AAAI Press, pp. 9–15 (cit. on p. 5).

Atencia, Manuel, Jérôme David, and Jérôme Euzenat (2014). “Data interlinking through robust linkkey
extraction”. In: Proc. 21st European Conference on Artificial Intelligence (ECAI). IOS Press, pp. 15–
20 (cit. on pp. 5, 6, 24).

Atencia, Manuel, Jérôme David, and Jérôme Euzenat (2014). “What can FCA do for database linkkey
extraction?” en. In: Proc. 3rd ECAI workshop on What can FCA do for Artificial Intelligence?
(FCA4AI), Praha (CZ). Vol. 1257. CEUR Workshop Proceedings. CEUR-WS.org, pp. 85–92 (cit. on
p. 5).

— (2021). “On the relation between keys and link keys for data interlinking”. In: Semantic web journal.
to appear.

Atencia, Manuel, Jérôme David, Jérôme Euzenat, Amedeo Napoli, and Jérémy Vizzini (2020). “Link
key candidate extraction with relational concept analysis”. In: Discrete applied mathematics 273,
pp. 2–20 (cit. on pp. 2, 5, 6, 9, 15).

Baader, Franz, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider, eds.
(2003). The description logic handbook: theory, implementations and applications. Cambridge Uni-
versity Press (cit. on pp. 9, 11).

Belohlávek, Radim (2008). Introduction to formal concept analysis. Tech. rep. Univerzita Palackého,
Olomouc (CZ) (cit. on p. 25).

Bizer, Chris, Tom Heath, and Tim Berners-Lee (2009). “Linked data — the story so far”. In: Interna-
tional Journal of Semantic Web Information Systems 5.3, pp. 1–22 (cit. on p. 5).

Braud, Agnès, Xavier Dolques, Marianne Huchard, and Florence Le Ber (2018). “Generalization effect
of quantifiers in a classification based on relational concept analysis”. In: Knowledge-based systems
160, pp. 119–135 (cit. on pp. 9, 10, 55).

Euzenat, Jérôme (2021). “Fixed-point semantics for barebone relational concept analysis”. In: Proc. 16th
international conference on formal concept analysis (ICFCA), Strasbourg (FR). Vol. 12773. Lecture
notes in computer science, pp. 20–37 (cit. on p. 2).

Euzenat, Jérôme and Pavel Shvaiko (2013). Ontology matching. en. 2nd. Heidelberg (DE): Springer.
520 pp. (cit. on p. 5).

Euzenat, Jérôme, Manuel Atencia, Jérôme David, Amedeo Napoli, and Jérémy Vizzini (2019). Candi-
date link key extraction with formal concept analysis. Deliverable 1.1. Elker project (cit. on p. 15).

Ferrara, Alfio, Andriy Nikolov, and François Scharffe (2011). “Data Linking for the Semantic Web”. In:
International Journal of Semantic Web and Information Systems 7.3, pp. 46–76 (cit. on p. 5).

Ferré, Sébastien and Peggy Cellier (2020). “Graph-FCA: an extension of formal concept analysis to
knowledge graphs”. In: Discrete applied mathematics 273, pp. 81–102 (cit. on p. 11).

Ganter, Bernhard and Sergei O. Kuznetsov (2001). “Pattern Structures and Their Projections”. In: Inter-
national Conference on Conceptual Structures (ICCS). Ed. by Harry S. Delugach and Gerd Stumme.
Vol. 2120. Lecture Notes in Computer Science. Springer, pp. 129–142 (cit. on p. 11).

Ganter, Bernhard and Rudolf Wille (1999). Formal Concept Analysis: mathematical foundations. Berlin:
Springer (cit. on pp. 5, 7–9, 27).

Gmati, Maroua, Manuel Atencia, and Jérôme Euzenat (2016). “Tableau extensions for reasoning with
link keys”. In: Proc. 11th Ontology matchijng workshop (OM), Kobe (JP). Vol. 1766. CEUR Work-
shop Proceedings. CEUR-WS.org, pp. 37–48.

Heath, Tom and Christian Bizer (2011). Linked Data: Evolving the Web into a Global Data Space.
Morgan & Claypool (cit. on p. 5).

56

Hogan, Aidan, Antoine Zimmermann, Jürgen Umbrich, Axel Polleres, and Stefan Decker (2012). “Scal-
able and distributed methods for entity matching, consolidation and disambiguation over linked data
corpora”. In: Journal of Web Semantics 10, pp. 76–110 (cit. on p. 5).

Kaytoue, Mehdi, Sergei O. Kuznetsov, Amedeo Napoli, and Sébastien Duplessis (2011). “Mining Gene
Expression Data with Pattern Structures in Formal Concept Analysis”. In: Information Science
181.10, pp. 1989–2001 (cit. on p. 11).

Keip, Priscilla, Sébastien Ferré, Alain Gutierrez, Marianne Huchard, Pierre Silvie, and Pierre Martin
(2020). “Practical Comparison of FCA Extensions to Model Indeterminate Value of Ternary Data”.
In: Proc. 15th International Conference on Concept Lattices and Their Applications (CLA), Tallinn
(EE). Vol. 2668. CEUR Workshop Proceedings, pp. 197–208 (cit. on p. 11).

Kuznetsov, Sergei (2009). “Pattern Structures for Analyzing Complex Data”. In: Proc. International
Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing (RSFDGrC).
Vol. 5908. Lecture notes in computer science, pp. 33–44 (cit. on p. 11).

Kötters, Jens (2013). “Concept Lattices of a Relational Structure”. In: Proc. 21th International Confer-
ence on Conceptual Structures (ICCS). Vol. 7735. Lecture Notes in Computer Science, pp. 301–310
(cit. on p. 11).

Nebel, Bernhard (1990). Reasoning and revision in hybrid representation systems. Lecture Notes in
Artificial Intelligence 422. Berlin (DE): Springer Verlag (cit. on p. 25).

Nentwig, Markus, Michael Hartung, Axel-Cyrille Ngonga Ngomo, and Erhard Rahm (2017). “A survey
of current Link Discovery frameworks”. In: Semantic Web 8.3, pp. 419–436. DOI: 10.3233/SW-
150210 (cit. on p. 5).

Ngonga Ngomo, Axel-Cyrille and Sören Auer (2011). “LIMES: A Time-Efficient Approach for Large-
Scale Link Discovery on the Web of Data”. In: Proc. 22nd International Joint Conference on Artifi-
cial Intelligence (IJCAI), Barcelona (ES). Barcelona (ES), pp. 2312–2317 (cit. on p. 5).

Prediger, Susanne (1997). “Logical Scaling in Formal Concept Analysis”. In: Proc. 5th International
Conference on Conceptual Structures (ICCS), Seattle (WA US). Vol. 1257. Lecture Notes in Com-
puter Science, pp. 332–341 (cit. on p. 9).

Rouane-Hacene, Mohamed, Marianne Huchard, Amedeo Napoli, and Petko Valtchev (2013a). “Rela-
tional Concept Analysis: mining concept lattices from multi-relational data”. In: Annals of Mathe-
matics and Artificial Intelligence 67.1, pp. 81–108 (cit. on pp. 5, 9–12, 15, 16, 30, 32, 34).

— (2013b). “Soundness and Completeness of Relational Concept Analysis”. In: Proc. 11h International
Conference on Formal Concept Analysis (ICFCA). Ed. by Peggy Cellier, Felix Distel, and Bernhard
Ganter. Vol. 7880. Lecture Notes in Artificial Intelligence. Springer, pp. 228–243 (cit. on pp. 6, 12,
13, 26, 29).

Saı̈s, Fatiha, Nathalie Pernelle, and Marie-Christine Rousset (2007). “L2R: A Logical Method for Ref-
erence Reconciliation”. In: Proc. 22nd National Conference on Artificial Intelligence (AAAI), Van-
couver (CA). AAAI Press, pp. 329–334 (cit. on p. 5).

Tarski, Alfred (1955). “A lattice-theoretical fixpoint theorem and its applications”. In: Pacific journal of
mathematics 5.2, pp. 285–309 (cit. on p. 27).

Volz, Julius, Christian Bizer, Martin Gaedke, and Georgi Kobilarov (2009). “Silk – A Link Discovery
Framework for the Web of Data”. In: Proc. WWW Workshop on Linked Data on the Web, LDOW,
Madrid (SP). Vol. 538. CEUR Workshop Proceedings. CEUR-WS.org (cit. on p. 5).

Wajnberg, Mickael (2020). “Analyse relationnelle de concepts: une méthode polyvalente pour l’extraction
de connaissance”. PhD thesis. Université du Québec à Montréal ; Université de Lorraine (cit. on p. 9).

57

https://doi.org/10.3233/SW-150210
https://doi.org/10.3233/SW-150210

	Introduction
	Preliminaries
	Basics of formal concept analysis
	Extending formal concept analysis
	A very short introduction to RCA
	RCA0

	Dealing with cyclic dependent link keys through relational concept analysis
	RCA encoding of the extraction of dependent link key candidate
	Implementation and complexity considerations

	Problems with circular dependencies
	Base example
	Running example
	Interleaved references
	Link key extraction example

	A fixed-point semantics for RCA0
	Semantics and properties: the context approach
	Semantics and properties: the lattice approach
	Well-grounded and least fixed-point semantics
	Self-supported fixed points
	Structure of fixed points
	FCA and hierarchical RCA

	Alternative fixed-point extraction methods
	Computing the greatest fixed point
	Extracting all fixed points in RCA0

	Conclusion
	Bibliography

