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ABSTRACT

Deep neural networks have demonstrated their ability to automatically extract meaningful features
from data. However, in supervised learning, information specific to the dataset used for training, but
irrelevant to the task at hand, may remain encoded in the extracted representations. This remaining
information introduces a domain-specific bias, weakening the generalization performance. In this
work, we propose splitting the information into a task-related representation and its complementary
context representation. We propose an original method, combining adversarial feature predictors
and cyclic reconstruction, to disentangle these two representations in the single-domain supervised
case. We then adapt this method to the unsupervised domain adaptation problem, consisting of
training a model capable of performing on both a source and a target domain. In particular, our
method promotes disentanglement in the target domain, despite the absence of training labels. This
enables the isolation of task-specific information from both domains and a projection into a common
representation. The task-specific representation allows efficient transfer of knowledge acquired from
the source domain to the target domain. In the single-domain case, we demonstrate the quality of our
representations on information retrieval tasks and the generalization benefits induced by sharpened
task-specific representations. We then validate the proposed method on several classical domain
adaptation benchmarks and illustrate the benefits of disentanglement for domain adaptation.

1 Introduction

The wide adoption of Deep Neural Networks in practical supervised learning applications is hindered by their sensitivity
to the training data distribution. This problem, known as domain shift, can drastically weaken, in real-life operating
conditions, the performance of a model that seemed perfectly efficient in simulation. Learning a model with the goal of
making it robust to a specific domain shift is called domain adaptation (DA). The data available to achieve DA often
consist of a labeled training set from a source domain and an unlabeled sample set from a target domain. This yields the
problem of unsupervised domain adaptation (UDA).

In this work, we take an information disentanglement perspective on UDA. We argue that a key to efficient UDA lies in
separating the necessary information to complete the network’s task (classification or regression) from a task-orthogonal
information which we call context or style. While such a separation appears rather intuitive for samples from the source
domain, disentanglement in the target domain seems however a difficult endeavor since the available data is unlabeled.
Our contribution is two-fold. We propose a formal definition of the disentanglement problem for UDA which, to the
best of our knowledge, is new. Then we design a new learning method, called DiCyR (Disentanglement by Cyclic
Reconstruction), which relies on cyclic reconstruction of inputs in order to achieve efficient disentanglement, including
in the target domain. We derive DiCyR both in the supervised learning and in the UDA cases. Although this paper
is developed mainly around UDA, we emphasize that our contribution lies in the disentanglement between task and
context information. Its consequences carry out to information retrieval in the single domain case as well as to UDA.

This paper is organized as follows. Section 2 presents the required background on supervised learning and UDA, and
proposes a definition of disentanglement for UDA. Section 3 reviews recent works in the literature that allow for a
critical look at our contribution and put it in perspective. Section 4 introduces DiCyR, first for the single-domain case,



and then for the UDA problem. Section 5 empirically evaluates DiCyR against state-of-the-art methods and discusses
its strengths, weaknesses, and variants. Section 6 summarizes and concludes this paper.

2 A definition of information disentanglement

In this section, we introduce the notations and background upon which we build the contributions of Section 4. Let
X be an input space of descriptors and Y an output space of labels. A supervised learning problem is defined by a
distribution ps(x, y) over elements of X × Y . In what follows, ps will be called the source distribution. One wishes to
estimate a mapping f̂ that minimizes a risk function of the form E(x,y)∼ps [l(f̂(x), y)], where l(ŷ, y) is a loss function.
The optimal estimator is denoted f and one often writes the distribution P(y|x) as y ∼ f(x) + η, where η captures the
deviations between y and f(x). Hence, one tries to learn f . In practice, the risk can only be approximated using a finite
set of samples {(xi, yi)}ni=1 all independently drawn from ps and f̂ is a parametric function (such as a deep neural
network) of the form y = f̂(x; θ).

Domain adaptation (DA) consists in considering a target distribution pt over X ×Y that differs from ps, and the transfer
of knowledge from learning in the source domain (ps) to the target domain (pt). Specifically, unsupervised DA exploits
the knowledge of a labelled training set {(xsi , ysi )}ni=1 sampled according to ps, and an unlabelled data set {(xti)}mi=1
sampled according to pt. For instance, the source domain data could be a set of labelled photographs of faces, and
the target domain data, a set of unlabelled face photographs, taken with a different camera under different exposure
conditions. The problem consists in minimizing the target loss E(x,y)∼pt [l(f̂(x), y)].

We suppose that a necessary condition to benefit from the knowledge available in the source domain and transfer it to
the target domain is the existence of a common information manifold between domains, where an input’s projection is
sufficient to predict the labels. We refer to this intuitive condition as the underlying UDA hypothesis, which differs
from the more general case of representation learning [2]. We call the useful information task-specific or task-related.
The complementary information should be called task-orthogonal; it is composed of information present in the input
but irrelevant to the task at hand. For the sake of naming simplicity, we will call this information style (note that it may
be empty).

Let Πτ : X → T and Πσ : X → S denote two projection operators, where T and S denote respectively the latent
task-related information space and the latent style-related information space. Given the random variable X defined
over X , let T and S be the corresponding random variables defined over T and S. Let Π be the joint projection
Π(x) = (Πτ (x),Πσ(x)). Conversely, we shall note Π̄ : T ×S → X a reconstruction operator. And finally, c : T → Y
will denote the labeling operator which only uses information from T . Let also I(A,B|C) denote the mutual
information between random variables A and B, conditioned by C. We consider that the information of the elements
of X is correctly disentangled by Π = (Πτ ,Πσ) if one can find Π̄ and c such that:

C1: c,Πτ maximize I(T, Y ),

C2: Πτ ,Πσ maximize I((T, S), X),

C3: I(T, S|X) = 0

C4: Πσ maximizes I(S,X)

Condition C1 imposes that the projection into T retains enough information to correctly label samples. Condition
C2 imposes that all the information necessary for the reconstruction is preserved by the separation performed by Π.
Condition C3 states that no information is present in both T and S. It can be reformulated as “Πτ ,Πσ minimize
I(T, S|X)”. Conditions C1 to C3 tolerate representations (T ,S) that push more than the necessary task information
into T . By maximizing the mutual information between the style and the image, and since condition C3 imposes no
shared information between the task and style representations, condition C4 guarantees that only the strictly necessary
task information is in T and all the rest is in S. Overall, this formulation of disentanglement boils down to a multi-
objective optimization problem on the quadruplet 〈Πτ ,Πσ, Π̄, c〉. The existence of a common information manifold
across domains that permits seamless generalization from one domain to the other supposes the existence of at least one
solution that is dominant for all optimization criteria independently. Hence, under the underlying UDA hypothesis, that
there exist a classifier that solves the decision problem at hand whatever the considered domain, this multi-objective
problem degenerates to a single objective one. Note that this definition is not restricted to the problem of DA and
proposes a formulation for information disentanglement in the general case. To the best of our knowledge, this is the
first explicit formulation of disentanglement as an optimization problem.
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3 Related work

Disentanglement between the domain-invariant, task-related information and the domain-specific, task-orthogonal, style
information is a desirable property to have for DA. In the next paragraphs, we cover important work in representation
disentanglement, domain adaptation, and their interplay. For each contribution, we evaluate whether it complies with
conditions C1 to C4, and how.

Before deep learning became prevalent, [44] presented a method using bi-linear models able to separate style from
content. More recently, methods based on generative models have demonstrated the ability to disentangle factors of
variations from elements of a single domain [34, 30, 8, 16, 37]. In a cross-domain setting, [14] use pairs of images with
the same labels from different domains to separate representations into a shared information common to both domains
and a domain-exclusive information. We note that these approaches do not explicitly aim at respecting all conditions
listed in Section 2. Additionally, most require labeled datasets (and in some cases even paired datasets) and thus do not
address the unsupervised DA problem.

One approach to UDA consists in aligning the source and target distributions statistics, a topic closely related to batch
normalization [21]. CORAL [41] minimizes the distance between the covariance matrices of the features extracted from
the source and target domains. Assuming the domain-specific information is contained inside the batch normalization
layers, AdaBN [26] aligns the batch statistics by adopting a specific normalization for each domain. Autodial [7] aims
to align source and target feature distributions to a reference one and introduce domain alignment layers to automatically
learn the degree of feature alignment needed at different levels of the network. Similarly, DWT [35] replaces batch
normalization layers with domain alignment layers implementing a so-called feature whitening. A significant asset of
these methods is the possibility to be used jointly with other DA methods (including the one we propose in Section 4).
These methods jointly learn a common representation for elements from both domains. Conversely, SHOT [27] freezes
the representations learned in the source domain before training a target-specific encoder to align the representations of
the target elements by maximizing the mutual information between intermediate feature representations and outputs of
the classifier.

Ensemble methods have also been applied to UDA [23, 43]. SEDA [10] combines stochastic data augmentation with
self-ensembling to minimize the prediction differences between a student and a teacher network in the target domain.

Another approach involves learning domain-invariant features, that do not allow to discriminate whether a sample
belongs to the source or target domain, while still permitting accurate labeling in the source domain. This approach
relies on the assumption that such features allow efficient labeling in the target domain. DRCN [13] builds a two-headed
network sharing common layers; one head performs classification in the source domain, while the second is a decoder
that performs reconstruction for target domain elements. [12] propose the DANN method and introduce Gradient
Reversal Layers to connect a domain discriminator and a feature extractor. These layers invert the gradient sign during
back-propagation so that the feature extractor is trained to fool the domain discriminator. WDGRL [39] modifies DANN
and replaces the domain discriminator with a network that approximates the Wasserstein distance between domains.
ADDA [45] optimizes, in an adversarial setting, a generator and a discriminator with an inverted label loss.

Other methods focus on explicitly disentangling an information shared between domains (analogous to the domain-
invariant features above) from a domain-specific information. Inspired by InfoGAN [8], CDRD [29] isolate a latent
factor, representing the domain information, from the rest of an encoding, by maximizing the mutual information
between generated images and this latent factor. Some domain information may still be present in the remaining part of
the encoding and thus may not comply with conditions C3 and C4.

UFDN [28] (and also [25]) trains an encoder to produce domain-invariant representations used by an image generator
trained to fool a discriminator with cross-domain images. DSN [3] also produces domain-invariant features by training
a shared encoder to fool a domain discriminator. It trains two domain-private encoders with a difference loss that
encourages orthogonality between the shared and the private representations (similarly to condition C3). DIDA [6] (but
also [5] and [32]) combines a domain discriminator with an adversarial classifier to separate the information shared
between domains from the domain-specific information.

All these methods build a shared representation that prevents discriminating between source and target domains, while
retaining enough information to correctly label samples from the source domain. However, because they rely on
an adversarial classifier that requires labeled data, they do not guarantee that the complementary, domain-specific
information for samples in the target domain does not contain information that overlaps with the shared representation.
In other words, they only enforce C3 in the source domain. They rely on the assumption that the disentanglement will
still hold when applied to target domain elements, which might not be true.

Another identified weakness in methods that achieve a domain-invariant feature space is that their representations might
not allow for accurate labeling in the target domain. Indeed, feature alignment does not necessarily imply a correct
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mapping between domains. To illustrate this point, consider a binary classification problem (classes c1 and c2) and two
domains (d1 and d2). Let (c1, d1) denote samples of class c1 in d1. It is possible to construct an encoding that projects
(c1, d1) and (c2, d2) to the same feature values. The same holds for (c1, d2) and (c2, d1) for different feature values.
This encoding allows discriminating between classes in d1. It also fools a domain discriminator since it does not allow
predicting the original domain of a projected element. However, applying the classification function learned on d1 to
the projected d2 elements leads to catastrophic predictions.

Transforming a sample from one domain to the other, while retaining its label information can be accomplished by
image-to-image translation methods. Using an adversarial setting, SBADA-GAN [36], ACAL [19], and CyCADA [18]
extend the cycle consistency introduced in CycleGAN [47]. A major drawback of these methods lies in the possible
instability during training that is caused by the min-max optimization problem induced by the adversarial training of
generators and discriminators.

In the next section, we introduce a method that does not rely on a domain discriminator and an adversarial label
predictor, but directly minimizes the information sharing between representations. This allows to guarantee that there is
no information redundancy between the task-related and the task-orthogonal style information in both the source and
the target domains. Along the way, it provides an efficient mechanism to disentangle the task-related information from
the style information in the single domain case. Our method combines information disentanglement, intra-domain and
cross-domain cyclic consistency, to enforce a more principled mapping between each domain.

4 Disentanglement with Gradient Reversal Layers and cyclic reconstruction

First, we propose an original method to disentangle the task-related information from the style information for a single
domain in a supervised learning setting. In a second step, we propose an adaptation of this method to learn these
disentangled representations in both domains for UDA. This disentanglement allows, in turn, to efficiently predict labels
in the target domain.

4.1 Task-style disentanglement in a single domain

Our approach consists in estimating jointly Π, Π̄ and c as a deep feed-forward neural network. We shall note θΠ, θΠ̄,
and θc the parameters of the respective sub-parts of the network. Π̄ ◦Π takes the form of an auto-encoder, while c ◦Πτ

is a task-related (classification or regression) network. Figure 1a summarizes the global architecture which we detail in
the following paragraphs.

Conditions C1 and C2 are expressed through the definition of a task-specific loss LC1 (e.g. cross-entropy for classifica-
tion, L2 loss for regression) and a reconstruction loss LC2. Thus, the update of θΠ should follow −∇θΠ (LC1 + LC2),
the update of θΠ̄ relies on −∇θΠ̄LC2, and that of θc uses −∇θcLC1.

In order to achieve condition C3, we exploit Gradient Reversal Layers [12, GRL]. Note that this choice is arbitrary
and alternatives exist (e.g. [37]) to enforce C3. We train two side networks rτ : S → T and rσ : T → S whose
purpose is to attempt to predict T given S, and S given T respectively. For a given x, let us write (τ, σ) = Π(x),
τ̂ = rτ (σ), and σ̂ = rσ(τ). We train rτ and rσ to minimize the losses Lrτ = ‖τ − τ̂‖2 and Lrσ = ‖σ − σ̂‖2. Let
LC3 = Lrτ +Lrσ denote the combination of these losses. We connect these two sub-networks to the whole architecture
using GRLs. GRLs behave as the identity function during the forward pass and invert the gradient sign during the
backward pass, hence pushing the parameters to maximize the output loss. During training, this architecture constrains
Π to produce features in T and S with the least information shared between them. Consequently, the update of θΠ

follows +∇θΠLC3.

This constraint efficiently avoids information redundancy between T and S. However, it does not avoid all the
information being pushed into T . Preventing this undesirable behavior is the purpose of condition C4. To translate C4
into a practical optimization loss, we consider a cyclic reconstruction scheme. Consider two elements x and x′ from
X , and their associated (τ, σ) = Π(x) and (τ ′, σ′) = Π(x′). Let x̃ = Π̄(τ, σ′) be the reconstruction of τ that uses the
style σ′ of x′. A correct allotment of the information between T and S requires that the task and style information be
preserved in (τ̃ , σ̃) = Π(x̃). In particular, we wish to have σ̃ as close as possible to σ′, and sufficiently far from σ. We
achieve this with a triplet loss [38] using σ̃ as the anchor, σ′ and σ as, respectively, the positive and negative inputs, and
a margin m. Note that alternatives, like regularization versus random projections (as e.g. in [15, 9]), might achieve a
similar result without such a triplet loss. Although it is not necessary for C4, we encourage the alignment of task-related
representations by encouraging τ̃ to be as close as possible to τ , or, alternatively, to have c(τ̃) as close as possible to c(τ).
Thus C4 results in minimizing the cyclic reconstruction loss LC4 = ‖τ̃ − τ‖2 +max{‖σ̃ − σ′‖2−‖σ̃ − σ‖2 +m, 0}.
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The global loss enforcing disentanglement is thus LC1 + LC2 − LC3 + LC4. Specifically, with learning rate α, the
gradient-based update of network parameters boils down to:

θΠ ← θΠ − α∇θΠ (LC1 + LC2 − LC3 + LC4) ,

θΠ̄ ← θΠ̄ − α∇θΠ̄(LC2 + LC4),

θc ← θc − α∇θcLC1,

θrτ ← θrτ − α∇θrτ Lrτ , θrσ ← θrσ − α∇θrσLrσ .

Computing these losses implies a forward pass for each sample in a minibatch, and a second forward pass to compute
LC4. The backward propagation of gradients is unaffected. Thus, the computational complexity remains in the same
class as vanilla empirical risk minimization. We call this method DiCyR for Disentanglement by Cyclic Reconstruction.

x
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σ

τ

Π̄

c ŷ

x̄

GRL

rσ

σ̂

GRL

rτ

τ̂

(a) Supervised learning
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Π
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Π̄s

Π̄t

c ŷ

x̂s

xst

GRL

rσ

σ̂

GRL

rτ σt

τ̂

(b) Unsupervised domain adaptation

Figure 1: Network architectures

4.2 Task-style disentanglement in the unsupervised domain adaptation case

We propose a variation of DiCyR for UDA, where we replace the decoder Π̄ by two domain-specific decoders, Π̄s

and Π̄t. We shall compensate for the lack of labeled data in the target domain by computing cross-domain cyclic
reconstructions.

Let (xs, ys) be a sample from the source domain and xt be a sample from the target domain. Let us denote (τs, σs) =
Π(xs) and (τt, σt) = Π(xt), the corresponding projections in the latent task and style-related information spaces. Then
one can define, as in the previous section, LC1s as the task-specific loss on the source domain, and LC2s and LC2t as
the reconstruction losses in the source and target domains respectively. As previously, we constrain the task-related
representation and the style representation not to share information using two networks rτ and rσ, connected to the
main architecture by GRL layers (Figure 1b), allowing the definition of the Lrτ , Lrσ and LC3 losses. Lastly, we exploit
cyclic reconstructions in both domains to correctly disentangle the information and hence define the same LC4 loss as
above.

This disentanglement in the target domain separates the global information in two but does not guarantee that what is
being pushed into τ is really the task-related information. The projection Πτ could, for instance, retain confounding
factors that are sufficient to classify inputs from the source domain, but not from the target domain, since LC1 is only
defined for elements from the source domain. This can only be enforced by cross-domain knowledge (since no correct
labels are available in the target domain). Thus, finally, we would like to allow projections from one domain into
the other while retaining the task-related information, hence allowing domain adaption. Using the notations above,
we construct xst = Π̄t(τs, σt), the reconstruction of xs’s task-related information, in the style of xt. This creates
an artificial sample in the target domain, whose label is ys. Then, with (τst, σst) = Π(xst), one wishes to have τst
match closely τs (or, alternatively, c(τst) match closely ys) in order to prevent the loss of task information during the
cross-domain projection and thus to constrain the task representations to be domain-invariant. Symmetrically, one can
construct the artificial sample xts = Π̄s(τt, σs) and enforce that τts closely matches τt. Note that the label of xts is
unknown and yet it is still possible to enforce the disentanglement by cyclic reconstruction. Overall, these terms boil
down to a cross-domain cyclic reconstruction loss for UDA LC1t = ‖τs − τts‖2 + ‖τt − τst‖2.
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Method SVHN 3D Shape floor
hue

wall
hue

object
hue scale orientation

Full features 0.98 1 0.94 0.94 0.89 0.6 0.5
Task-related features 0.98 1 0.11 0.12 0.13 0.15 0.10
Style features only 0.17 0.26 0.89 0.95 0.88 0.59 0.42

Random guess 0.10 0.25 0.10 0.10 0.10 0.125 0.067

Table 1: Classification accuracy using task, style or full information, on SVHN and 3D shapes.

As previously, the global loss is the aggregate of all optimization criteria LC1s + LC2s + LC2t − LC3 + LC4 + LC1t .
We note LC1 = LC1s + LC1t and LC2 = LC2s + LC2t for brevity. The network parameters are updated according to:

θΠ ← θΠ − α∇θΠ(LC1 + LC2 − LC3 + LC4)

θΠ̄s ← θΠ̄s − α∇θΠ̄s (LC2s + LC4)

θΠ̄t ← θΠ̄t − α∇θΠ̄t (LC2t + LC4),

θc ← θc − α∇θcLC1,

θrτ ← θrτ − α∇θrτ Lrτ
θrσ ← θrσ − α∇θrσLrσ .

5 Experimental results and discussion

We first evaluate DiCyR’s ability to disentangle the task-related information from the style information in the supervised
context. Then we demonstrate DiCyR’s efficiency on UDA. Hyperparameters, network architectures and implementation
choices are summarized in Appendix D. We emphasize that no extensive hyperparameter tuning has been performed.

5.1 Single-domain disentanglement

We evaluate the disentanglement performance of DiCyR by following the protocol introduced by [30]. Since we do
not use generative models, we only focus on their two first items: swapping and retrieval. We evaluate DiCyR on the
SVHN [31], and 3D Shapes [4] disentanglement benchmarks. The task is predicting the central digit in the image for
the SVHN dataset, and the shape of the central object in the scene for the 3D Shapes dataset.

Swapping involves swapping styles between samples and visually assessing the realism of the generated image. It
combines the task-related information τi of a sample xi with the style σj of another sample xj . We use the decoder
to produce an output x̃ij . Figure 2 shows randomly generated outputs on the two datasets. DiCyR produces visually
realistic artificial images with the desired styles.

Task

Style

Task

Style

Figure 2: Swapping styles on SVHN and 3D Shapes

Retrieval concerns finding, in the dataset, the nearest neighbors in the embedding space for an image query. We carry
out this search for nearest neighbors using the Euclidean distance on both the task-related and the style representations.
A good indicator of the effectiveness of the information disentanglement would be to observe neighbors with the same
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Query Neighbors Query Neighbors

(a) Query on the task-related representation

Query Neighbors Query Neighbors

(b) Query on the style representation

Figure 3: Nearest neighbors according to each representation

labels as the query when computing distances on the task-related information space, and neighbors with similar style
when using the style information. Figure 3 demonstrate that the neighbors found when using the task-related information
are samples with the same label as the query’s label and that the neighbors found using the style representation share
many characteristics with the query but not necessarily the same labels.

We ran a quantitative evaluation of disentanglement by training a neural network classifier with a single hidden layer
of 32 units to predict labels, using either the task-related information alone, or the style information alone. If the
information is correctly separated, we expect the classifier trained with task-related information only to get similar
performance to a classifier trained with full information. Conversely, the classifier trained with the style information
only should reach similar performance to a random guess (10% accuracy on SVHN, 25% on 3D Shapes). Table 1 (first
two columns) reports the obtained testing accuracies.

It appears that the task-related representation contains enough information to correctly predict labels. We also observe
that full disentanglement is closely but not perfectly achieved, as the classifier trained only with style information
behaves slightly better than random choice. To quantify how much style information is being unduly encoded in the
task-related representation, we ran a similar experiment to predict the five other style variation factors in 3D Shapes
(floor hue, wall hue, object hue, scale and orientation). The trained classifier reaches accuracies (Table 1 rightmost
columns) that are very close to a random guess, thus validating the disentanglement quality.

Without proper disentanglement, the features extracted by neural networks may contain context information that is
specific to the training data distribution and unrelated to the task at hand. This context information may comprehend
confounding factors, introduced during the collection of the data for example, which can strongly affect generalization.
To illustrate this phenomenon, we train a network to classify zeros and ones extracted from the MNIST dataset. During
training, we modify the dataset so that all ones have a yellow color and all zeros have a blue color while varying
the intensity of the color. We then measure the accuracy of this network on a test dataset in which the colors of the
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ones and zeros are inverted (Figure 4). The accuracies, reported in Table 2, show that the network is incapable of
generalizing on the test set. Conversely, by training DiCyR on the same training set, we observe that its accuracies
remain similar despite the change of color. While the first network’s predictions exploit the bias present in the training
set’s context information, DiCyR is insensitive to it. Its ability to disentangle the task information from the context
information allows DiCyR to retain its performance on data sampled from a different input distribution. Hence DiCyR
helps generalize more robustly on unseen test distributions.

Figure 4: Train and test data

Method Train accuracy Test accuracy
Supervised learning 1.0 0.067

DiCyR 0.984 0.957

Table 2: Vanilla classifier vs. DiCyR on a biased dataset

5.2 Unsupervised domain adaptation problem

We evaluate DiCyR by performing domain adaptation between the MNIST [24], SVHN, and USPS [20] datasets, and
between the Syn-Signs [11] and the GTSRB [40] datasets. Following common practice in the literature, we trained our
network on four different settings: MNIST→USPS, USPS→MNIST, SVHN→MNIST, and Syn-Signs→GTSRB. We
measure the classification performance in the target domain and compare it with state-of-the-art methods (Table 3). We
also compare with a baseline classifier that is only trained on the source domain data. Values reported in Table 3 are
quoted from their original papers.1

Source MNIST USPS SVHN Syn-Signs
Method Target USPS MNIST MNIST GTSRB

Baseline 78.1 58.0 60.2 79.0
DSN [3] 91.3 - 82.7 93.1
DiDA [6] 92.5 - 83.6 -
SBADA-GAN [36] 97.6 95.0 76.1 96.7
CyCADA [18] 95.6 96.5 90.4 -
ACAL [19] 98.3 97.2 96.5 -
DiCyR (ours) 98.7 98.3 97.7 97.4
DANN [12] 85.1 73.0 73.9 88.6
ADDA [45] 89.4 90.1 76.0 -
DRCN [13] 91.8 73.7 82.0 -
DWT [35] 99.1 98.8 97.7 -
SEDA [10] 98.2 99.5 99.3 99.3
SHOT [27] 98.4 98.0 98.9 -

Table 3: Target domain accuracy, reported as percentages

Our method, without extensive hyperparameter tuning, appears to be on par with the best state-of-the-art methods. We
separate the methods that perform domain adaptation between those that aim at disentanglement or image-to-image

1Comparisons might be inexact due to reproducibility concerns [33] and these figures mostly indicate which are the top competing
methods.
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translation (DSN, DiDA, SBADA-GAN, CyCADA, ACAL), and those that rely on other principles such as features or
domain statistics alignment (DANN, ADDA, DRCN, DWT, SEDA, SHOT). DiCyR fundamentally belongs to the first
group and outperforms all methods therein, on all benchmarks. We underline that this is probably the key result of this
contribution since DiCyR is primarily a disentanglement method (which we apply to domain adaptation, among other
tasks).

DiCyR is only slightly outmatched by DWT and SEDA on the MNIST↔USPS and by SEDA and SHOT in the
SVHN→MNIST benchmarks. The variation on batch normalization introduced by DWT and the mean teacher semi-
supervised learning model [43] used by SEDA are orthogonal to our contribution and could be combined to DiCyR in
order to improve its performance.

DiCyR uses GRLs to ensure that no information is shared between T and S. One might object that condition C3 was
expressed in terms of mutual information. Thus, DiCyR only indirectly implements this condition using GRLs. An
alternative could be to use an estimator of the mutual information, such as proposed by [1], to directly minimize it
(and thus avoid the adversarial setting altogether). Such an approach was explored in the work of [37] to disentangle
representations between pairs of images, and constitutes a promising perspective of research.

Task

Style

Task

Style

(a) Swapping between SVHN (source) and MNIST (target)

(b) Swapping between Syn-Signs (source) and GTSRB (target)

Figure 5: Cross-domain swapping

A desirable property of the task-related encoding is its domain invariance. To evaluate this aspect, we built a t-SNE
representation [17] of the task-related features, in order to verify their alignment between domains (Figure 6).
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As in Section 5.1, we evaluate qualitatively the effectiveness of disentanglement, especially in the target domain, and
produce visualizations of cross-domain style and task swapping. Here, we combine one domain’s task information
with the other domain’s styles to reconstruct the images of Figure 5. The most important finding is that the style
information was correctly disentangled from the task-related information in the target domain without the use of any
label. Specifically, the rows in these figures show that the class information is preserved when a new style is applied,
while the columns illustrate the efficient style transfer allowed by disentanglement.

Figure 6: t-SNE on task-related features. SVHN (blue)→MNIST (red). Left: source only. Right: DiCyR

Finally, directly computing the distances on the task-related features in LC1t often leads to unstable results. As
hinted in Section 4, using instead a task oriented loss LC1t = ‖c(τs)− y‖2 + ‖c(τt)− c(τst)‖2 stabilizes training
and improves the target domain accuracy. Training c with cross-domain projections from the source domain and the
corresponding labels improves its generalization to the target domain and forces the encoder to produce task-related
features common to both domains. To illustrate this property, consider the following example. In one domain, the
digit “7” is written with a middle bar, while in the other it has none. This domain-specific middle bar feature should
not be expressed in T ; it should be considered as a task-orthogonal style feature. Thus using c’s predictions within
the domain cyclic loss, instead of distances in T , prevents the encoder from representing the domain-specific features
in T and encourages their embedding in S.

6 Conclusion

In this work, we introduced a new disentanglement method, called DiCyR, to separate task-related and task-orthogonal
style information into different representations in the context of unsupervised domain adaptation. This method
also provides a simple and efficient way to obtain disentangled representations for supervised learning problems.
Its main features are its overall simplicity, the use of intra-domain and cross-domain cyclic reconstruction, and
information separation through Gradient Reversal Layers. The design of this method stems from a formal definition
of disentanglement for domain adaptation which, to the best of our knowledge, is new. Empirical evaluation shows
that DiCyR allows for efficient disentanglement, as demonstrated on both information retrieval and domain adaptation
tasks where it is competitive with state-of-the-art methods. Moreover, it is the only method that explicitly aims at
disentanglement in the target domain, where no label information is available.
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A Cross-domain disentanglement visualizations

Figures 7 and 8 report extra cross-domain visualizations similar to those in Figure 5.

Task

Style

Task

Style

Figure 7: Cross-domain swapping between USPS (source) and MNIST (target)

Task

Style

Task

Style

Figure 8: Cross-domain swapping between MNIST (source) and USPS (target)

B Discussion on the βC3 and βC1t scheduling

Although the schedule on βC3 (single domain case) and βC1t (domain adaptation case) is not absolutely necessary,
we found out it helped the overall convergence. These coefficients gradually increase the weight of the information
disentanglement objective and the cross-domain reconstruction objective. This assigns more importance to learning
a good predictor c ◦Π during early stages. From this perspective, gradually increasing βC3 can be seen as gradually
removing task-useless information from T and transferring it to S . Similarly, increasing βC1t corresponds to letting the
network discover disentangled representations before aligning them across domains.

As previously mentioned, our goal in this study was to provide a robust disentanglement method that permits domain
adaptation. Therefore, no complete hyper-parameter study and tuning was performed and these findings are thus
reported as such and might be incomplete. Refining the understanding of the influence of the different β coefficients is
closer to the problem of meta-learning and beyond the scope of this paper.
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C Influence of batch normalization and dropout

Batch normalization [21] is an efficient way to reduce the discrepancy between the source and target distributions
statistics. We noticed that, for the specific SVHN→MNIST setting, using instance normalization [46] slightly improves
the target domain accuracy. Normalizing across channels, the instance normalization layers helps the networks to be
agnostic to the image contrast which is particularly strong in MNIST. We also noticed that using a large dropout in the
sub-network c, and small embedding dimensions for Π’s outputs improves both the disentanglement quality and the
target domain accuracy. We conjecture that the induced information bottleneck forces the task-related representation to
be as concise as possible and thus encourages disentanglement.

D Network architecture and hyper-parameters

In line with the Machine Learning Reproducibility Checklist [33], we provide all details about network architectures,
training hyperparameters and computing resources to permit easy reproduction of our results. The next paragraphs
detail the network architectures used in the experiments of Section 5. It should be noted that neither these architectures,
nor the associated hyper-parameters have been extensively and finely tuned to their respective tasks, as the goal of this
contribution was to provide a generic, robust method. Thus, it is likely that performance gains can still be obtained on
this front.

D.1 Single domain supervised disentanglement experiments

This section and Table 4 describe the network architecture and the hyper-parameters used in the experiments of Section
5.1. The encoder Π is composed of shared layers, followed by the specific single-layer task-related and style encodings
Πτ and Πσ. We used the exact same network architectures for both the 3D shapes and SVHN datasets, the only
difference being the dimension of the embeddings T and S.

In all experiments, we found out empirically that convergence was improved by applying a coefficient βC2 = 5 to LC2

and βC4 = 0.1 to LC4 in the global loss. We also use a βC3 on LC3; this coefficient increases linearly from 10−2 to 10
over the first 10 epochs and remains at 10 afterwards (see Appendix B for a discussion on this coefficient). Convergence
was reached within 50 epochs. We used Adam [22] as an optimizer with a learning rate lr = 5 · 10−4 for the first 30
epochs and lr = 5 · 10−5 for the last 20 epochs.

Network Architecture

Π

• Conv2D(filters=32, kernel=5× 5, stride=1, padding=2, ReLU)
•Max Pooling(filters=2× 2, stride=2)
• Conv2D(filters=32, kernel=5× 5, stride=1, padding=2, ReLU)
•Max Pooling(filters=2× 2, stride=2)
• Conv2D(filters=64 for SVHN, kernel=3× 3, stride=1, padding=1, ReLU)
• Dense(nb_neurons=1024, ReLU)

Πτ • Dense(nb_neurons=150, ReLU)
Πσ • Dense(nb_neurons=150, ReLU)

Π̄

• Dense(nb_neurons=1024, ReLU)
• Dense(nb_neurons=8192, ReLU)
• Conv2D(filters=64, kernel=3× 3, stride=1, padding=1, ReLU)
• Upsample (scale_factor=2)
• Conv2D(filters=32, kernel=5× 5, stride=1, padding=2, ReLU)
• Upsample(scale_factor=2)
• Conv2D (filters=3, kernel=5× 5, stride=1, padding=2, Sigmoid)

c
• Dropout(p=0.2(3DShapes) or 0.55(SVHN))
• Dense(nb_neurons=nb_labels, Softmax)

rτ and rσ
• Gradient Reversal Layer
• Dense(nb_neurons=100, ReLU)
• Dense(nb_neurons=100, ReLU)
• Dense(nb_neurons=20(Shapes) or 150(SVHN), Linear)

Table 4: Supervised experiments architectures
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D.2 Unsupervised domain adaptation experiments

This section and Tables 5, 6, and 7 describe the network architecture and the hyper-parameters used in the experiments
of Section 5.2. The encoder Π is composed of shared layers, followed by the specific task-related and style encodings.
Those final layers are denoted Πτ and Πσ in the tables below. For the sake of implementation simplicity, we chose
to project samples from the source domain and samples from the target domain into two separate style embeddings
(one for each domain). Thus Πσ is actually duplicated in two heads Πσ,s and Πσ,t with the same structure and output
space. In all experiments, we applied a coefficient βC4 = 0.1 to LC4 and βC1t to LC1t , with βC1t increasing linearly
from 0 to 10 during the 10 first epochs and remaining at 10 afterwards (see Section B for a discussion). Convergence
was reached within 50 epochs (generally within 30 epochs). We used Adam [22] as an optimizer with a learning rate
lr = 5 · 10−4 for the first 30 epochs and lr = 5 · 10−5 for the last 20 epochs.

Network Architecture

Π

• Conv2D(filters=32, kernel=5×5, stride=1, padding=2, Linear)
• Instance Normalization
•Max Pooling(filters=2× 2, stride=2)
• Conv2D(filters=32(SVHN→MNIST) or 64(MNIST→SVHN), kernel=5× 5,
stride=1, padding=2, Linear)
• Instance Normalization
•Max Pooling(filters=2× 2, stride=2)
• Conv2D(filters=32(SVHN→MNIST) or 128(MNIST→SVHN), kernel=3× 3,
stride=1, padding=2, Linear)
• Instance Normalization
• Dense(nb_neurons=1024, ReLU)

Πτ • Dense(nb_neurons=75(SVHN→MNIST) or 200(MNIST→SVHN), ReLU)
Πσ • Dense(nb_neurons=75(SVHN→MNIST) or 200(MNIST→SVHN), ReLU)

Π̄s and Π̄t

• Dense(nb_neurons=1024, ReLU)
• Dense(nb_neurons=2048, ReLU)
• Conv2D(filters=32, kernel=3× 3, stride=1, padding=1, ReLU)
• Upsample (scale_factor=2)
• Conv2D(filters=32, kernel=5× 5, stride=1, padding=2, ReLU)
• Upsample(scale_factor=2)
• Conv2D (filters=3, kernel=5× 5, stride=1, padding=2, Sigmoid)

c
• Dropout(p=0.55)
• Dense(nb_neurons=10, Softmax)

rτ and rσ
• Gradient Reversal Layer
• Dense(nb_neurons=100, ReLU)
• Dense(nb_neurons=75(SVHN→MNIST) or 200(MNIST→SVHN), Linear)

Table 5: SVHN↔MNIST networks architectures

D.3 Computing resources and code release

All the experiments from section 5 were run on a Google Cloud Platform n1-standard-8 virtual machine (8 virtual cores,
30Go RAM, Nvidia P100 GPU). The code corresponding to the experiments, a list of dependencies, and pre-trained
models are available at https://github.com/SuReLI/DiCyR_code. Details about each experiment are reported in
Table 8.
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Network Architecture

Π

• Conv2D(filters=50, kernel=5×5, stride=1, padding=2, ReLU)
• Batch Normalization
•Max Pooling(filters=2× 2, stride=2)
• Conv2D(filters=75, kernel=5× 5, stride=1, padding=2, ReLU)
• Batch Normalization
•Max Pooling(filters=2× 2, stride=2)
• Conv2D(filters=100, kernel=3× 3, stride=1, padding=2, Linear)
• Batch Normalization
• Dense(nb_neurons=1024, ReLU)

Πτ • Dense(nb_neurons=150, ReLU)
Πσ • Dense(nb_neurons=150, ReLU)

Π̄s and Π̄t

• Dense(nb_neurons=1024, ReLU)
• Dense(nb_neurons=6400, ReLU)
• Conv2D(filters=100, kernel=3× 3, stride=1, padding=1, ReLU)
• Upsample (scale_factor=2)
• Conv2D(filters=50, kernel=5× 5, stride=1, padding=2, ReLU)
• Upsample(scale_factor=2)
• Conv2D (filters=3, kernel=5× 5, stride=1, padding=2, Sigmoid)

c
• Dropout(p=0.55)
• Dense(nb_neurons=10, Softmax)

rτ and rσ
• Gradient Reversal Layer
• Dense(nb_neurons=100, ReLU)
• Dense(nb_neurons=150, Linear)

Table 6: MNIST↔USPS networks architectures

Network Architecture

Π

• Conv2D(filters=32, kernel=5× 5, stride=1, padding=2, ReLU)
• Instance Normalization
•Max Pooling(filters=2× 2, stride=2)
• Conv2D(filters=32, kernel=5× 5, stride=1, padding=2, ReLU)
• Instance Normalization
•Max Pooling(filters=2× 2, stride=2)
• Conv2D(filters=32, kernel=3× 3, stride=1, padding=2, Linear)
• Instance Normalization
•Max Pooling(filters=2× 2, stride=2)
• Conv2D(filters=32, kernel=3× 3, stride=1, padding=2, Linear)
• Instance Normalization
• Dense(nb_neurons=1024, ReLU)

Πτ • Dense(nb_neurons=150, ReLU)
Πσ • Dense(nb_neurons=150, ReLU)

Π̄s and Π̄t

• Dense(nb_neurons=1024, ReLU)
• Dense(nb_neurons=1024, ReLU)
• Conv2D(filters=32, kernel=3× 3, stride=1, padding=1, ReLU)
• Upsample (scale_factor=2)
• Conv2D(filters=32, kernel=3× 3, stride=1, padding=1, ReLU)
• Upsample (scale_factor=2)
• Conv2D(filters=32, kernel=5× 5, stride=1, padding=2, ReLU)
• Upsample(scale_factor=2)
• Conv2D (filters=3, kernel=5× 5, stride=1, padding=2, Sigmoid)

c
• Dropout(p=0.55)
• Dense(nb_neurons=43, Softmax)

rτ and rσ
• Gradient Reversal Layer
• Dense(nb_neurons=100, ReLU)
• Dense(nb_neurons=150, Linear)

Table 7: Syn-Signs→GTSRB networks architectures
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Experiment Batch size Epochs Repetitions
5.1 SVHN 64 50 (35s/epoch) 50
5.1 3D Shapes 64 50 (15s/epoch) 5
5.2 MNIST→USPS 128 150 (11s/epoch) 20
5.2 USPS→MNIST 128 150 (11s/epoch) 20
5.2 MNIST→SVHN 128 50 (40s/epoch) 50
5.2 SVHN→MNIST 64 50 (45s/epoch) 50
5.2 Syn-Signs→GTSRB 64 150 (65s/epoch) 10

Table 8: Experimental setup
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