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Abstract - This study evaluates the respiratory rate from the signal 

of a single-axis accelerometer fixed at the top of the abdomen and 

for three types of breathing: slow, normal and fast.  Different filters 

are applied and compared to determine the most accurate method to 

extract this information. The results showed that the use of a third-

order low pass Butterworth filter following an initial estimate of the 

respiratory rate was the most accurate method. This study 

demonstrates the potential of the accelerometer as a low-cost, non-

intrusive method of screening for sleep disorders and patients 

follow-up.  
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I. INTRODUCTION 

     Currently, the most common method of sensing the 

respiratory signal is to measure airflow through the nostrils 

with a pressure transducer in combination with a spirometer 

[1], while tracking chest wall movement with a piezoelectric 

belt. Exhaled carbon dioxide sensors are also used. Although 

the results are very complete and accurate, these methods are 

uncomfortable and intrusive. The complete examination to 

diagnose sleep disorders, called polysomnography, uses these 

different methods [2] and is usually performed in a hospital 

setting. It is a one-time examination lasting about 10 hours and 

is not continuous monitoring. Thus, monitoring the breathing 

of patients with respiratory disorders, chronic obstructive 

pulmonary disease or neuromuscular disorders could help to 

identify whether their condition is stable or not. This 

monitoring can also prevent sudden infant death syndrome [3].  

A new area of interest is therefore the use of motion sensors 

such as accelerometers fixed on the chest or the abdomen as a 

discreet, comfortable and inexpensive method.  

    Morillo et al. [4] extracted the respiratory, cardiac and 

snoring signal in the supine position with a single-axis 

accelerometer. The respiratory rate was then estimated by 

identifying the peak of the power spectrum or by 

autocorrelation. Hung et al. [5] used a biaxial accelerometer to 

detect inspirations and expirations and to differentiate several 

breathing modes: normal breathing, apnea, and deep breathing. 

The signals from both axes are summed and a bandpass filter 

with a variable bandwidth centred on the dominant breathing 

frequency was applied. 

Thus, based on these methods which demonstrate their abilities 

to monitor low rate breathing mode we aim to study the 

feasibility of implementing an accelerometry-based portable 

device as a simple and cost-effective solution for contributing to 

the monitoring of slow, normal and even fast breathing modes 

from immobile subjects. 

 

II. METHODS  

A.  Experimental protocol and participants 

 

    Six adult volunteers took part in the study: five women and 

one man, aged 19, 19, 22, 24, 55 and 56 years old, with no 

history of cardiopulmonary disease. Informed consent was 

obtained from each subject. 

During the test, the subjects lay in the supine position with 

their arms at their sides. They were asked to breathe normally, 

then rapidly and slowly. Normal and slow breathing modes last 

for 1 minute, and fast breathing lasts for 30 seconds. A 

minimum of 30 seconds separates the recordings of each 

breathing mode. 

 

B.  Devices  

 

To measure abdominal motion, a miniature inertial 

measurement system (Gait Up's Physiolog®) was attached to 

an elastic belt, worn around the subject's abdomen. The raw 

data recorded with the inertial measurement system was 

transferred via USB to a computer as a file with the extension 

“.BIN”. The accelerometer signal was sampled at 256Hz. The 

data were acquired and processed on Matlab (Mathworks, 

Massachusetts, USA).  
 

 
 

 

 
 

 

 
 

 

Figure 1. illustration of the measurement protocol 

mailto:khalil.ben-mansour@utc.fr


 
 

 p. 2                                           Colloque JETSAN 2021 

C. Data processing 

 

    The filters described below are used and compared to extract 

the respiratory peaks.  

    The moving average filter (MA) consists of taking the 

unweighted average of all 128 consecutive samples of the 

signal.  

    Resampling (R) reduces the sampling frequency from 256Hz 

to 5Hz. For each sub-vector of 51 points, only the average of 

these 51 values is kept which allows to greatly reduce the size 

of the acceleration vector, and at the same time to smooth the 

signal.  

 

A 3
rd

 order Butterworth low-pass filter is implemented. This 

requires the definition of the cutoff frequency with good 

accuracy for all breathing modes. A first estimation of the 

breathing rate must therefore be found. Two solutions have 

been used for this. The first solution consists of applying 

successively the moving average filter and the resampling. The 

respiratory peaks are extracted from this already smoothed 

signal, which provides a first approximation of the respiratory 

frequency 𝑓𝑀𝑀_𝑅. The cutoff frequency 𝑓𝑐 is obtained using the 

following formula : 

𝑓𝑐 = 𝑓𝑀𝑀_𝑅 + 0.01  (1) 

A second solution consists of estimating the spectral density of 

the raw acceleration. Since the majority of the respiratory 

frequency is located in the interval [0.1; 1] Hz, the frequency 

on the spectrum corresponding to the largest amplitude on this 

interval is the approximation of the respiratory frequency [4]. 

The cutoff frequency is obtained with : 

𝑓𝑐 = 𝑓𝑆 + 0.1   (2) 

The margin to the estimated frequency is very small with the 

first method because additional peaks tend to be counted but 

almost no breaths are ever missed. 

After the application of these methods: Moving Average filter 

(MA), Resampling (R), MA and R, Spectral density (Spd), 

Butterworth with Spd, Butterworth with MA and R, the 

respiratory frequency is calculated via the peaks extracted from 

the obtained waveform signal. 

Figure 2. example of raw signal and after denoising with different filters 

III. RESULTS 

TABLE I.  MEAN FREQUENCY AN STANDARD DEVIATION  

Breathing frequency Slow Normal Fast 

Mean (Hz) 0,12 0,31 0,92 

Standard deviation (%) 41,00 15,38 38,77 

 

The error on the respiratory rate after the execution of each 

filter (Table I) is positive if on average the rate is 

overestimated (peaks are added) and negative if it is 

underestimated. The assumed true respiration rate is counted 

by observation. This solution is certainly not optimal but the 

detection is generally not ambiguous, so this simple method is 

quite effective in this case.  

TABLE II.  AVERAGE ERROR ON RESPIRATION RATE ASSESSMENT 

 

   The errors on normal, fast and slow respiratory rate obtained 

with the moving average filter are much larger than the other 

methods. The second least accurate method is resampling. 

However, for fast breathing, this filter is very accurate since no 

error was made on the 6 values obtained. The 4 other methods 

allow the assessment of the breathing rate with errors lower et  

than 1%. The application of the Butterworth filters leads to 

minimal errors, especially when the cutoff frequency is defined 

after resampling and moving the average filter. 

 

IV. DISCUSSION 

    With the moving average filter, the error is important 

because the irregularities, the peaks due to the background 

noise, have a smaller amplitude, but they are still present. The 

calculated frequencies are therefore very high. Resampling is 

already much more efficient and by combining these two filters 

(Moving average filter and Resampling), a good approximation 

of the breathing rate is obtained. The approximation with the 

amplitude spectrum is never exact (unlike resampling and 

moving average) because the frequency axis is also sampled. 

The difficulty with this filter lies in the decision of the 

frequency interval to study. Indeed, some subjects breathed 

Average error on respiration rate (%) 
Breathing mode 

Slow Normal Fast  

Moving average filter 
112.12 26.05 4.43 

Resampling 4.89 0.57 0.00 

Moving average filter and Resampling 0.97 0.06 -0.03 

Spectral density  0.39 0.14 -0.24 

Butterworth with spectral density 0.10 0.00 -0.26 

Butterworth with M.A. and R. 0.12 0.00 -0.03 
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slower than 0.1Hz or faster than 1Hz. The approximation of the 

frequency on the interval [0.1; 1] Hz is then totally skewed. A 

solution could be to widen the interval, but the risk is then to 

obtain a maximum amplitude at the heart rate and not at the 

respiration rate. Finally, Butterworth filters are the most 

accurate in determining the respiratory rate. However, when 

the cut-off frequency is deduced from the spectrum 

approximation, it is not always correct, which in this case leads 

to a large error in the respiratory rate with the Butterworth 

filter. 

    For fast breathing, the error is negative whatever the filter, 

which means that some respiratory peaks are not detected, 

whereas, for normal and slow breathing, the error is positive: 

some signal are detected as respiratory peaks. We also observe 

that for the slow mode, on average whatever the filter, the error 

in absolute value is much higher than for the two other modes. 

The main reason for this is that the background noise is more 

important in the low frequencies, which leads more easily to 

errors with non-breathing peaks taken into account. A second 

reason is that breathing is less fluid when it is slow, it can be 

composed of small jolts which add extra peaks.  

This study is a case study, and the sample size and the age of 

the subjects (on average 32.5) is not representative of the 

population concerned by sleep disorders. Indeed, this concerns 

more the elderly who tend to have a slower breathing and a 

lower amplitude. The protocol should therefore be tested with 

elderly people. To deepen the study it will be necessary to 

increase the sample size, to integrate older subjects and to 

realize a repeatability study (each subject performs each 

condition several times). 
 

V. CONCLUSION AND PERSPECTIVES 

   In this paper, we present six methods to extract the 

respiratory signal through the movement of the abdomen 

captured by a single accelerometer axis. Three breathing 

modes were tested: normal, slow and fast. In all cases, the 

obtained signal allowed to find the breathing frequency with a 

good accuracy, when a third-order low-pass Butterworth filter 

was applied (errors <0.3%). When the filter cutoff frequency 

was determined with a moving average filter followed by 

resampling of the signal, the error on the breathing frequency 

was very small in all cases (errors <1%). However, more work 

is needed to obtain an adequate cutoff frequency by using the 

signal amplitude spectrum. Indeed, to take into account the 

subjects breathing very quickly, or very slowly, the frequency 

interval analyzed on the spectrum could be widened, provided 

that the main peak remains at the level of the respiratory 

signal: the cardiac signal should not distort the measurement. 

Thus, since the cardiac signal remains visible on the spectrum 

as on the raw waveform, it could be interesting to try to extract 

it with the same protocol as the one performed in this study. 

The respiratory and cardiac signals could then be extracted 

with a single measurement performed at the abdomen.  

Finally, to further investigate the study, the measurement and 

processing of the signal could be performed in real-time, by 

realizing an adaptive low-pass filter whose cut-off frequency 

would depend on the instantaneous breathing rate. It would 

also be interesting to refine the parameters of some filters to 

adapt them to the studied subject by performing an auto-

calibration. One could thus vary the number of samples chosen 

for the moving average, the order of the Butterworth filter or 

the calculation of the cutoff frequency (more or less important 

margin compared to the first estimate of the frequency). To 

perform these more in-depth studies, it would then become 

necessary to employ another means of measuring breathing, 

such as a spirometer, to serve as a reference and validate the 

method. Finally, this case study simply seeks to optimize the 

signal processing to obtain the breathing rate with a single axis 

accelerometer. Here, no autonomous system is really proposed 

to monitor people with sleep disorders. On the other hand, 

following the protocol obtained here, it would be possible to 

consider monitoring the breathing of an immobile person (e.g. 

during a short nap on the back) thanks to a smartphone (they 

have a triad of accelerometer). 
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