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Abstract - This study evaluates the respiratory rate from the signal 

of a single-axis accelerometer fixed at the top of the abdomen and for 

three types of breathing: slow, normal and fast.  Different filters are 

applied and compared to determine the most accurate method to 

extract this information. The results showed that the use of a third-

order low pass Butterworth filter following an initial estimate of the 

respiratory rate was the most accurate method. This study 

demonstrates the potential of the accelerometer as a low-cost, non-

intrusive method of screening for sleep disorders and patients follow-

up.  
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I. INTRODUCTION 

     Currently, the most common method of sensing the 

respiratory signal is to measure airflow through the nostrils with 

a pressure transducer in combination with a spirometer [1], 

while tracking chest wall movement with a piezoelectric belt. 

Exhaled carbon dioxide sensors are also used. Although the 

results are very complete and accurate, these methods are 

uncomfortable and intrusive. The complete examination to 

diagnose sleep disorders, called polysomnography, uses these 

different methods [2] and is usually performed in a hospital 

setting. It is a one-time examination lasting about 10 hours and 

is not continuous monitoring. Thus, monitoring the breathing of 

patients with respiratory disorders, chronic obstructive 

pulmonary disease or neuromuscular disorders could help to 

identify whether their condition is stable or not. This monitoring 

can also prevent sudden infant death syndrome [3].  A new area 

of interest is therefore the use of motion sensors such as 

accelerometers fixed on the chest or the abdomen as a discreet, 

comfortable and inexpensive method.  

    Morillo et al. [4] extracted the respiratory, cardiac and snoring 

signal in the supine position with a single-axis accelerometer. 

The respiratory rate was then estimated by identifying the peak 

of the power spectrum or by autocorrelation. Hung et al. [5] used 

a biaxial accelerometer to detect inspirations and expirations and 

to differentiate several breathing modes: normal breathing, 

apnea, and deep breathing. The signals from both axes are 

summed and a bandpass filter with a variable bandwidth centred 

on the dominant breathing frequency was applied. 

Thus, based on these methods which demonstrate their abilities 

to monitor low rate breathing mode we aim to study the 

feasibility of implementing an accelerometry-based portable 

device as a simple and cost-effective solution for contributing to 

the monitoring of slow, normal and even fast breathing modes 

from immobile subjects. 

 

II. METHODS  

A.  Experimental protocol and participants 

 

    Six adult volunteers took part in the study: five women and 

one man, aged 19, 19, 22, 24, 55 and 56 years old, with no 

history of cardiopulmonary disease. Informed consent was 

obtained from each subject. 

During the test, the subjects lay in the supine position with their 

arms at their sides. They were asked to breathe normally, then 

rapidly and slowly. Normal and slow breathing modes last for 1 

minute, and fast breathing lasts for 30 seconds. A minimum of 

30 seconds separates the recordings of each breathing mode. 

 

B.  Devices  

 

To measure abdominal motion, a miniature inertial 

measurement system (Gait Up's Physiolog®) was attached to an 

elastic belt, worn around the subject's abdomen. The raw data 

recorded with the inertial measurement system was transferred 

via USB to a computer as a file with the extension “.BIN”. The 

accelerometer signal was sampled at 256Hz. The data were 

acquired and processed on Matlab (Mathworks, Massachusetts, 

USA).  
 

 

 

 
 

 

 

 
 

 

Figure 1. illustration of the measurement protocol 
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C. Data processing 

 

    The filters described below are used and compared to extract 

the respiratory peaks.  

    The moving average filter (MA) consists of taking the 

unweighted average of all 128 consecutive samples of the signal.  

    Resampling (R) reduces the sampling frequency from 256Hz 

to 5Hz. For each sub-vector of 51 points, only the average of 

these 51 values is kept which allows to greatly reduce the size 

of the acceleration vector, and at the same time to smooth the 

signal.  

 

A 3rd order Butterworth low-pass filter is implemented. This 

requires the definition of the cutoff frequency with good 

accuracy for all breathing modes. A first estimation of the 

breathing rate must therefore be found. Two solutions have been 

used for this. The first solution consists of applying successively 

the moving average filter and the resampling. The respiratory 

peaks are extracted from this already smoothed signal, which 

provides a first approximation of the respiratory frequency 

𝑓𝑀𝑀_𝑅. The cutoff frequency 𝑓𝑐 is obtained using the following 

formula : 

𝑓𝑐 = 𝑓𝑀𝑀_𝑅 + 0.01  (1) 

A second solution consists of estimating the spectral density of 

the raw acceleration. Since the majority of the respiratory 

frequency is located in the interval [0.1; 1] Hz, the frequency on 

the spectrum corresponding to the largest amplitude on this 

interval is the approximation of the respiratory frequency [4]. 

The cutoff frequency is obtained with : 

𝑓𝑐 = 𝑓𝑆 + 0.1   (2) 

The margin to the estimated frequency is very small with the 

first method because additional peaks tend to be counted but 

almost no breaths are ever missed. 

After the application of these methods: Moving Average filter 

(MA), Resampling (R), MA and R, Spectral density (Spd), 

Butterworth with Spd, Butterworth with MA and R, the 

respiratory frequency is calculated via the peaks extracted from 

the obtained waveform signal. 

Figure 2. example of raw signal and after denoising with different filters 

III. RESULTS 

TABLE I.  MEAN FREQUENCY AN STANDARD DEVIATION  

Breathing frequency Slow Normal Fast 

Mean (Hz) 0,12 0,31 0,92 

Standard deviation (%) 41,00 15,38 38,77 

 

The error on the respiratory rate after the execution of each filter 

(Table I) is positive if on average the rate is overestimated 

(peaks are added) and negative if it is underestimated. The 

assumed true respiration rate is counted by observation. This 

solution is certainly not optimal but the detection is generally 

not ambiguous, so this simple method is quite effective in this 

case.  

TABLE II.  AVERAGE ERROR ON RESPIRATION RATE ASSESSMENT 

 

   The errors on normal, fast and slow respiratory rate obtained 

with the moving average filter are much larger than the other 

methods. The second least accurate method is resampling. 

However, for fast breathing, this filter is very accurate since no 

error was made on the 6 values obtained. The 4 other methods 

allow the assessment of the breathing rate with errors lower et  

than 1%. The application of the Butterworth filters leads to 

minimal errors, especially when the cutoff frequency is defined 

after resampling and moving the average filter. 

 

IV. DISCUSSION 

    With the moving average filter, the error is important because 

the irregularities, the peaks due to the background noise, have a 

smaller amplitude, but they are still present. The calculated 

frequencies are therefore very high. Resampling is already much 

more efficient and by combining these two filters (Moving 

average filter and Resampling), a good approximation of the 

breathing rate is obtained. The approximation with the 

amplitude spectrum is never exact (unlike resampling and 

moving average) because the frequency axis is also sampled. 

The difficulty with this filter lies in the decision of the frequency 

interval to study. Indeed, some subjects breathed slower than 

Average error on respiration rate (%) 
Breathing mode 

Slow Normal Fast  

Moving average filter 
112.12 26.05 4.43 

Resampling 4.89 0.57 0.00 

Moving average filter and Resampling 0.97 0.06 -0.03 

Spectral density  0.39 0.14 -0.24 

Butterworth with spectral density 0.10 0.00 -0.26 

Butterworth with M.A. and R. 0.12 0.00 -0.03 
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0.1Hz or faster than 1Hz. The approximation of the frequency 

on the interval [0.1; 1] Hz is then totally skewed. A solution 

could be to widen the interval, but the risk is then to obtain a 

maximum amplitude at the heart rate and not at the respiration 

rate. Finally, Butterworth filters are the most accurate in 

determining the respiratory rate. However, when the cut-off 

frequency is deduced from the spectrum approximation, it is not 

always correct, which in this case leads to a large error in the 

respiratory rate with the Butterworth filter. 

    For fast breathing, the error is negative whatever the filter, 

which means that some respiratory peaks are not detected, 

whereas, for normal and slow breathing, the error is positive: 

some signal are detected as respiratory peaks. We also observe 

that for the slow mode, on average whatever the filter, the error 

in absolute value is much higher than for the two other modes. 

The main reason for this is that the background noise is more 

important in the low frequencies, which leads more easily to 

errors with non-breathing peaks taken into account. A second 

reason is that breathing is less fluid when it is slow, it can be 

composed of small jolts which add extra peaks.  

This study is a case study, and the sample size and the age of the 

subjects (on average 32.5) is not representative of the population 

concerned by sleep disorders. Indeed, this concerns more the 

elderly who tend to have a slower breathing and a lower 

amplitude. The protocol should therefore be tested with elderly 

people. To deepen the study it will be necessary to increase the 

sample size, to integrate older subjects and to realize a 

repeatability study (each subject performs each condition 

several times). 
 

V. CONCLUSION AND PERSPECTIVES 

   In this paper, we present six methods to extract the respiratory 

signal through the movement of the abdomen captured by a 

single accelerometer axis. Three breathing modes were tested: 

normal, slow and fast. In all cases, the obtained signal allowed 

to find the breathing frequency with a good accuracy, when a 

third-order low-pass Butterworth filter was applied (errors 

<0.3%). When the filter cutoff frequency was determined with a 

moving average filter followed by resampling of the signal, the 

error on the breathing frequency was very small in all cases 

(errors <1%). However, more work is needed to obtain an 

adequate cutoff frequency by using the signal amplitude 

spectrum. Indeed, to take into account the subjects breathing 

very quickly, or very slowly, the frequency interval analyzed on 

the spectrum could be widened, provided that the main peak 

remains at the level of the respiratory signal: the cardiac signal 

should not distort the measurement. Thus, since the cardiac 

signal remains visible on the spectrum as on the raw waveform, 

it could be interesting to try to extract it with the same protocol 

as the one performed in this study. The respiratory and cardiac 

signals could then be extracted with a single measurement 

performed at the abdomen.  

Finally, to further investigate the study, the measurement and 

processing of the signal could be performed in real-time, by 

realizing an adaptive low-pass filter whose cut-off frequency 

would depend on the instantaneous breathing rate. It would also 

be interesting to refine the parameters of some filters to adapt 

them to the studied subject by performing an auto-calibration. 

One could thus vary the number of samples chosen for the 

moving average, the order of the Butterworth filter or the 

calculation of the cutoff frequency (more or less important 

margin compared to the first estimate of the frequency). To 

perform these more in-depth studies, it would then become 

necessary to employ another means of measuring breathing, 

such as a spirometer, to serve as a reference and validate the 

method. Finally, this case study simply seeks to optimize the 

signal processing to obtain the breathing rate with a single axis 

accelerometer. Here, no autonomous system is really proposed 

to monitor people with sleep disorders. On the other hand, 

following the protocol obtained here, it would be possible to 

consider monitoring the breathing of an immobile person (e.g. 

during a short nap on the back) thanks to a smartphone (they 

have a triad of accelerometer). 
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