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Abstract  

Sleep is essential for human health. Bad sleep and sleep 

disorders have been increasingly prevalent and are gradually 

becoming a social problem that cannot be ignored. The current 

gold standard in sleep monitoring is polysomnography (PSG) 

allowing nearly complete approach. Unfortunately, this wealth 

of information is obtained at the cost of invasive system, only 

usable in hospital environment under the control of sleep 

experts.   Therefore, we develop a wireless body networks for 

home sleep monitoring with effort on non-intrusiveness, 

portability and autonomy. In this paper, we present our global 

architecture from sensors to user display with a focus on main 

functions and hardware. Then, we introduce the chosen 

indicators for sleep monitoring and the algorithms developed 

for sleep stages classification. Finally we show the evaluation 

of our approach compared to PSG. We illustrate the sleep stage 

classification during one night in the sleep unit of Toulouse 

University Hospital and highlight correlation between body 

temperature on extremities and Periodic Limb Movement 

during Sleep. Results are promising but need to be reinforced 

with new tests in hospital with several volunteers. 

Keywords: Sleep monitoring system, classification, PSG  

 

I. INTRODUCTION 

Sleep is crucial for human health and quality of life. 

However poor sleep and sleep disorders are increasingly 

prevalent among the world’s older population [1]. Health 

professionals consider sleep as an important indicator of health 

status, poor sleep quality is indeed likely to be a sign of many 

diseases [2]. Being able to monitor sleep is then a crucial issue 

in order to detect and to prevent sleep disorders. 

Polysomnography (PSG) is considered as the gold standard 

for quantifying sleep time, differentiating sleep stages, and 

assessing sleep fragmentation [3]. As a global solution (EEG, 

ECG, EMG, EOG, oral-nasal airflow, body position, thoracic 

and abdominal movements, pulse oximetry, and limb 

movements) PSG provides comprehensive physiological 

information (Fig. 1). However, the PSG device has several 

drawbacks if one wants to use it for long-term in-home 

monitoring. Indeed, the PSG device is highly invasive for the 

patient (a minimum of 22 wires is required) and uncomfortable 

which may disturb sleep. Besides, the PSG can only be used in 

the hospital on one night due to the cost of this medical 

analysis and the need for experienced technologists to perform 

and analyze the recordings. 

 

 
 

Figure 1. Polysomnography system [4] 

Many sleep monitoring systems have been proposed to allow 

long-term monitoring with performance as close as possible to 

that of PSG. Readers are referred to our published review on 

the current status and future challenges of sleep monitoring 

systems [5] for more details. Given the state of the art in this 

research area, we proposed a new hardware and software 

architecture that enables long-term continuous sleep 

monitoring in a home environment. In order to evaluate the 

performance of our approach, we performed a one-night test in 

the sleep unit of the Toulouse University Hospital with a 

volunteer equipped with both our system and the PSG. 

Initially, we wanted to perform several tests with different 

users but due to the COVID pandemic, we only performed one 

night for one volunteer.  

The paper is organized as follows. In section 2, we briefly 

detail the global architecture of our sleep monitoring system 

and the two classification algorithmic approaches we 

developed based on wrist movements. In section 3, we present 

the experimental conditions and discuss the first results 

comparing the decision of our classification algorithms to those 

of PSG. In section 4, we conclude the paper and propose 

improvements and future work. 
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Figure 2. Hardware architecture

 

II. SLEEP MONITORING ARCHITECTURE 

A.   Overview of the architecture 

The global architecture we proposed and developed to carry 

out sleep monitoring in a home environment is illustrated in 

Fig. 3. 
 

 

 

 

 

 

 

 

 

 
Figure 3. Overall architecture of the proposed sleep monitoring system 

 

After discussions with researchers, technicians and doctors, 

we specified the requirements that the system should meet. We 

proposed and built a communicating wearable system that 

communicates in a network architecture, which can include 

several people at home or in the hospital. This system is fully 

configurable locally by the person concerned and also remotely 

by the doctor. Once configured, the system sends the 

monitoring data of each patient (at home or at the hospital) to a 

server-based database to be visualized and analyzed by the 

doctors on an adapted interface. 

 

 

1) Main functions and services  

The system is divided into several sub-systems: "Sensors", a 

"Master" board, a "Gateway", an Android application, a 

database and a website (Fig. 2). 

 

Sensors 

The system’s data acquisition is performed by different sleep 

monitoring modules, each module using specific sensors to 

collect important physiological data related to sleep. The 

sensors we use are integrated in a miniaturized electronic board 

(Fig. 4) designed at LAAS-CNRS [6]. 

The board is a system-on-chip, connected, and powered by a 

button cell (3V). The main components are: (1) an NRF51822 

microcontroller containing a 32-bit ARM Cortex M0 processor 

and a 256kB flash memory, equipped with a BLE V4 LE 

module; (2) a 16kB non-volatile FRAM memory for data 

backup during standby; (3) a low-power ADXL 362 triaxial 

accelerometer. 

 
Figure 4. The sensor's basic electronic board. (a) Front side; (b) Back side 
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Master board 

The master board is the control and data collection center of 

the proposed SMS which carries out five tasks:  

 Reception of operating commands: the search of sensors 

(discovery phase), connection and disconnection of 

sensors (connecting phase) via BLE from a custom 

smartphone application. 

 Reception of control commands to set sensor operating 

modes. Sensor operating modes include turn on, turn off 

and data transmission (data exchange). 

 Reception and gathering data from sensors. 

 Gathering ambient luminosity and temperature data 

from the sensors on the board. 

 Sending all collected data to the gateway via the LoRa 

network. 

 

Gateway 

The gateway is the data transfer station of the system. It is 

connected to (1) the master board via LoRa in order to receive 

sleep monitoring data and (2) the WiFi network to transmit all 

collected data to a remote database. The gateway is useful 

when there is no internet connection possible at the patient’s 

home.  

 
2) Sleep monitoring modules 

The sleep monitoring modules are the essential elements of 

the SMS we propose. They collect the raw data needed for 

sleep monitoring. We briefly present them below. 

 

Wrist module 

The wrist module consists of the basic electronic board, 

presented previously, and a temperature sensor (negative 

temperature coefficient, NTC). The module is worn on the 

non-dominant wrist like a watch. The temperature sensor is 

attached to the index finger with medical tape. 

 

Chest module 

The chest module consists of the basic electronic board and a 

temperature sensor (NTC). It is wrapped in soft paper and 

attached to the front of the chest with medical tape. This 

module is designed to measure chest temperature and detect 

the sleep positions. 

 

Foot module 

The foot module consists of two sub-modules: (1) one with 

the basic electronic board and a temperature sensor; (2) one 

with only the basic electronic board. The two sub-modules are 

wrapped in soft paper and attached to two insteps ((1) on the 

left instep, (2) on the right instep). The temperature sensor is 

attached to the big toe with medical tape. These modules are 

designed to measure feet movement and extremity temperature. 

 

Sound module 

The sound module collects sound data every second, using a 

MAX9814 microphone powered by two 03-2032 batteries to 

ensure continuous sound data collection throughout the night. 

It is placed next to the head within one meter during 

monitoring. This module is used to detect snoring. 

 

Ambient module 

The ambient module measures the temperature and 

luminosity of the sleeping environment. Both sensors are 

integrated in the master board. The temperature sensor is also a 

NTC sensor and the luminosity sensor is a TSL2591. The 

temperature and luminosity data are collected every minute. 

 

B. Principle of algorithms 

 
1) Choice of sleep indicators 

Using the hardware architecture presented previously, we can 

compute relevant indicators for sleep monitoring, determined 

by referring to the Pittsburgh Sleep Quality Index (PSQI) [7] 

and the recommendations of the sleep experts of the sleep unit 

at the Center Hospital of Toulouse. These are sleep stages: 

sleep position, snoring, periodic leg movement index (PLMI), 

body temperature (finger, toe and chest) and ambient 

conditions (luminosity and temperature). Among these 

indicators, sleep stages, PLMI and temperatures are the most 

interesting considering sleep monitoring. Firstly, obtaining the 

time spent in the different sleep stages can provide better 

information to guide behavioral changes and recommendations 

to improve sleep quality [8]. Then PLMI can be used to predict 

Restless Legs Syndrome (RLS) which is a sensorimotor 

disorder that often has a profound impact on sleep [9]. The 

typical symptom of RLS is Periodic Limb Movement during 

Sleep (PLMS), so by detecting leg movements PLMI can be 

determined. Finally, sleep experts suggest that there may be a 

link between PLMS and extremity (finger and toe) 

temperature, but no one has yet investigated this hypothesis. 

 
2) Sleep indicators computation 

Sleep stages 

We propose two approaches to automatically determine 

falling asleep/waking up times and sleep stages (“Awake”, 

“Light sleep”, “Deep sleep” and “REM” (Rapid Eye 

Movement also known as paradoxical sleep) [10]. The first one 

(called T1) is based on the thresholds of Mi movement levels 

(obtained by the 3-axis accelerometer of the wrist module, see 

Eq. 1) over periods PM of 19 epochs (30s for one epoch) 

considering 9 epochs before and 9 epochs after the current 

epoch. Indeed, as sleep is a constantly evolving process, it is 

necessary to associate the previous and following epochs when 

analyzing the sleep state at a given time. The second approach 

(called 5km2) is a k-mean based approach to perform 

clustering. The Thresholds approach is based on 3 thresholds 
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TS/W, TDLR, TLR to respectively discriminate epochs 

classified as sleep or awake, deep sleep or light sleep/REM and 

light sleep or REM. These thresholds are applied on PM values 

and standard deviation of PM values of 6-epoch group. The 

5km2 method use a 2 dimension features composed of PM 

value and the standard derivation of PM values of 6-epoch 

group. It consists of 5 iterations ok k-means clustering with 

k=2. For each iteration, two clusters are determined, one 

corresponding to a sleep stages, the other one gathering others.  

More details on these two approaches are available in [11] 

 

PLMI 

According to standard criteria [12], PLMS are only 

considered if they are part of a series of four or more 

consecutive movements of 0.5-10 seconds duration with an 

inter-movement interval of 5-90 seconds and an amplitude 

greater than 8 mV above the basic an electromyograph (EMG) 

signal. 

Based on the standard PLMS criteria, the PLMS detection 

rule using the foot module is defined as follows: 

 The movement level Mi > 21 (see Eq. 1) is 

considered as the movement emergence. 

 When the number of consecutive samples with Mi > 

21 is between 1 and 10, it should be considered as a 

movement group. 

 Adjacent movement groups with an interval 

between 5 to 90 seconds are considered as 

significant movement groups. The interval is from 

the end of the movement group to the beginning of 

the next movement group. 

 A series of four or more consecutive significant 

movement groups will be considered a PLMS 

group, the number of significant movement groups 

being the number of PLMS in that PLMS group. 

 

𝑀𝑖 = |𝐴𝑥𝑖+1 − 𝐴𝑥𝑖| + |𝐴𝑦𝑖+1 − 𝐴𝑦𝑖| + |𝐴𝑧𝑖+1 − 𝐴𝑧𝑖|      (1) 

 

Body temperature 

We define chest temperature as Tci, finger temperature as Tfi, 

toe temperature as Tti. Then we calculate the sum of their 

respective differences, denoted SD3Ti (see Eq. 2), where i is 

the sample index with temperature sampled every second. 

 

𝑆𝐷3𝑇𝑖 = |𝑇𝑐𝑖 − 𝑇𝑓𝑖| + |𝑇𝑐𝑖 − 𝑇𝑡𝑖| + |𝑇𝑓𝑖 − 𝑇𝑡𝑖|  (2) 

 

We also compute the first-order difference for finger and toe 

temperatures overnight, denoted DTf and DTt, respectively 

(see Eq. 3 and Eq. 4) as there appears to be some correlation 

between the onset of PLMS and temperature changes at the 

extremities. 

 

𝐷𝑇𝑓𝑖 = |𝑇𝑓𝑖 − 𝑇𝑓𝑖−1|  (3) 

 

𝐷𝑇𝑡𝑖 = |𝑇𝑡𝑖 − 𝑇𝑡𝑖−1|  (4) 

III.     EVALUATION OF THE PROPOSED SLEEP MONITORING 

SYSTEM WITH A PSG 

A. Description of the experimental protocol 

1) Environmental conditions 

The test was performed in a sleep unit of a standard ward of 

the Center Hospital of Toulouse. The volunteer is equipped 

with the PSG system and our five sleep monitoring devices 

(Fig. 5a). The corresponding position of the PSG sensors and 

our modules (chest, wrist and foot module) on the body is 

illustrated in Fig. 5b. Generally speaking, the time required to 

wear the modules we proposed is roughly within ten minutes, 

and it can be done alone. In contrast, it takes about half an hour 

to install the PSG to the body, and it must be installed by at 

least one professionally trained medical staff member. The 

volunteer recruited was a 28-year-old man with a BMI (body 

mass index) of 18.3. We were only able to achieve one-night 

test for a primary evaluation of the performance as it has been 

carried out just before the first containment in France in March 

2020. 

 
2) Synchronization protocol 

Each of the five sleep monitoring modules and the PSG has 

its own independent control unit and data acquisition. In 

practice, it is difficult to ensure that they would all start 

collecting data at the same time. Therefore, it is essential to 

synchronize the data collected by all the sleep monitoring 

devices and the PSG after all data have been collected in order 

to obtain meaningful results. 

The synchronization method we use consists of two steps. 

First, the five sleep monitoring devices are synchronized with 

each other. Since each sleep monitoring device has an 

accelerometer that collects movement data, we intend to 

synchronize them by shaking them simultaneously and looking 

for the same marker in the collected movement data. The 

second step is the synchronization between the five sleep 

monitoring devices and the PSG. Since all five sleep 

monitoring devices were synchronized in the first step, it was 

only necessary to synchronize one of the sleep monitoring 

devices with the PSG in this step. Since both our foot device 

and the EMG of the PSG collect leg movement data, we intend 

to compare the waveforms of the leg movement data collected 

by the two devices to perform the synchronization between 

them (Fig. 6). 
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Figure 5. (a) Volunteer with the PSG and our wristband; (b) Schematic 

diagram of the corresponding location of the PSG sensors and our modules 

 

Figure 6. Synchronization between the EMG and the left foot module 

 

B. Performance evaluation of sleep indicators 

1) Sleep stage classification 

We compare the hypnograms obtained by the T1 and 5km2 

methods with the hypnogram obtained by the PSG as shown in 

Fig. 7. The hypnogram data of the methods we propose are 

obtained directly by operating the algorithms on Matlab by 

programming. The hypnogram of the PSG is read by the 

software “DeltaFree EEG reader”. It is important to note that 

the software can automatically generate an initial hypnogram 

and various events from the data collected by the PSG. 

However, they are not completely accurate and must be 

manually checked and corrected by a physician. 

 

We have compared the sleep stage classification results of 

the two proposed methods with the PSG, epoch by epoch. 

Table I and Table II illustrate the confusion matrices between 

T1 and PSG, and between 5km2 and PSG, respectively. From a 

physiological significance point of view, deep sleep is very 

different from awake and light sleep. Therefore, confusion 

between deep sleep and awake, and confusion between deep 

sleep and light sleep can be considered serious.

  
Figure 7. Hypnograms obtained with the PSG, T1 and 5km2 methods 

 
TABLE I. Confusion matrix between T1 and PSG 

 
 Predicted (T1 method) 

Awake 
Light 

Sleep 

Deep 

Sleep 
REM 

T
r
u

e 
(P

S
G

) 

Awake 423 85 0 0 

Light 

sleep 
51 21 0 11 

Deep 

sleep 
0 6 12 13 

REM 0 0 0 0 

 
TABLE II. Confusion matrix between 5km2 and PSG 

 Predicted (5km2 method) 

Awake 
Light 

Sleep 

Deep 

Sleep 
REM 

T
r
u

e 
(P

S
G

) 

Awake 211 272 0 25 

Light 

sleep 
27 38 8 10 

Deep 

sleep 
0 1 24 6 

REM 0 0 0 0 

 

To evaluate more precisely the agreement between the two 

proposed methods and the sleep stages classification using the 

PSG method, Cohen’s Kappa coefficient (κ) is calculated. 

Landis & Koch [13] characterized κ < 0 as indicating no 

agreement and 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as 

moderate, 0.61–0.80 as substantial, and 0.81–1 as almost 

(a) (b)(a) (b)

Our wrist module

Our foot module (left and right)

Our chest module 
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perfect agreement [13]. The T1 method showed fair agreement 

with the PSG (κ = 0.24), and the 5km2 method showed slight 

agreement with the PSG (κ = 0.09). 

 
TABLE III. Evaluation indexes for the T1 and 5km2 methods 

Index Method Awake REM 
Light 

Sleep 

Deep 

Sleep 

Sensitivity 
T1 0.83 0.00 0.25 0.39 

5km2 0.42 0.00 0.46 0.77 

Specificity 
T1 0.55 0.96 0.83 1.00 

5km2 0.76 0.93 0.49 0.99 

Accuracy 
T1 0.78 0.96 0.75 0.97 

5km2 0.48 0.93 0.49 0.98 

Precision 
T1 0.89 0.00 0.19 1.00 

5km2 0.89 0.00 0.12 0.75 

Balanced 

accuracy 

T1 0.66 0.50 0.53 0.98 

5km2 0.56 0.50 0.49 0.87 

F1-score 
T1 0.86 0.00 0.22 0.56 

5km2 0.57 0.00 0.19 0.76 

 

Six performance assessment indexes based on the confusion 

matrix are calculated and presented in Table III. In our 

experiment, the number of samples included in the different 

classes is uneven and usually varies greatly. At the same time, 

we consider the correct detection of positive and negative 

samples should be of equal importance. Therefore, among all 

the performance assessment indexes, we believe that the 

balanced accuracy is the best one to evaluate the overall 

performance of the proposed methods. Method T1 has the 

highest or equal balanced accuracy in each class.  

T1 seems to be the best method but it will have to be 

confirmed by other tests involving several people. Indeed, we 

carried out only one night test due to the COVID pandemic and 

the volunteer had many difficulties to fall asleep which explain 

that the recording only lasts 5 hours with no REM phases. 

However, as a preliminary test, we can see that our approaches, 

in particular T1, have promising results, closed to those of 

PSG, with fewer sensors and greater comfort for the user. The 

K-mean approach needs more data to provide better results. 

 
2) PLMS detection performance 

The number of PLMS per hour during sleep detected by this 

rule is defined as the PLMS index (PLMI), which is the 

diagnostic indicator for PLMS based on the foot module. The 

number of PLMS distributed in each sleep stage detected by 

the PSG and our left foot module is shown in Table IV. 
 

TABLE IV. Number of PLMS distributed in each sleep stage 

 
Total Awake REM 

Light 

Sleep 

Deep 

Sleep 

PSG ref 56 47 0 6 3 

LAAS 

solution 
57 48 0 9 0 

 

As we can see, the total number of PLMS given by the PSG 

report is very close to the result of our foot module. 

Furthermore, the number of PLMS distributed at each sleep 

stage obtained with our foot module is also very close to the 

PSG result.  The main difference between the two is the PLMS 

distribution in light and deep sleep. The PSG detects 3 PLMS 

in deep sleep but our foot module detects no PLMS in deep 

sleep. In light sleep, our foot module detects 3 more PLMS 

than the PSG. The reason why our foot module does not detect 

any PLMS during deep sleep may be that the limb movement 

is very slight during deep sleep so the movement level of some 

foot movements does not reach the threshold of foot 

movement. Therefore, PLMS is not detected during deep sleep. 

In addition, during this night, the duration of deep sleep is also 

very short, which also increases the difficulty of detecting 

PLMS. 

 
3) Link between temperature, sleep stages and PLMS 

Body temperature and sleep stages 

The synchronous comparison between SD3T and the PSG 

hypnogram is shown in Fig. 8. In Fig. 8a, the dashed box 

corresponds to the period when sleep is continuous and most of 

these periods are deep sleep. Similarly, in Fig. 8b, the red 

dashed box shows the period when the SD3T remains low and 

stable. This suggests that a stable and low SD3T may 

correspond to continuous restful sleep. 

 
Figure 8. (a) Hypnogram obtained by the PSG. (b) SD3T 

Body temperature and PLMS 

The synchronous comparison between DTt, DTf and PLMS 

overnight is shown in Fig. 9. 
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Figure 9. Synchronous comparison between DTt, DTf and PLM overnight 

By observing Fig. 9, the distribution of PLMS is lowly 

correlated with DTt but highly correlated with DTf. In Fig. 9, 

five relatively independent groups can be found by 

observation, so we divide the night time into 5 areas, each area 

containing a relatively concentrated set of PLMS events. Each 

area contains a relatively concentrated set of high DTf values, 

i.e., a relatively large change in finger temperature. In addition, 

the density of the PLMS distribution and the density of DTf are 

similar in each area. In areas 1, 2 and 4, the PLMS emergence 

is very dense, and the emergence of the high DTf value is also 

relatively dense. In areas 3 and 5, the PLMS emergence is 

relatively low, and the emergence of high DTf value is also 

relatively low. In part of areas 1 and 2, part of areas 3 and 4, 

part of areas 4 and 5, there is no PLMS emergence, and no 

high DTf value. 

Based on these phenomena we can assume that PLMS 

emergence is positively correlated with DTf value. PLMS is 

maybe more correlated with finger temperature than with toe 

temperature.  

 

IV. CONCLUSION AND PERSPECTIVES 

    In this paper, we presented a global home sleep monitoring 

system (from sensors to user display) as an alternative solution 

to PSG for long-term monitoring. We have performed a 

preliminary validation of two methods proposed for the sleep 

stages classification with reference to the PSG gold standard. 

Based on the confusion matrix analysis, the results show that 

the proposed threshold approach T1 method has a fair 

agreement with the PSG while k-mean based approach has a 

slight agreement with the PSG. The T1 method is efficient for 

the detection of awake and deep sleep in particular. However, 

all the proposed methods are relatively less efficient for the 

detection of REM and light sleep. In general, the T1 method is 

the most efficient among the two proposed methods. For 

PLMS detection, we define the detection rules based on the 

foot movement data acquired by our proposed foot module. 

The results show that the total number of PLMS and the 

number of PLMS distributed in each sleep stage detected by 

our foot module are both very close to the PSG. Furthermore, 

we explore the links between body temperature and hypnogram 

and between body temperature on extremities and PLMS. We 

have found that the lower and flat continuous SD3T 

corresponds to continuous sleep and even deep sleep, that the 

emergence of PLMS is positively correlated to the DTf value 

and that PLMS is more correlated to finger temperature than to 

toe temperature. This experiment has shown that it would be 

possible to predict PLMS based on the change in finger 

temperature. Nevertheless, further investigative work over 

several nights and several subjects should be carried out to 

confirm these first observations. Indeed, due to COVID-19, we 

only performed one night with one volunteer who did not bear 

well all PSG devices and so had difficulties to fall asleep. 
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