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Abstract – This paper proposes an innovative graphical user 

interface to visualize the attitude of a sensing device in a three-

dimensional space, serving a wide-range of medical applications. 

Based on inertial measurement units (IMU) or on Magnetic, Angular 

Rate and Gravity sensors (MARG), the proposed tool estimates Euler 

angles using a predefined attitude filter to display the orientation of 

the device relative to the Earth frame in real-time. The device is 

schematized by linking six polygonal regions, and is subject to 

sequential rotations by updating the graph each 350 ms. Two public 

datasets were used to demonstrate the value of this contribution in 

fall risk assessment and body posture monitoring for elderly care. 

Keywords: graphical user interface, device attitude, sequential 

rotations, Euler angles, elderly care. 

I. INTRODUCTION 

In the past decades, minimized electronic sensors have been 

known for their low prices, and their widespread use in the 

healthcare domain [1]. The integration of these sensors in 

wearable devices or smartphones has been shown to be reliable 

for many monitoring systems and e-health applications [2]. In 

the literature, Kwon et al. have inspected the accelerometer of 

an iPhone for heart rate measurement [3]. Najafi et al. have 

evaluated the characteristics of some postural transitions, 

namely stand-to-sit and sit-to-stand, and their correlation with 

falling risk in elderly, using a miniaturized gyroscope [4]. Milici 

et al. have proposed a magnetometer-based solution for sleep 

quality monitoring [5]. Some other studies have used a 

combination of sensors to classify activities of daily living 

(ADLs) [6]. Now, sensor fusion techniques have been developed 

to estimate the attitude of sensing devices [7]. In other words, 

the orientation of the device relative to the Earth frame is 

measured by merging acquired data from a tri-axial 

accelerometer and a tri-axial gyroscope, or from these two 

sensors and a tri-axial magnetometer. These approaches are 

useful for human motion tracking [8], which is the base of 

several medical solutions. Two types of accelerometers exist. 

The first one concerns capacitive accelerometers, also known as 

Micro-Electro-Mechanical Systems (MEMS). These 

accelerometers depend on a change in electrical capacitance to 

measure acceleration. The second type refers to piezoelectric 

accelerometer, which is made of a quartz crystal. A force acting 

on the piezoelectric element is produced when the accelerometer 

is moving. A charge output, generated from these vibrations, is 

proportional to the applied force and is used to measure 

acceleration. The first type has the advantage of measuring the 

static acceleration caused by the gravity. This measurement is 

important for orientation estimation techniques. This justifies 

why MEMS sensors are preferred for this task.  

Given these aforementioned elements, we propose in this 

paper an interface we developed to visualize the orientation of a 

sensing device in real-time. The corresponding device, which 

consists of inertial sensors, is plotted in a three-dimensional 

graph. Its attitude is estimated by fusing acquired data, and the 

graph is updated by rotating the vertices and the faces of the plot 

correspondingly. Analyzing medical reports and questioning 

patients are not always sufficient to accurately check their 

health. Clinicians may need to visualize the orientation of 

wearable devices to assess the movements of their patients (or a 

certain event like a fall) and/or to restore them to normal 

behavior. The proposed tool answers these questions.  

The remainder of the paper is organized as follows. Section 

II discusses the principle of orientation estimation algorithms. 

Section III describes the proposed interface and its 

characteristics. Some real world examples are given in section 

IV, before addressing some limitations and practical 

considerations in section V. Section VI concludes the paper.  

 

 

 

 

 

 

 

 

 

 

Figure 1. A sensing device, with its corresponding frame (�̃�) and the Earth 

frame (�̃�) 
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Figure 2. Two different views of the plotted sensing device in a three-dimensional space, and its corresponding labels in yellow 

 

II. PRINCIPLE OF ATTITUDE ESTIMATION 

The orientation estimation of a device with respect to an 

inertial frame or reference is done using sensor fusion 

techniques. Reading multimodal data from different sources 

gives valuable information to understand and symbolize the 

motion of the sensing device. Inertial measurement units 

(IMUs), which consist of an accelerometer and a gyroscope, 

are able to monitor translational and rotational motions. On 

the other hand, MARG (Magnetic, Angular Rate, Gravity) 

devices include a third sensor, namely a magnetometer. This 

type of sensing unit has the advantage of measuring the 

attitude relative to the Earth magnetic field. The choice of the 

sensing device depends on the requirements of the developed 

system. An IMU could be sufficient for some applications. In 

this paper, both devices (IMU and MARG) are investigated 

in the next sections. 

Fig. 1 illustrates a sensing device (IMU or MARG), with 

its corresponding coordinate system (sensor frame) in black, 

and the Earth frame �̃� (in red). The goal is to estimate the 

orientation of the sensor frame 𝑆  relative to �̃�. This 

orientation is represented by Euler angles [9], defined by 

subsequent rotations of ∅ around �̃�𝑋, 𝜃 around �̃�𝑌, and 𝜓 

around �̃�𝑍. Hence, acquired data from inertial sensors are 

processed to estimate the sequence of Euler angles, using 

Kalman filters [10], gradient descent step [11], quaternion 

representation [12]… To our knowledge, the two widely used 

orientation filters is the one proposed by Mahony et al. [13] 

and by Madgwick et al. [14]. The efficiency of these 

algorithms has been proven at relatively low computational 

cost. The output of these algorithms are three time-series, 

having the same sampling rate of the deployed modalities, 

representing the progression of Euler angles over time. Both 

algorithms are considered in this paper. 

III. REAL-TIME ORIENTATION DISPLAY VIA GRAPHICAL 

USER INTERFACE 

A graphical user interface (GUI) tool was developed on 

Matlab to display the orientation of a sensing device based on 

its acquired data. The sensing device in Fig. 1 is symbolized 

by plotting three pairs of polygonal regions. Each of these six 

regions represents one face of this device. The color of the 

frontal zone is set to grey (𝒄𝟏), and that of the backward zone 

to white (𝒄𝟐), while the remaining faces are colored in dark 

blue (𝒄𝟑). The three hexadecimal color codes (‘r’, ‘g’, ‘b’) 

are as follows: 

{

𝒄𝟏 → (𝟎. 𝟖𝟑𝟓𝟑, 𝟎. 𝟖𝟑𝟓𝟑, 𝟎. 𝟖𝟑𝟓𝟑)

𝒄𝟐 → (𝟏, 𝟏, 𝟏)                                     

𝒄𝟑 → (𝟎, 𝟎. 𝟐𝟓𝟏𝟎, 𝟎. 𝟓𝟎𝟐𝟎)           

 

Moreover, the six regions are labeled using the following 

letters: ‘U’ which stands for up, ‘D’ for down, ‘L’ for left, 

‘R’ for right, ‘F’ for front, and ‘B’ for back. The color of 

these letters is set to yellow. Fig. 2 illustrates the plotted 

device in a three-dimensional space. This is the initial 

position of the device, i.e. at the beginning of the algorithm 

(𝒕 = 𝟎). 

Now, the Euler angles are updated after the acquisition of 

each data-point from the inertial sensors. The orientation 

filter reads data from sensors, processes them, and fuses them 

to estimate the angles. Each 350 ms, the graph is updated by 

rotating the simulated device and the corresponding labels, 

according to the output of the filter. This frame rate, i.e. the 

frequency at which consecutive images appear on a display, 

seems adequate for the human eye. This update is done by 

pivoting the centers of the device faces (the midpoint between 

any two opposite vertices) around the axes, using the 

estimated Euler angles, as indicated in the previous section. 
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Figure 3. The estimation of Euler angles using (i) IMU and (ii) MARG 

sensors using Madgwick’s algorithm 

 

Two modes are considered in this tool. The first one is the 

real-time mode, where data are read continuously using a 

Bluetooth dongle for example. The proposed technique 

applies Mahony’s or Madgwick’s algorithm and updates the 

graph accordingly. The second one is the replay mode, where 

data have been acquired beforehand. The user can load data 

and visualize the sequential orientation of the sensing unit. 

The type of the sensing device (IMU or MARG) and the 

orientation filter (Mahony et al. or Madgwick et al.) are 

chosen before launching the algorithm.  
 

IV. REAL WORLD APPLICATIONS USING PUBLIC DATASETS 

The proposed tool, i.e. orientation estimation and the 

visualization of the sensing device, serves a wide-range of 

healthcare applications. In this section, we conduct two 

comparative studies following two medical applications: 

IMU vs MARG and Mahony’s filter vs Madgwick’s filter. 

A. Fall risk assessment 

Falls are one of the main causes of mortality in elderly. 

While most of the proposed solutions target fall detection, the 

clinician may need to evaluate this fall by observing the 

successive movements of the wearable device during this fall. 

The initial state of the human body (standing, sitting, lying, 

walking, etc.) which precedes the fall, the velocity of the 

impact, and the direction of the fall (forward, backward, 

lateral) are important factors from a medical point of view. 

Our tool answers all these questions and provides an added-

value for the practitioner. To address the real world situation, 

we resorted to the FallAllD public dataset [15]. This dataset 

contains acquired data from tri-axial accelerometers, tri-axial 

gyroscopes, and tri-axial magnetometers, including human 

falls. The subjects wore a necklace device while simulating 

falls and ADLs. Both algorithms were tested to calculate 

Euler angles, and they provided almost the same results. For 

reasons of clarity, only Madgwick’s algorithm is considered 

in this sub-section. The focus is on the comparison between 

both sensing units, i.e. IMU (accelerometer + gyroscope) and 

MARG (accelerometer + gyroscope + magnetometer). Fig. 3 

illustrates the time-series of the estimated Euler angles from 

both sensing units, representing a fall forward from walking 

caused by syncope (fainting) without recovery. It is clear 

from this figure that the subject was walking during the first 

8 seconds, where MARG shows that ∅ ≈ 0°, 𝜃 ≈ −90°, and 

𝜓 ≈ 0° (the subject was standing). The impact phase was 

located between the 8th and 12th seconds (the shock is around 

the 10th second), where a change in angles occurred. The 

subject was lying on the floor (inactive) for the remaining 8 

seconds. A video has been created to display the orientation 

of the device during this fall, using both estimations (see 

Appendix).  

The variability of the IMU estimation is higher while the 

subject was walking, compared to the MARG estimation 

which is smoother. Moreover, concerning the angle 𝜓, a 

certain phenomenon appears in the IMU estimation. A 

sudden change from −180° to 180° occurs between the 9th 

and 10th seconds (when the body was on the verge of hitting 

the floor), due to the effect of the angular velocity. From 3D 

visualization point of view (see video), there is no rotation 

around this axis. This means that the device kept the same 

inclination. Now, from a signal point of view, this switch 

from −180° to 180° means that a certain rotation occurred 

around the z-axis. In this case, by using convolutional 

methods or auto-correlation for example, a certain deviation 

would be detected, since the signal level changed (see blue 

signal in Fig. 3). This may lead to biased results when it 

comes to the analysis/estimation of fall direction and the final 

body state (after the impact on the ground). Based on the 

previous observations, MARG sensors may be preferred for 

postural transitions and recurrent movements (like walking), 

since they involve higher degrees of freedom, thus having an 

advantage over IMUs by providing robust orientation 

estimation. 
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Figure 4. The distribution of body postures following the mean values of 

Euler angles 
 

B. Body posture monitoring 

Another medical application is the distribution of the 

body posture over the course of a day. This information is 

valuable for health monitoring and frailty prevention in 

elderly care. Hence, we resorted to another public dataset 

[16], available in the UCI Machine Learning Repository [17]. 

The subjects have worn the smartphone on the waist and 

simulated six different activities. This dataset only contains 

data acquired from an accelerometer and a gyroscope. Hence, 

the considered sensing unit in this sub-section is IMU. The 

reliability of this type is sufficient for this application, since 

the estimation of the body posture is done while the subject 

is inactive. The targeted classes for this task are (i) Sitting, 

(ii) Standing, and (iii) Lying. Euler angles were estimated 

from 2.56-second windows, using both algorithms, i.e. 

Madgwick’s and Mahony’s algorithms. Three features were 

calculated, namely the mean values of ∅, 𝜃, and 𝜓. Fig. 4 

illustrates the distribution of these posture classes following 

the three extracted features. It is clear that the third class is 

well separated from the other two classes. On the other hand, 

sitting and standing clusters present some intersections. To 

predict the posture of the human body, these three features 

feed a set of machine learning (ML) classifiers. These 

classifiers are the following ones: (a) Neural Network (NN) 

with 2 hidden layers of 8 and 2 neurons respectively, and 

‘ReLU’ as activation function; (b) Support Vector Machine 

with a radial basis function kernel (SVMR); (c) Random 

Forest (RF) with 20 estimators of depth equal to 2; (d) 

Adaboost (Ada) with 100 estimators; (e) Naive Bayes (NB) 

with a Gaussian Distribution; (f) Linear Discriminant 

Analysis (LDA). Table I illustrates the different results. NN 

achieved the highest accuracy and it is equal to 89.6%. Both 

orientation filters provided close results in terms of 

performance, except for NN and Ada. The confusion occurs 

between sitting and standing. The waist position alone does 

not seem to be sufficient for this task. Another position and/or 

additional features are required to increase the achieved 

accuracy. 
 
TABLE I.  THE DIFFERENT ACHIEVED ACCURACIES (%) OF ML CLASSIFIERS 
 

 
As seen in Table I, Madgwick’s algorithm had the upper edge 

when it comes to predicting the body posture. Nevertheless, 

Mahony’s algorithm could be better suited for other 

applications. 

 

V. DRAWBACKS AND PRACTICAL CONSIDERATIONS 

In this section, we discuss some artifacts and limitations 

related to an attitude estimation system. We have seen in 

section IV that MARGs are preferred to IMUs when it comes 

to postural transitions estimation. Now, electronic devices, 

ferrous materials, and some other mechanical and electrical 

infrastructures are sources of magnetic fields. These artificial 

fields contaminate the Earth’s magnetic field measurements 

and decrease the reliability of sensor fusion techniques in 

heavily disturbed areas like indoor environments [18]. 

Hence, the indoor performance of MARGs could be limited. 

The use of a gyroscope is important for the attitude 

estimation. However, its power consumption is very high 

compared to that of the accelerometer [19], which reduces the 

battery life and the autonomy of the sensing device. 

High sampling rates increase the computational load of 

attitude estimation systems. The general tendency is to lower 

it in order to reduce the complexity. However, very low rates 

may not be able to capture certain movements. Therefore, the 

accuracy/complexity tradeoff should be considered when 

developing such approaches. It is worth mentioning that a 

sampling rate of 50 Hz leads to satisfactory performance [9].  

 

VI. CONCLUSION AND PERSPECTIVES 

This paper discussed the attitude estimation of inertial 

sensors. Based on widely used orientation filters, a GUI tool 

was developed to visualize the orientation of a rigid body (a 

sensing device) in a three-dimensional space. Such tool is 

important for a wide-range of real world applications in 

elderly care, as seen in section IV while using public datasets. 

In a future work, the orientation of the human body 

(instead of the device) is going to be considered using 

wearable sensors. The output of the proposed tool is going to 

 
Machine Learning Classifier 

NN SVMR RF Ada NB LDA 

Madgwick et al. 89.6 87.8 87 88.2 88.7 87.2 

Mahony et al. 88 87.2 87.4 84.7 87.9 87.8 
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be exploited in order to constitute a monitoring system by 

developing a human activity recognition process. 

 

APPENDIX 

The video can be found on Google drive via the link: 
https://drive.google.com/file/d/1KqL0oahTCC4jkoFwQAX
7E5LWkXDNVqIJ/view?usp=sharing 

Its goal is to represent the developed tool and to display 
the effect of MARG estimation (on the left) and IMU 
estimation (on the right) on the visualization process, using 
Madgwick’s algorithm. 
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