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Abstract

Heart rate variability (HRV) has proven to be one of the most promising indicator
of many physiological and psychological states. Thanks to great innovations in wearable
devices, HRV is now measurable by simple sensors remotely connected via wireless
networks to computers or smartphones. However, these sensors aren’t as precise as
the gold standard Electrocardiographs (ECG) used in hospitals. Errors during the
transmission or acquisition may deteriorate signal’s quality and considerably affect HRV
features. These errors are not acceptable for a precise HRV analysis potentially used for
diagnosis. Therefore, in this study, we use four different interpolation methods (Nearest
Neighbour - NN, Linear, Shape-preserving piecewise cubic Hermite - Pchip and cubic
spline) that help tackle the problem of missing RR values. We then investigate their
effect on HRV analysis in order to quantify the estimation error allowing to choose
the best interpolation method. The main particularity of this study is the real-time
approach to data interpolation and HRV analysis. We observed that some interpolation
methods behave differently as missing values’ percentage grows. Some being more
suitable for RR timeseries with a greater number of missing data. The study also
suggests that interpolation may have a greater impact on some HRV features compared
to others. Finally, in order to achieve maximum performance, we propose to adapt
interpolation method to both missing values’ percentage and targeted HRV feature.

Keywords— Heart Rate Variability, HRV analysis, real time, Inter beat intervals, IBI, RR intervals,
wearables, e-health.

1 Introduction

With the rise of telemedicine and healthcare wear-
ables, scientists are eager to collect every track-
able parameter from the human body throughout

different physiological signals. One widely used
signal is the Heart rate variability (HRV), now
used as an indicator of different physiological states
and pathologies [1]. Its time and frequency do-
main analysis can give insights into autonomic ner-
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vous function. They provide information about the
sympathetic-parasympathetic balance and cardio-
vascular health [2].

HRV measures the variation in the time inter-
val between two consecutive heartbeats, known as
inter beat intervals (IBI) or RR intervals. They
correspond to the time elapsed between two suc-
cessive R-waves of the QRS complex, characteriz-
ing ventricular depolarization, on an ECG signal.

In an ideal situation, HRV analysis is per-
formed with RR interval time series including only
pure sinus beats, normally recorded by a 12 lead
ECG. However, RR intervals are now usually mea-
sured thanks to wearable ECGs or photoplethys-
mographs (PPG) as a substitute of the gold stan-
dard ECG used in hospitals.

Thanks to such wearables, it is now possible to
passively record heart activity continuously, open-
ing the way to easier remote health monitoring dur-
ing user’s daily life.

On the other hand, for a reliable HRV analysis,
these RR timeseries should be carefully edited to
identify gaps and abnormal heart beats.

In this paper, we investigate the impacts of edit-
ing RR intervals, by interpolation, on HRV fea-
tures. We remove an increasing amount of data
from an originally perfect signal. The deleted val-
ues are then handled by four interpolation meth-
ods (Nearest Neighbour, Linear, Shape-preserving
piecewise cubic Hermite and cubic spline). Finally,
we quantify the error of HRV feature estimation
by each of these approaches. The ultimate goal is
to identify a combination of different interpolation
methods that yields the lowest error for real time
HRV analysis in both time and frequency domains.
This could be achieved by choosing the best inter-
polation approach for each HRV window based on
the percentage of missing data in that window.

2 Context

The main downside to HRV assessment through
wearables is the data quality that is often cor-

rupted. Errors occur during the acquisition, the
transmission or the storage, thus leading to an im-
portant data loss and unintended changes to the
original HRV signal. Ectopic beats also introduce a
bias into HRV features. When they are not caused
by a physiological phenomenon such as premature
ventricular contractions (PVC) or premature atrial
contractions (PAC), they can occur due to a false
QRS detection on the ECG signal or a missed beat.
Such artifacts represent a significant problem in
the interpretation of HRV features making it some-
times even impossible. Therefore, they need to be
addressed beforehand for a reliable HRV analysis
[3].

Previous studies on the subject suggested differ-
ent preprocessing methods for RR time series in-
cluding filtering, deletion and interpolation. Each
of these solutions however has its own disadvan-
tages.

The main issue with the deletion approach is
the signal depletion since the ectopic beats are re-
moved without being replaced. The remaining RR-
intervals are just merged together which increases
the abrupt changes in the beat to beat variability
and the disruptions in the natural fluctuation [4].

Interpolation on the other hand roughly pre-
serves the overall recording duration and the num-
ber of beats, but the beat manipulation does intro-
duce changes that affect HRV analysis. Authors in
[5], as well as many others, found for example that
interpolation introduces low frequency components
(LF) and reduces high-frequency components (HF)
power, thus altering frequency domain HRV fea-
tures.

Paper contribution. The particularity of the
present paper is the real-time approach to the dele-
tion simulation and interpolation.

As far as we know, this is the first study to ex-
amine the influence of missing data on a real time
HRV analysis. We simulate a real time data ac-
quisition with missing values. The missing data is
handled by different interpolation methods in real
time before HRV analysis. Finally, HRV features
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from the reconstructed signal and those from the
original RR timeseries are compared.

The main purpose is to identify the best ap-
proach for processing the RR timeseries in real
time, depending on the percentage of missing data
in each HRV window, in order to achieve a real
time HRV analysis for real time, continuous health
monitoring.

Besides, to the best of our knowledge, this would
be one of the first papers to investigate the effect of
a very large amout of edited data (up to 70%) on
HRV analysis. Recent developments in wearable
devices have heightened the need for such studies
since wearables produce a huge number of abnor-
mal beats due to motion artifacts and connectivity
problems.

3 Methods

3.1 Dataset

The dataset used is from the MIT-BIH Normal Si-
nus Rhythm RR Interval Database (nsr2db) avail-
able on PhysioNet [6].

The database includes beat annotation files for
long-term ECG recordings of 54 subjects in nor-
mal sinus rhythm (30 men, aged 28.5 to 76, and 24
women, aged 58 to 73). The original ECG record-
ings were digitized at 128Hz, and the beat anno-
tations were obtained by automated analysis with
manual review and correction [6]. In this paper,
RR segments including only normal beats between
0.3s and 1.3s were used (45-200bpm).

3.2 Missing values simulation

The objective was to simulate a real time data ac-
quisition for a real time HRV analysis. Each HRV
window would have the same percentage of missing
values as depicted in figure 1.

HRV window :

In order to compute time domain and frequency
domain HRV features, the RR timeseries were split
into 5min segments, with a 1min sliding window
(4min overlap). The choice of a sliding window
is to address the discontinuities observed at the
edges of each window. It also means a new set of
HRV features is available every minute, bringing
us closer to a real-time analysis.

Deletion procedure :
Since the goal is to evaluate the effect of inter-

polation on HRV features, the missing values were
created on the same windows used for HRV anal-
ysis.The steps for the deletion procedure are ex-
plained in the pseudo code below.

Algorithm 1 RR deletion procedure

1: Randomly delete P% of the data in the first
5min window

2: for Each new window i do
3: Compute N , total number of values to be

deleted N = WindowLength×P
100

4: Determine Noverlap number of deleted data
in the 4min overlap.

5: Compute the number of values still to be
deleted from the sliding window : Nsliding =
N −Noverlap

6: Randomly remove Nsliding from the last
minute of the window

7: end for

For each new window, the first step is to compute
the total number of data that should be deleted in
order to reach the deletion percentage. The num-
ber of missing values in the 4min overlap, deleted
in the previous iteration, is then computed, and
serves to determine the number of data to ran-
domly remove from the last minute of the window.
The beats were removed away from the window’s
edges in order to avoid extrapolation problems.
Other than this, there was no condition on the
number of consecutive beats to be deleted, nor on
their positions. The deletion procedure is com-

p.3 Colloque JETSAN 2021



Figure 1: Example of the deletion procedure. The first minute (red arrow) of the i window and the
last minute (blue arrow) of the i + 1 window have the same percentage of missing data. At each
iteration, data is only deleted from the last minute of the window which is the last recorded minute.
Both windows have the same deleted data in the 4min overlap segment.

pletely random. It is however obvious that the
higher the percentage of deleted data, the larger
(and more numerous) the gaps with successive
missing beats.

3.3 Interpolation methods

The missing RR intervals deleted in the last step
were then filled by four different interpolation
methods listed below:

• Nearest Neighbour (NN): Zero-order in-
terpolation method that assigns the value of
the nearest existing RR interval to the miss-
ing beat.

• Linear: First order interpolation method.
Derives a straight line connecting the adjacent
RR intervals and calculates the missing beats
based on the line.

• Shape-preserving piecewise cubic Her-
mite interpolating polynomial (PCHIP):
A piecewise cubic polynomial determined by
the given data and their specified derivatives
at the interpolation points [7].

P (xk) = yk, P (xk+1) = yk+1 (1)

P ′(xk) = dk, P
′(xk+1) = dk+1 (2)

The main idea is to determine the slopes dk
so that the function values do not overshoot
the data values [7]. One of the potential ways
to determine dk, used in this paper, is briefly
explained below.

If δk and δk−1 have opposite signs or if ei-
ther of them is zero, then xk is a discrete
local minimum or maximum, so dk is set
to be equal to zero. In (figure 2a), the
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Figure 2: Slopes for PCHIP.

green curved line is the shape-preserving in-
terpolant, formed from two different cubics.
The two cubics interpolate the center value
and their derivatives are both zero there [7].
On the other hand, if δk and δk−1 have the
same sign, then dk is a weighted harmonic
mean, with weights determined by the lengths
of the two intervals around xk.

w1 + w2

dk
=

w1

δk−1
+
w2

δk
(3)

where w1 = 2hk + hk1, w2 = hk + 2hk1.
(hk denotes the length of the kth subinterval:
hk = xk+1 − xk).

At the breakpoint, the reciprocal slope of the
Hermite interpolant is the weighted average
of the reciprocal slopes of the piecewise lin-
ear interpolant on either side (figure 2b). The
shape-preserving interpolant is formed from
the 2 cubics that interpolate the center value
and that have slope equal to dk there [7].

• Cubic Spline: One popular third degree in-
terpolation method is the cubic spline inter-
polation, where data points are estimated by
fitting a third degree polynomial. A spline
is also a piecewise cubic Hermite that is ex-
ceptionally smooth, in the sense that the first
and second derivatives of consecutive polyno-
mials are equal and thus continuous, ensuring
smoothness of the resulting curve. This avoids
the problem of the straight polynomial inter-

polation that tends to induce distortions on
the edges of the polynomials [7].

The Pchip and the spline methods both per-
form piecewise cubic Hermite interpolation.
They only differ in how the slopes of the inter-
polant are computed, thus leading to different
behaviors when the underlying data has flat
areas or undulations.

After the interpolation step, HRV features were es-
timated on the reconstructed data and compared
to the original HRV set from the original signal.
The error was then estimated through the mean
absolute error (Mape) in order to identify the best
interpolation approach.

3.4 HRV analysis

As we wanted to show the impact of interpolation
on reconstructed signals, we found useful to eval-
uate the changes on multiple HRV features. We
selected those mostly used in literature. They can
be separated into two categories, time domain fea-
tures and frequency domain features.

Time domain :
We have chosen two of the most known indices,

SDNN and RMSSD, for the time domain analysis.
Firstly, SDNN stands for Standard Deviation of

Normal to Normal beats. Normal to normal means
ectopic and other abnormal beats have to be re-
moved beforehand. Variations of SDNN such as
Standard deviation of RR intervals (SDRR) are
sometimes used. The formula is the same, the only
difference is that RR time series- for SDRR include
abnormal or false beats.

(In this study, ectopic beats created by interpo-
lation are not filtered before HRV analysis. SDRR
will be referred to as SDNN since the formula is
the same.)

SDNN is mostly computed over 24H peri-
ods, however, researchers have found significantly
shorter periods of analysis to be relevant [8]. In our
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case we will use 300 seconds (5min) periods. Con-
sidered as gold standard in quantification of the
cardiac risk [2], reflection of both sympathetic ner-
vous system (SNS) and parasympathetic nervous
system (PNS) activity can be measured on SDNN
which makes it one of the most useful features of
HRV analysis.

SDNN =

√∑N
i=1(RRi −RR)2

N − 1
(4)

Where :

RR =
1

N

N∑
i=1

(RRi) (5)

RMSSD means root mean square of successive
difference between normal heartbeats. Like SDNN
it takes only normal IBI as an input. We chose to
calculate it on five minute interval as it matches
SDNN window and is the conventional minimum
recording time. This features reflects more PNS
activation than SDNN does.

RMSSD =

√∑N−1
i=1 (RRi −RRi+1)2

N − 1
(6)

Frequency domain :
Several methods can be used for frequency do-

main analysis such as Fast Fourier Transform
(FFT) auto regressive modeling (AR) or wavelet
transform.

No matter which technique is used, the goal of
frequency domain analysis is always to separate
HRV signal into four components which are Ultra
Low Frequency (≤ 0.003Hz), Very Low Frequency
(0.003− 0.04Hz), Low Frequency (0.04− 0.15Hz),
and High Frequency (0.15 − 0.4Hz) [2], (respec-
tively ULF, VLF, LF and HF).

Since ULF and VLF generally require long peri-
ods of recording not suitable for real-time analysis,
they will not be included in this study. Also, their

physiological correlates are still unknown which
makes them less relevant for e-health applications.

HF and LF on the other hand can be assessed on
1 to 2 min windows respectively [2]. Their ability
to reflect the overall cardiac health and the state
of the autonomic nervous system (ANS) has been
proven by many studies [9, 1], in different contexts
including stress [10] and sleep [11].

3.5 Evaluation metrics

The difference between HRV features from the re-
constructed data and those from the original signal
was assessed by the mean absolute percentage er-
ror (MAPE) (7). The idea behind choosing the
(MAPE) is to avoid mutual cancellation of the
positive and negative errors. Moreover, since each
HRV parameter has a wide range [12], normaliza-
tion by the actual value allows the comparison of
the different series.

Mape =
1

n

n∑
t=1

∣∣∣∣At − Et

At

∣∣∣∣ (7)

where :
n = number of times the summation iteration
happens, which corresponds to the number of
HRV windows.
At = Actual value, from the original RR time-
series.
Et = Estimated value, from reconstructed signal.

Another interesting parameter to look at is the
number of ectopic beats created by the interpola-
tion. As explained before, non physiological beats
should be filtered and, eventually, replaced before
HRV analysis. The replacement method (ie : in-
terpolation) should not be creating more ectopic
beats. We assessed the percentage of abnormal
RR intervals (Pectopic) in the reconstructed signals
as follows :

Pectopic =
Number of ectopic beats

Signal Length
(8)
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4 Results and discussion

In this paper, 24 RR timeseries of 50min duration
were analysed for a total of 1104 HRV windows of
5min duration. To investigate the effect of missing
data on HRV features, the same percentage of RR-
intervals was removed from each window starting
from 10% up to 70% of missing values with a 10%
step.

The deleted beats were then replaced by four dif-
ferent interpolation methods explained in section
3.3. An example of data interpolation is shown in
Figure 3.

The cubic spline interpolation overshoots the
data at some points as can be seen in figure 3. This
is due to the requirement for equal second order
derivatives at every point. By eliminating this con-
dition, it is possible to prevent, or at least reduce,
the overshooting as done by the Pchip method.

Time domain features. According to the re-
sults in table 1, SDNN seems to be less sensitive
to interpolation. It was the least affected with an
estimation error not greater than 5% even with a
huge number (70%) of missing data. The same
conclusion was found by authors in [13].

RMSSD on the other hand is much more sen-
sitive to interpolation. The estimation error in-
creases almost linearly with the percentage of
edited data.

Overall, we found the (zero-order) Nearest
Neighbour interpolation to be the best approach
for SDNN and for RR tachogrames wih up to 50%
of edited data for RMSSD.
Since SDNN is the standard deviation of each RR
interval from the mean RR duration, it reflects the
LF component in some way whereas the RMSSD
correlates with the HF since it uses the difference
between successive beats. This may explain why
SDNN is much less sensitive to interpolation than
RMSSD. In fact NN interpolation acts as a low-
pass filter since it produces flat-like shapes [13]. In
situations where the heart rate is relatively stable
and does not vary abruptly, the NN interpolation

is most likely to preserve the heart rate variability.
When the percentage of missing data exceeds

50% however, it has been found that the best re-
sults for RMSSD estimation are achieved without
editing the RR tachograms, i.e without replacing
the missing data by any of the interpolation meth-
ods used in the study.

[14] also concluded that RMSSD does not re-
quire any interpolation to obtain reliable estima-
tions, but they found the threshold to be at 30%
instead.

Table 2 summarises RMSSD estimation errors
by nearest neighbour approach against no inter-
polation. Not editing RR timeseries yields better
RMSSD estimation than editing more than half the
data. This however should be verified when the ac-
quisition includes different contexts that may cause
the heart rate to vary a lot.
The decrease of the Mape when the percentage
of missing data increases may be due to the lower
number of compared windows. When the missing
values are not replaced by any interpolation, re-
maining RR intervals are just merged. The higher
the percentage of missing data, the shorter the RR
signal and consequently, fewer HRV windows are
been compared.

Frequency domain features are clearly much
more sensitive to interpolation as can be seen from
table 3. Linear and Pchip interpolation perform
almost equally and yield the least estimation error
for LF, HF and LF/HF . They are thus considered
to be the best interpolation methods for frequency
domain features.

Generally speaking, physiological variables such
as the Autonomic cardiovascular regulation op-
erate at sufficiently low frequencies that nothing
would be lost using a linear or a Pchip approach.
Unless there is a physiological reason to suppose a
non-linear trend, linear seems to assume less than
the other methods.

Contrary to the time domain analysis, the cubic
spline interpolation gives the worst results with an
error almost two times greater than all the other
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Figure 3: Example of interpolation for 50% missing data. The red arrow indicates the ectopic beats
created by the Cubic Spline interpolation

interpolation methods. This can be explained by
the fact that cubic splines are prone to severe
oscillation and they overshoot at intermediate
points. The overshooting introduces many ectopic
beats thus increasing the HF components. It has
been found in [15] that the presence of only one
ectopic beat in a 2 min ECG recording introduces
an increase in the HF power of around 10%.

Based on the findings described above, the best
preprocessing approach would be a combination of
different interpolation methods chosen based on

the HRV feature and the percentage of missing
data in each HRV segment. Table 4 summarises
the best interpolation approach for each HRV fea-
ture on each percentage of edited data.

At exactly 50% of missing beats, NN and no
interpolation approach perform equally with re-
gards to RMSSD estimation (Table 2). The latter
method outperforms the first one when the per-
centage crosses the 50% threshold.

Generally speaking, the Pchip interpolation
seems to do well in most cases. It preserves the
linear trend of the data while adding very light
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Mape (%)

Missing % HRV Features NN Linear Pchip Spline

10%
RMSSD
SDNN
% ectopic

3.84 ± 1.15
0.87 ± 0.31
0

6.69 ± 0.96
0.91 ± 0.40
0

6.56 ±0.99
0.86 ± 0.38
0

5.13 ±1.03
1.03 ±0.44
0

20%
RMSSD
SDNN
% ectopic

6.98 ± 2.88
1.36 ± 0.59
0

12.76 ± 2.59
1.43 ± 0.55
0

12.49 ±2.65
1.3 ± 0.48
0

9.51 ±2.38
1.89 ±1.01
0

30%
RMSSD
SDNN
% ectopic

10.17 ± 3.94
1.70 ± 0.52
0

19.89 ± 3.23
2.28 ± 1.03
0

19.39 ± 3.29
1.96 ± 0.87
0

14.84 ± 3.17
2.93 ± 1.42
0.5

40%
RMSSD
SDNN
% ectopic

13.99 ± 4.45
2.08 ± 0.52
0

27.63 ± 3.91
3.18 ± 1.04
0

26.92 ±4.05
2.56 ± 0.83
0

26.11 ± 26.4
7.42 ± 15.25
0.7

Table 1: Mean absolute percentage error of estimated time domain HRV features from 10 to 40%
missing data

Mape (%)

% HRVfeat NN No interp

50% RMSSD 17.3±6.34 17.3±7.52

60% RMSSD 20.7±7.87 15.44±6.81

70% RMSSD 25.57±8.25 12.38±6.60

Table 2: Mean absolute percentage error of esti-
mated RMSSD for 50%, 60% and 70% missing data

waves. As explained in [1], the structure generat-
ing the RR signal is not only simply linear, but
also involves nonlinear contributions. The Pchip
interpolation thus seems to better mimic the RR
timeseries trend.

5 Conclusion

In time domain, nearest neighbour interpolation
gives the best results for up to 50% of edited data.
Beyond 50%, the best estimation was achieved
when the deleted data was not replaced. It seems
better not to use any interpolation for RMSSD be-
yond this threshold. In the frequency domain how-
ever, the lowest errors of HRV feature estimation
are obtained using linear or Pchip interpolation.

If only one approach had to be chosen for a
good overall estimation, the Pchip would be privi-
leged because it preserves the linear trend and the
slightly non linear contributions in the RR time-
series.

Since HRV features are used for preventive
health and users’ well-being, it is fundamental to
know the effect of missing data on these param-
eters. The findings of this study, namely the
best interpolation methods based on the percent-
age of missing beats could be used for a data-driven
decision-making strategy to decide whether reliable
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Mape (%)

Missing % HRV Features NN Linear Pchip Spline

10%
LF
HF
LF/HF

5.86 ± 2.59
5.9 ± 2.49
9.58 ± 3.56

4.69 ± 2.00
5.07 ± 2.04
7.45 ± 2.49

4.82 ± 2.26
5.09 ± 2.10
7.57 ± 2.7

7.77 ± 5.01
6.1 ± 2.43
11.22 ± 5.2

20%
LF
HF
LF/HF

8.46 ± 4.39
7.53 ± 2.69
12.64 ± 4.93

7.07 ± 4.39
6.8 ± 2.82
10.67 ± 3.87

7.15 ± 3.78
6.89 ± 2.72
10.89 ± 3.99

13.45 ± 9.40
8.94 ± 3.61
18.70 ± 9.85

30%
LF
HF
LF/HF

11.19 ± 5.74
11.30 ± 5.48
16.63 ± 5.93

9.47 ± 4.09
11.22 ± 5.34
14.96 ± 4.67

9.61 ± 4.7
11.35 ± 5.34
15.12 ± 4.70

20.21 ± 13.44
14.38 ± 7.51
27.02 ± 11.67

40%
LF
HF
LF/HF

14.14 ± 6.16
13.39 ± 5.24
20.70 ± 6.73

12.50 ± 4.14
14.36 ± 7.17
19.32 ± 5.34

12.09 ± 4.65
13.72 ± 6.63
18.51 ± 5.20

26.18 ± 19.33
21.45 ± 21.8
30.84 ± 15.56

50%
LF
HF
LF/HF

16.55 ± 8.00
17.1 ± 7.73
23.95 ± 7.4

16.31 ± 5.02
18.56 ± 9.17
24.15 ± 6.08

15.24±5.6
18.67 ± 9.4
23.44 ± 6.63

36.43 ± 26.65
26.99 ± 14.15
40.51 ± 17.08

Table 3: Mean absolute percentage error of estimated frequency domain HRV features from 10% to
50% missing data

conclusions can be drawn from the signal.
This preprocessing step, including filtering and

interpolation, is fundamental before any HRV anal-
ysis can be performed. It enables continuous pas-
sive monitoring of users’ cardiovascular activity in
a non-obtrusive way despite a relatively poor data
quality.

6 Limits and Perspectives

It is worth bearing in mind that this interpolation
approach remains at a mathematical level. Physi-
ological implications and interpretations could fur-
ther be explored but are outside the scope of this
paper. The need and efficacy of interpolation in
general should be assessed against the end-goal of
HRV analysis. Moreover, in real-life acquisitions,
the number of missing data in a time gap is un-

known.
On the other hand, many additional aspects

could be investigated in a future work. The first
and most important one is to measure the estima-
tion error of the preprocessing approach introduced
in section 4, including different interpolation meth-
ods based on the percentage on missing data in
each window. The effect of interpolation on other
HRV features such as the total spectral power, and
Non linear features could also be investigated.

Additionally, it would be very interesting to
identify an upper limit for missing heart beats, in
each HRV window, beyond which any interpola-
tion would be pointless. This upper limit would
depend once again on the context and the purpose
of HRV analysis in the first place. It would help
decide whether an HRV segment can be used for a
reliable diagnosis or should be discarded.
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Missing % HRV feat Best interp

1stcategory :

10% -50%

RMSSD
SDNN
LF
HF
LF/HF

NN
NN / Pchip
Lin / Pchip
Lin / Pchip
Lin / Pchip

2ndcategory :

50% -70%

RMSSD
SDNN
LF
HF
LF/HF

No interpolation
NN
NN /Pchip
NN / Lin
NN / Pchip

Table 4: Best interpolation approach for HRV fea-
tures based on the percentage of missing data.
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