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Abstract—In areas of high security, like airports, etc, X-Ray
machines are used to scan baggage to look for hazardous
objects such as guns, knives, razor blades. But, in a manual
scan, it is easy to miss some details. Also manual scan is
a tedious and time-consuming process. We investigate and
compare several algorithms for detection of harmful/hazardous
objects like razor blades/handguns etc in X-Ray images of
travellers’ baggage. Deep Convolutional neural networks such
as RCNN, Detectron, RetinaNet and Yolo has shown great
results in object detection and recognition. We plan to use the
object detection techniques and apply them to improvise upon
the already existing Automatic baggage screening methods.

Index Terms—Baggage screening, Deep Learning, Convolu-
tional Neural Networks, Object Detection Algorithms, X-ray
Images

1. Introduction

Luggage screening is a very important part of the air-
port security risk assessment and clearance. Identifying and
detecting dangerous objects and threats in baggage carried
on board aircraft plays an important role in ensuring and
guaranteeing passengers security and Safety [9].

In addition to human error due to workload and fatigue, a
wide range of shapes and rotation of hazardous items make
it difficult to recognize them. Due to the complex nature
of the task, the literature suggests that human expert detec-
tion performance is only about 80-90% accurate [8]. Deep
convolutional neural networks have already shown good
results as demonstrated by Zhao et al [12]. Our goal is to
create a model that can analyze an X-Ray image and detect
hazardous objects. Analyze the model performance using
the standard metrics like accuracy, mean average precision
(mAP) etc. Try to improve the performance of automatic
baggage screening by exploring the latest object detection
techniques.We are also aiming to use Data augmentation
methods as discussed by [3] and Threat Image Projection
by [4].
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2. Literature Review

In 2011, Bastan et al. [2] proposed the Bag-of-Visual-
Words on Baggage X-Ray Images and concluded that
straight forward application of BoW on X-ray Images
doesnot perform well as it does on regular images. 2013,
Turcsany et al [11] proposed classification technique for
object detection in X-ray baggage imagery using primed
visual words in an SVM classifier framework. Primed visual
words are obtained through class-specific clustering of fea-
ture descriptors and used to encode images in bag-of-words
model. This differs from the traditional approach, which
combines the feature set of positive and negative classes
during the clustering process when generating a codebook.
Modification to the clustering stage of the traditional bag-
of-words framework creates an image representation scheme
that further facilitates the separation of positive and negative
class.This method significantly outperforms the previous
work of Bastan et al. [2]. People start using CNN networks
for Object Detection in X-ray images.Akcay et al [1] ex-
amines the applicability of traditional sliding window con-
volutional neural network (CNN) detection and the relative
performance of contemporary object detection strategies for
region based object detection techniques — Faster Region-
based CNN (R-CNN) and Region Based Fully Convolution
Networks(R-FCN) on X-ray securities images. Use Transfer
learning due to limitation of training dataset of 11,627
samples (5,867 training, 2,880 validation and 2,880 test
samples). The Faster RCNN and R-FCNN provide superior
results than traditional sliding window driven CNN(SW-
CNN) approach.Faster RCNN with VGG16, pretrained on
the ImageNet dataset, achieved 88.3 mAP for a six object -
firearm, firearm-components, knives, ceramic knives, camera
and laptop detection in X-ray dataset. R-FCN with ResNet-
101, yields 96.3 mAP for the two class firearm detection
problem and requires 100 milli second computation per
image.

Petrozziello et al uses a thresholding algorithm followed
by normalization to preprocess the images which isloates the
dense materials such as metals which can help to reduce the
benign background information within the image [9]. It also
demonstrated that CNN perform better than auto encoders
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Figure 1. Detection results of SW-CNN, Fast-RCNN (RCNN) [28], Faster
RCNN (FRCNN) [20] and R-FCN [21] for multi-class problem (300 region
proposals).

for baggage screening.

Bhowmik et al. [3] discusses on how to synthetically cre-
ate x-ray images with prohibited items(Data augmentation).
This creates an opportunity for as the existing public domain
datasets such as GDXray [6] contains lesser clutter ,overlap
and contains limited categories. SIXray [7] has dataset with
clutter but has smaller number of categories.

2020, Hassan et.al [5] proposed a novel method to over-
come the retraining requirement of framework across mul-
tiple scanner-specification. It uses meta-transfer learning-
driven tensor shot detector that decomposes the candidate
scan into dual-energy tensors and employs a meta-one-
shot classification backbone to recognize and localize the
cluttered baggage threats. This method can be well general-
ized for multiple scanner specifications due to its capacity
to generate object proposals from the unified tensor maps
rather than diversified raw scans. On the SIXray dataset,
the proposed framework achieved a mean average precision
(mAP) of 0.6457, and on the GDXray dataset, it achieved the
precision and F1 score of 0.9441 and 0.9598, respectively.

Figure 2. Sample Dataset (SIXRay)

3. Methodology

3.1. Synthetic Image generation by Threat Image
Projection

The GDXray dataset has limited number of images with
less diversity. Most of the images are from few selected
baggages which are taken from various angles. We explored
the TIP approach as proposed by Bhomik et al [3] to
introduce diversity in the dataset. It involved 3 steps

1) Threat signature Transformation
2) Insertion Position Determination
3) Image Compositing
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Figure 3. Synthetic Image Generation

We generated a total of 2000 synthetic Xray baggage
images (600 for each class Shuriken, Razor Blade, Knife
and 200 for Guns) for the following classes :

e Guns

e Shuriken

e Razor blade
e« Knife
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Synthetic Xray Image
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Figure 4. Comparision of Real Image VS Synthetic Image

3.2. Detection Strategies

We used Yolov3-tiny [10] for the purpose of our clas-
sification. We created two models one from Real Dataset
from GDXRay [300 images] and another model from our
Synthetic Image Dataset [2000 images]. We used Yolov3-
tiny because of it performance, so that we can evaluate the
results faster. Instead of training the model from scratch we
have used pre-trained Yolov3-tiny weights for training.

Accuracy Comparison

When training Real Image Dataset we separated 210 data
for training and 90 data for testing. Similarly for Synthetic
dataset we separated 1600 data for training and 400 data for
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Figure 5. Images of GDXRay Used In Our Experiments

Classes Testing Accuracy
Real Model... i s Synthetic Modell.. s s
Guns 93.59 79.26
Knives 94.82 0
Razor 55.05 0.34
Shuriken 86.59 12.37

Figure 6. Test Real Dataset

testing, maintaining the diversity in both training and testing
datasets.

We tested Both of our models first on their individual
testing data and then tested on each other.

Testing on real dataset : yolov3-tiny trained on real
data performed well in classifying objects, however for
smaller objects such as razor/blade accuracy is quite low.
We are able to get good accuracy for guns and extremely
low accuracies for others using yolov3-tiny model trained
on synthetic data.

yolov3-tiny, uses low resolution feature and sometimes
object features get too small to be detectable may be reason
for low accuracy of small objects on real dataset.

Testing on synthetic dataset : yolov3-tiny trained on
synthetic data performed well in classifying all the objects.
However, while testing on synthetic data on model trained
with real data we have received extremely low accuracy
.This highlights the difference in features between synthetic
and real dataset created.

4. Discussion

We explored the use of Image Projection to increase
the diversity in data and to provide robustness to model
when training. These techniques can be very helpful in
Deep Learning especially in cases of baggage screening
where there is lack of Labelled publicly available data.
Popular Datasets available For Training mostly contains only
4 classes of Objects: Knife, Razor/Blade, Shuriken and Gun.
But actual machines used at site need to identify more than
12 classes of objects : Gun, Knife, Bomb, Scissor, Blade,
Spanner, Tools, GunParts, Mobile, BatteryBank, Charger,
Battery etc. Image Projection as seen in our observations
offers promising result for gun detection . This technique
can be used to train model on objects whose datasets are not
easily available as our data generation technique becomes

Classes Testing Accuracy
Real Model .o s s Synthetic Modelon symer natase:
Guns 537 100
Knives 0.0 98.47
Razar 0.06 90.21
Shuriken 1.88 98.52

Figure 7. Test Synthetic Dataset

closer to real data our dependency on new dataset decreases
drastically without impacting the accuracy .

During creating synthetic images, we had a limitation
where we had a single background/target image and few
threat images per classes. Both of them were simply taken
from various angle. Although we were able to diversity by
increasing the dataset, but it might not be enough for a
system as there is little variation in the images that were
used to generate synthetic images.

5. Conclusion and Future Work

Image Projection is an efficient method to introduce
diversity and boost the generalization of Deep learning
Models. We were able to create a large number of au-
tomatically labelled images with minimal resources. Such
techniques have can save countless hours of human work
which is needed during labelling of dataset. There is a
challenge to blend images into occluded backgrounds(where
there are multiple overlaps of objects) where an unnatural
projection is done. Our Training Results shows we are able
to get reasonable accuracy for guns by training the model
on synthetic data. Here we used GDXray which had very
limited number of sample images, We believe using a more
diverse dataset such as SIXray can boost the Threat Image
Projection even further.
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