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Abstract

Epidemic forecasting has always been challenging and the recent Covid-19 out-
breaks emphasizes it. We introduce a novel approach to address the problem of
evaluating confidence intervals (CI) of time series prediction forecasts for com-
partmental models, using machine learning. We evaluate our approach using real
data of the Covid pandemic on 27 countries. Compartmental models were trained
taking into account non pharmaceutical governmental measures. A Random Forest
regressor was trained, using various engineered features, to predict the forecasting
error for various horizons on synthetic data, then applied to estimate CI on real data
forecasts. Our method outperforms baselines using forecast likelihood as metric.

Figure 1: [Top] Compartmental Susceptible-Infected-Recovered model (SIR), with dynamic trans-
mission rate β oppositely related to the stringency of government Non-Pharmaceutical Interventions
(NPI), and a fixed recovery rate γ = 07. [Bottom] Country cumulative cases (sum of S and R
compartments). Model fit (red crosses) and 15 day forecasts (blue crosses). A ML model is trained as
estimator σ̂t of errors σt on synthetic data at each horizon t; then applied to real data.

Since January 2020, policy-making has been steered by Covid-19 cases and deaths forecasts. Fore-
casting methods encompass epidemiological compartmental models [1][2] and deep learning models
[3][4][5] among others. Poorly advised policies can greatly impact populations with human and
economical loss [6]. Due to the high degree of uncertainty of predictions, point-wise forecasts are less
relevant than interval forecasts. But, despite the vast amount of literature on Covid-19 forecasting,
few studies have provided confidence intervals (CI) [7]. In addition, the few papers mentioning CI,
rarely document the actual methods used for interval forecasting. Bayesian approaches including
Gaussian processes [8], have gained in popularity, but make unverifiable assumptions [9][10][11][12].
In this paper, we present a global method (Figure 1) mapping the decision-making process to the
disease evolution with a Confidence Intervals estimated with a Machine Learning method (ML-CI).
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Table 1: Negative log-likelihood for the 15-day horizon interval forecast for 27 countries. Best
methods are highlighted in bold (smaller values are better).

United Kingdom United States Poland Portugal Belgium Bulgaria Canada Denmark Finland
ML-CI (OURS) 13 15 17 14 11 113 12 10 9

Naive 14 18 128 18 11 385 18 11 11
Bootstrap 13 18 284 633 56 565 14 77 35

France Germany Russia India Israel Italy Japan Norway Netherlands
ML-CI (OURS) 13 12 16 12 10 13 11 9 11

Naive 13 12 121 128 10 21 13 9 12
Bootstrap 16 16 20 17 54 26 53 9 184

Luxembourg South Africa Greece Australia Austria South Korea Spain Sweden Taiwan
ML-CI (OURS) 11 12 9 9 10 10 13 11 9

Naive 14 63 9 7 9 7 11 10 7
Bootstrap 10 18 8 7 10 7 15 11 284

Figure 2: Examples of error bar prediction with our method ML-CI.

We focus on the widely used compartmental Susceptible-Infected-Recovered model (SIR) [1], from
which we forecast Covid-19 cumulative cases (Figure 1). We limit our study to this simple model
because more complex models have shown only minor (or null) performance advantage [7], and com-
paring predictive models is not the object of this paper. SIR models are trained on 27 countries from
the OxCGRT dataset [13], which provides cumulative cases and government Non-Pharmaceutical
Interventions (NPIs), from January 2020 to December 2020. We fit as few parameters are possible:
The recovery rate γ is fixed as 1/Nr with Nr the average number of days to recover [2]. The trans-
mission rate β is obtained through an affine transformation of the Oxford index summarizing all NPIs.
The two parameters of the affine transformation are fit, on a 100 day window, using a dual annealing
optimization, essentially a simulated annealing approach with a local search (Documentation).

The novel contribution of this paper is a method for estimating confidence intervals, based on training
a Random Forest (RF) regressor, inspired by recent work [12]. To train the regressor, we created a
simulated dataset of 2000 virtual countries, using the SIR model described above, displaying a wide
range of NPI scenarios. The inputs to the RF regressor include a variety of features derived from past
data, such as past errors, past cumulative forecasts, past daily case forecasts, and past stringency. We
train one regressor per horizon h, for a 15 day forecast, using as target value the absolute difference
between prediction and actual number of cases. Subsequently, the output of the RF regressor h is
used to estimate the forecast error at horizon h, for predictions made on real data by a SIR model.
We use a simple heuristic to lightly smooth the error bar. Our code is available on Github.

We compare our method (ML-CI) with two baseline methods for computing error bars: (1) a naive
method [14] assuming a simple diffusion model, advocating to use st−15:t

√
h, where st−15:t is the

average RMSE over the past 15 days, and h the prediction horizon; (2) a bootstrap approach using as
prediction error the standard deviation of predictions of 4 SIR models trained on data subsamples.
Table 1 shows negative log-likelihood performance for a Gaussian error model, at 15-day horizon
forecast. Figure 2 provides examples of 15-day forecasts for a few countries (results on all 27
countries are in Appendix).

Our preliminary results are encouraging, indicating that ML regression is a viable alternative method
to more conventional techniques, for predicting confidence intervals in forecasting applications.
Robust methods for epidemiological time series interval forecasting being in great need, this line of
research to obtain reliable confidence intervals seems promising. Our future work includes conducting
systematic experiments on more countries and with a time sliding window, and compare ML-CI with
more baseline methods on a variety of datasets. Improvements may be obtained by experimenting
with other machine learning regressors, better feature engineering, and calibrating the output of the
regressor. Together with improvements in our forecasting model (e.g. taking into account mobility
data and people compliance to NPIs) we hope to advance the state of the art.
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Appendix

Figure 3: Error bar prediction with our method ML-CI for 27 countries.
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