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Abstract. The nonlinear differential equation describing flow of a constant compressibility liquid in a porous
medium is examined in terms of the Kirchhoff and Cole-Hopf transformations. A quantitative measure of the
applicability of representing flow by a slightly compressible liquid – which leads to a linear differential equation,
the Theis equation – is identified. The classical Theis problem and the finite-well-radius problem in a system
that is infinite in its areal extent are used as prototypes to address concepts discussed. This choice is dictated
by the ubiquity of solutions that depend on these archetypal examples for examining transient diffusion.
Notwithstanding that the Kirchhoff and Cole-Hopf transformations arrive at a linear differential equation,
for the specific purposes of this work – the estimation of the hydraulic properties of rocks, the Kirchhoff trans-
formation is much more advantageous in a number of ways; these are documented. Insights into the structure of
the nonlinear solution are provided. The results of this work should prove useful in many contexts of mathe-
matical physics though developed in the framework of applications pertaining to the earth sciences.

Nomenclature

B Formation volume factor [L3/L3]
c Compressibility L T2/M
cD Dimensionless compressibility
CD Dimensionless storage constant
h Thickness [L]
k Permeability [L2]
L Width of linear system [L]
m(p) Pseudopressure, see Equation (59) or

Equation (60) [M2/L4/T2] or [M/L/T2]
p Pressure [M/L/T2]
p0 Logarithmic derivative [M/L/T2]
p � ðxD, yD, tD) Pressure transformation; see Equation

(18)
q Flux [L3/T]
s Skin factor
t Time [T]
ap Normalizing constant
C(x) Gamma function
g Diffusivity [L2/T]
q Density [M/L3]
l Viscosity [M/L/T]

f(n) Riemann zeta function
/ Porosity [L3/L3]

Subscripts

D Dimensionless
t Total
w Wellbore

Superscript

– Laplace transform

1 Introduction

The transient diffusion equation that describes the flow of
slightly-compressibility fluids in porous media developed
in Theis (1935), van Everdingen and Hurst (1949) and
other places has been the linchpin for the evaluation of
pressure responses for over eight decades with the assump-
tion that the compressibility of the liquid is small with
respect to pressure gradient – second degree terms are neg-
ligibly small. The assumption becomes important as we
focus on lower permeability rocks. The consequences of this* Corresponding author: raghavan.raj@gmail.com
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assumption may be examined through the Cole (1951)–
Hopf (1950) or Kirchhoff (1894) transformations. Here we
consider anew the transformations in the context of tran-
sient diffusion; the aspects addressed here are yet to be
examined. We consider anew the matter of linearity;
although it may be considered to be a well-worn topic, a
quantitative measure to assess the suitability of the classical
solution is yet to be available. Furthermore, in the process
of arriving at such a measure which may be quite useful to
have at one’s fingertips, at least in our opinion, a few glaring
omissions were noted. These deficits are rectified. The Cole
(1951)–Hopf (1950) transformation is central to many areas
of mathematical physics from the study of turbulence,
growth of interfaces, to understanding of shock waves and
flow in porous media (Barros-Galvis et al., 2018; Bateman,
1915; Bertini and Giacomin, 1997; Burgers, 1940; Finjord,
1986; Finjord and Aadnoy, 1989; Friedrichs, 1948;
Marshall, 2009; Miura, 1968). In essence this remarkable
transformation turns a nonlinear equation into a linear
equation. Although familiar to many who address nonlinear
problems in the areas noted, it is also used quite often with
no particular attribution (Braeuning et al., 1998; Chakra-
barty et al., 1993; Jelmert and Vik, 1996; Odeh and Babu,
1988; Ren and Guo, 2017; Singh and Sagar, 1980; Wang
and Dusseault, 1991). The citations above address a broad
range of specific problems pertaining to fluid extraction and
injection in both hydrocarbon production and groundwater
literatures; but no overarching guidelines as to conditions
under which classical solutions are adequate are provided
as presented here. Because they are specific, not all authors
provide solutions of general import; for example, expres-
sions for pressure distributions are not addressed. Further-
more, as will be discussed in detail below, some works
abandon the Cole-Hopf transformation midway for the
Neumann boundary-condition as they wish to employ the
Ozkan-Raghavan (1991) solutions for sources and sinks.
Source/sink solutions, however, are difficult to address
through the Cole-Hopf transformation (see below). Interest-
ingly, this transformation is also useful to study multiphase-
flow problems (see Burnell et al., 1989), it is not unusual to
find an illustration of this transformation to linearize a
nonlinear equation (Forsyth, 1906; Raghavan, 1993).

The Kirchhoff transformation is in many ways a better
option; for the problem under consideration the transforma-
tion also converts the nonlinear differential equation to a
linear one. Introduced by Kirchhoff (1894) for steady flow
it was later extended by Van Dusen (1930) to unsteady
flow, the problem of interest in this work. For flows in
porous media the work of Al-Hussainy et al. (1966) is often
cited for introducing this transformation; they do, however,
note that such a transformation is proposed in Leibenzon
(1953). That solution unlike the Cole-Hopf transformation
is expressed in terms of an integral. Although Al-Hussainy
et al. (1966) are usually quoted and recognized in terms
of transient pressure tests, one other significant contribu-
tion of that work is to recognize that inclusion of non-
linear terms indicates that the life of the resource increases
by an order of magnitude. Incorporation of second degree
terms results in similar differences for liquid flow (see
Raghavan et al., 1972) who addressed the combined

influences of variations in liquid compressibility, viscosity
and also rock properties like permeability and pore-volume
compressibility with pressure and also multiphase flow
(Raghavan, 1976). The goals of the two methods are iden-
tical, nevertheless for all problems of interest we recom-
mend the Kirchhoff transformation as it pertains to the
evaluation of the properties of rocks; the basis for our pref-
erence is outlined. We do recognize that our recommenda-
tion is at variance with other works (see, e.g., Vadasz,
2010) who notes that the Kirchhoff transformation is incon-
venient for obtaining results directly in terms of pressure.
Therefore, we consider afresh both transformations in con-
text of transient diffusion in porous media. Specifically, we
address methods to arrive at general conclusions wherein
the nonlinear and linear solutions agree in a general, quan-
titative way rather than the vague, qualitative assertion
that pressure gradients need to be small with respect to
compressibility for the linear diffusion equations to apply
as asserted in van Everdingen and Hurst (1949), Matthews
and Russell (1967) and Earlougher (1977) and in all other
texts. Such a quantitative measure is quite useful to
have for the range of scales addressed nowadays is quite
large. The measure given, which to our knowledge has
been unavailable until now, is advantageous in that it
applies to all the well configuration combinations in the
Ozkan-Raghavan (1991) tables.

An appealing feature of the Cole-Hopf transformation is
that it is particularly useful in that it provides solutions
directly in terms of pressure; but disadvantages do exist.
For example, the Neumann boundary condition transforms
to the Robin boundary condition1 and as a result one may
not use the Ozkan and Raghavan (1991) tabulations
directly to determine the needed solutions (see, e.g.,
Braeuning et al., 1998; Jelmert and Vik, 1996; Ren and
Guo, 2017). This obstacle is overcome by application of
Duhamel’s theorem which may have to be applied multiple
times should pressure distributions be desired. Nevertheless
if the goal is to use the Ozkan-Raghavan (1991) tabulations
one may, of course, resort to Muskat (1934) and work in
terms of density ab initio or use the Kirchhoff transforma-
tion as indicated here. Thus for completeness we also
discuss the significant influence the Cole-Hopf transforma-
tion has on the boundary conditions; specifically, that it
precludes application to an important problem, namely
the line-source solution (or any other source/sink solution)
which yields the Exponential Integral solution, the nucleus
of many methods of evaluation such as the Horner (1951)
and Jacob (1947) techniques. In this context we also explore
procedures to address nonlinearities as they pertain to the
Theis (1935) solution through procedures in Muskat
(1934) and the Kirchhoff transformation. In concluding this
section, we should note that working with the Cole-Hopf
transformation is essentially equivalent to working with
density.

1 There is even one study which unless mistaken ignores that
the Neumann boundary condition evolves to the Robin bound-
ary condition barreling through infinities to arrive at a solution.
Something is a bit off.
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1.2 The partial differential equations, associated
conditions

As is usual we consider a uniform, homogeneous porous
rock of permeability, k, porosity, /, and thickness, h, that
contains a fluid of density, q, compressibility, c, and viscos-
ity, l; we use the symbol g to denote the diffusivity of the
system. The differential equation representing transient
diffusion in terms of the pressure distribution, p(x, y, t),
to be solved is

r � k
l
rp

� �
¼ /c

op
ot

� c
k
l

ðrxpÞ2 þ ryp
� �2h i

; ð1Þ

where the symbols x and y represent the coordinates, and
the symbol, t, is time. The equation of state representative
of the fluid is given by

c ¼ 1
q
oq
op

; ð2Þ

or

q ¼ q0 exp c p� p0ð Þ½ �; ð3Þ
with the subscript 0 representing the reference state. If we
were to assume that q/q0 � 1 + c(p �p0) – the slightly
compressible fluid – then the second terms on the right-
hand side of equation (1) may be dropped to arrive at a
linear equation, the standard option as first shown explic-
itly in van Everdingen and Hurst (1949).

We presume pi to be the initial pressure which is identi-
cal in all parts of the system at t = 0 that is infinite in its
areal extent. Thus on defining Dp = pi � p(x, y, t) we
may write

r � k
l
r �pð Þ

� �
¼ /c

oDp
ot

þ c
k
l

rx �pð Þ½ �2 þ ry �pð Þ� 	2n o
:

ð4Þ
We require a solution to equation (4) be subject to the
following conditions. For a quiescent system where equilib-
rium prevails everywhere we require

�p x; y; tð Þ ¼ 0; for t ¼ 0; ð5Þ
further, as the system is infinite in its areal extent we also
require

�p xj j ! 1; y; tð Þ ! 0; ð6Þ
and

�p x; yj j ! 1; tð Þ ! 0: ð7Þ
We assume constant properties and consider both
Neumann and Dirichlet boundary conditions; consequently,
we express certain dimensionless terms differently. Dimen-
sionless pressure, pD(xD, yD, tD), dimensionless time, tD,
dimensionless distances, (xD, yD), and dimensionless com-
pressibility, cD, are defined, respectively, as

pD xD; yD; tDð Þ ¼ ap�p x; y; tð Þ; ð8Þ

tD ¼ g

l2
t; ð9Þ

xD ¼ x
l
; yD ¼ y

l
; ð10Þ

and

cD ¼ c
ap

; ð11Þ

where ap depends on the mode of production; that is,

ap ¼ 2pkh
ql

; for constant� rate production; and ð12Þ

ap ¼ 1
pi � pwf

; for constant� pressure production: ð13Þ

In the above expressions, ‘ is the reference length; the
expressions given here apply for situations where pi >
p(x, y, t) or where pi < p(x, y, t); that is, production or injec-
tion, respectively. The symbol cD for dimensionless com-
pressibility is yet to appear in the literature and should
not be misconceived to be the symbol for the dimensionless
storage constant, namely CD. Additional boundary condi-
tions are defined when specific well conditions are
addressed; as we noted earlier, we consider two representa-
tive problems.

As properties are assumed to be constant, equations
(4)–(7) may be written, respectively, as

r2pD ¼ opD
otD

þ cD rxDpDð Þ2 þ ryDpD
� �2h i

; ð14Þ

with

pD xD; yD; tDð Þ ¼ 0; for tD ¼ 0; ð15Þ

pDðjxDj ! 1; yD; tDÞ ! 0; ð16Þ
and

pD xD; yDj j ! 1; tDð Þ ! 0: ð17Þ

2 Analytical solutions

As discussed in Raghavan (1993) and other places the
Cole-Hopf transformation involves defining a new depen-
dent variable, pw. That is, we consider the expression of
the form

pD xD; yD; tDð Þ ¼ i ln pH xD; yD; tDð Þ; ð18Þ
where i is a constant. With the use of equation (18), the
Cole-Hopf transformation, equation (14) leads to the
standard diffusivity equation

r2pH ¼ opH

otD
; ð19Þ
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provided that icD = �1. Incidentally, we note that many
options exist to define the argument of ln(�). For example,
Braeuning et al. (1998) define

pD xD; yD; tDð Þ ¼ i ln 1� pH xD; yD; tDð Þ� 	
: ð20Þ

We are now in a position to consider problems of interest to
us. Use of equation (18) does lead to complications because
the transformation will require the modification of the
boundary conditions.

In concluding this section, we simply note that pw is
essentially the density defined in a particular way. This
point is rather important as it has consequences to this
discussion. As already mentioned the matter of linearity
may be simply addressed along the lines of Muskat
(1934); one does not need to resort to the Cole-Hopf trans-
formation if this were the option one ultimately decides to
follow.

2.1 Flow in linear coordinates; production at constant
pressure, pwf; Dirichlet condition

We consider flow in a linear system that is quiescent at a
pressure, pi, initially with the pressure held constant at a
value pwf at the end x = 0 where the other end extends to
infinity; that is, we consider the region, x � 0. The relevant
equations to be solved are

o2pH

ox2D
¼ opH

otD
; ð21Þ

with

pH xD � 0; tDð Þ ¼ 1; for tD ¼ 0; ð22Þ

pH xD ! 1 ¼ 0; tDð Þ ¼ 1; ð23Þ
and

pH xD ¼ 0; tDð Þ ¼ pHf � e�cD : ð24Þ

Results are normalized in terms of the width of the system.
In terms of the Laplace transformation, s, the solution of

the above system of equations is

pH xD; sð Þ ¼ 1
s
�

1� pHf

 �

s
exp � ffiffiffi

s
p

xD
� �

: ð25Þ

The inversion of equation (25) yields the standard result for
constant-pressure-production in a semi-infinite system,
namely,

pH xD; tDð Þ ¼ 1� 1� pHf

 �

erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2D=4tD

q� �
: ð26Þ

Simplification yields

pDðxD; tDÞ ¼ 1� 1
cD

ln 1þ ½ecD � 1�erfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2D=4tD

q
Þ

 �
; ð27Þ

and for small values of the exponent, the expression

pDðxD; tDÞ ¼ erfc ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2D=4tD

q
Þ; ð28Þ

is obtainable.

2.2 Axisymmetric flow to a finite well radius;
constant rate, q; Neumann condition

We consider axisymmetric flow to a well of radius, rw, in a
system that is infinite in its areal extent. The well rate, q, is
assumed to be constant; that is, the gradient at the wellbore
is given by

rD
opD
orD

� �
rD¼1

¼ �1; ð29Þ

where r is the radial coordinate. The problem that needs
to be considered in terms of pw(rD, tD) is now given by:

r2pH ¼ opH

otD
; ð30Þ

and we seek a solution of equation (30) subject to

pH rD; tDð Þ ¼ 1; for tD ¼ 0; ð31Þ

pH rD ! 1 ¼ 0; tDð Þ ¼ 1; ð32Þ
and

rD
opH

orD

� �
rD¼1

¼ cDpH rD; tDð ÞjrD¼1; ð33Þ

with cD now defined by the expression in equation (12). On
comparing equation (29) with equation (33), we see that
the boundary condition at the wellbore changes from that
of a Neumann specification to a Robin type; essentially
from one that specifies the flux to one which is of the radia-
tive type. This change does not permit us to obtain the
solution for a line-source well because the solution for
�pHðxD; sÞ, the Laplace transformation for pw(rD, tD) is

�pH rD; sð Þ ¼ AK 0 rD
ffiffiffi
s

p� �þ 1
s
: ð34Þ

HereK0(�) is the modified Bessel function of the second kind
of order 0, and A is an arbitrary constant. Using equation
(33), we may determine A and thus

�pH rD; sð Þ ¼ 1
s

1� cD
K 0 rD

ffiffiffi
s

pð Þ
cDK 0

ffiffiffi
s

pð Þ þ ffiffiffi
s

p
K 1

ffiffiffi
s

pð Þ½ �
 �

; ð35Þ

where K1(�) is the modified Bessel function of the second
kind of order 1. As we are considering diffusion with
radiation, the solution, equation (35), may be found in
Carslaw and Jaeger (1959) and many other places. Now it
is clear that the singularity that would exist in the denomi-
nator of the corresponding expression of pHðrD; sÞ for a line-
source well precludes addressing this boundary condition.

The point made here regarding the change in the
nature of the boundary condition is not always explicitly
recognized. For example, the solutions of Ozkan and
Raghavan (1991) have been used to determine pw directly;
that is, without accounting for change in the nature of

R. Raghavan and C. Chen: Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 76, 80 (2021)4



the boundary condition, equation (33). We make note
of this issue because from a perfunctory consideration of
Braeuning et al. (1998) it may appear that they have been
successful in applying the Ozkan-Raghavan solutions to the
problem under consideration. But their work considers only
the wellbore. To obtain pressure distributions one then uses
the sandface rate and applies Duhamel’s (1833) theorem to
estimate pressure distributions. The above observation also
applies to the work of Ren and Guo (2017) who follow the
lead of Braeuning et al. (1998).

Incidentally, the analogue of equation (33) for a line-
source well is

rD
opH

orD

� �
rD!0;tD

¼ cDpH rD ! 0; tDð Þ: ð36Þ

For classical diffusion pD(rD ? 0, tD) is undefined and we
should expect the same for the present case. More on this
later.

For now, however, we proceed with equation (35).
Inversion of the right-hand side of equation (35) yields,

pH rD; tDð Þ ¼ 1� cDf tð Þ; ð37Þ
where f(t) is

f ðtÞ ¼ 2
p

Z 1

0
1� e�u2tD


 � du
u

J 0ðurÞ½uY 1ðuaÞ þ cDY 0ðuaÞ� � Y 0ðurÞ½uJ 1ðuaÞ þ cDJ 0ðuaÞ�
½uJ 1ðuaÞ þ cDJ 0ðuaÞ�2 þ ½uY 1ðuaÞ þ cDY 0ðuaÞ�2

:

ð38Þ
The symbols Jn(x) and Yn(x) are, respectively, the Bessel
function of the first kind of order n[(n = 0) and (n = 1)]
and the Neumann Bessel function of the second kind of
order n, again, [(n = 0) and (n = 1)]. Or, pH(rD, tD) may
be determined as given in Jaeger and Carslaw (1943) by

pH rD; tDð Þ ¼ � 2
p

Z 1

0
e�u2tD du

u

J 0 urð Þ uY 1 uað Þ þ cDY 0 uað Þ½ � � Y 0 urð Þ uJ 1 uað Þ þ cDJ 0 uað Þ½ �
½uJ 1ðuaÞ þ cDJ 0ðuaÞ�2 þ ½uY 1ðuaÞ þ cDY 0ðuaÞ�2

:

ð39Þ
Both forms given are useful in different contexts.

As we discuss below a simple expression of pw(rD, tD) is
unavailable. If an expression for pw(rD, tD) were available,
then the pressure distribution may be readily determined
as in the Dirichlet problem, for example,

pD rD; tDð Þ ¼ � 1
cD

ln 1� cDf tð Þ½ �: ð40Þ

Computations of Jaeger Integrals of the type shown above
are still of interest (see Phillips and Mahon, 2011), although
methods similar to those proposed by Stehfest (1970a, b)
appear to be the choice in many cases.

2.2.1 Asymptotic solutions

A number of asymptotic solutions are given in the litera-
ture; by their nature, they differ in specific details. Here

we touch on a few options, principally to address issues of
practical import such as pressure buildup and multirate
tests. Again, because of the nature of the governing differ-
ential equations, they would have to be addressed through
pw. For now, we focus on long-term behaviors although the
observations of Finjord (1986) are not in agreement with
this perspective. We assume rD = 1; that is, we consider
the wellbore response.

Jaeger and Carslaw (1943) show that long-term expres-
sions may be determined through the Integral, I(p, q, x),
defined by

I p; q; xð Þ¼
Z 1

0

du
u

e�u2x

½puJ 1ðuaÞ þ qJ 0ðuaÞ�2 þ ½puY 1ðuaÞ þ qY 0ðuaÞ�2
:

ð41Þ
For large values of x,

I p; q; xð Þ ¼ p2

2q2
1
y
� c
y
�

p2

6 � c2

y3
� c3 � p2c

2 þ 2f 3ð Þ
y4

þO
1
y5

� �" #
;

ð42Þ
where fð3Þðfð3Þ ¼ 1þ 1

23 þ 1
33 þ � � � � 1:20205690315959428540)

is the Riemann Zeta function, with

y ¼ 2p=q þ lnð4xÞ � 2c: ð43Þ
We use p = 1, q = cD with the expression

J m zð ÞY 0
m zð Þ � Y m zð ÞJ 0

m zð Þ ¼ 2
pz

; ð44Þ

with Y 0
0ðzÞ ¼ �Y 1ðzÞ; J 0

0ðzÞ ¼ �J 1ðzÞ to obtain

pH 1; tDð Þ ¼ 2
cD

1
y
� c
y2

�
p2

6 � c2

y3
� c3 � p2c

2 þ 2f 3ð Þ
y4

þO
1
y5

� �" #
;

ð45Þ
and now

y ¼ 2
cD

1þ cD
2

ln
4tD
e2c

� �� �
: ð46Þ

Rather than using the Inversion Integral, I(p, q, x), we may
rewrite the expression in equation (35) as

�pH 1; sð Þ ¼ 1
s

ffiffiffi
s

p
K 1

ffiffiffi
s

pð Þ
cDK 0

ffiffiffi
s

pð Þ þ ffiffiffi
s

p
K 1

ffiffiffi
s

pð Þ½ �
 �

; ð47Þ

and determine the long-term measure of the expression in
equation (47) for pHð1; tDÞ by considering s ? 0 for K0(x)
and K1(x) which are given, respectively, by

K 0 xð Þ ¼ � ln
x
2
þ c


 �
þ x2

4
1� cþ ln

x
2


 �h i
þO x4 ln x

� �
; ð48Þ

and

K 1 xð Þ ¼ 1
x

1þ x2

2
ln
x
2
þ c� 1

2

� �� �
þO x3 ln x

� �
: ð49Þ
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On using the first term of the two expansions, we may write
the right-hand side of equation (47) as

�pH 1; sð Þ ¼ � 1

scD ln e
c� 1

cDð Þ ffiffi
s

p
2

� �� � : ð50Þ

According to Ritchie and Sakakura (1956)

L�1 1
s ln s

a

� �
" #

¼
XN
p¼0

�1
ln atð Þ

� �pþ1 �1

p

� �
dp

dmp
1

C 1� mð Þ
� �����

m¼0

( )
;

ð51Þ
where in equation (51), the column vector, (�1, p)T, rep-
resents the binomial coefficient, and C(�) represents the
Gamma function. Expressions for the coefficients of the
first term are given in Ritchie and Sakakura (1956) and
more recently in Yeh and Wang (2007) leading to the
expression in equation (45).

2.3. Response caused by a Line Source

This solution permits us to address tests commonly used to
consider connectivity (interference tests, hydraulic tomog-
raphy) in the porous rock. Options available include the
use of density as in Muskat (1934) or pseudopressures as
in Raghavan (1993). It is also particularly useful in solution
techniques such as the method of sources and sinks
(Carslaw and Jaeger, 1959; Raghavan and Ozkan, 1994).

2.4 Formulation in terms of density, q(rD, tD)

We work with density, q(rD, tD), and qm the mass produc-
tion rate. On solving the following system of equations

r2 �qð Þ ¼ o �qð Þ
otD

; ð52Þ

�q rD; tDð Þ ¼ 0; for tD ¼ 0; ð53Þ

�q rD ! 1 ¼ 0; tDð Þ ¼ 0; ð54Þ
and

rD
o �q rD; tDð Þ½ �

orD

 �
rD!0

¼ � qmlc
2pkh

; ð55Þ

where Dq(rD, tD) = qi � q(rD, tD), the development used
by Theis (1935) with no modifications, results in the
expression for the distribution for density

2pkh
qmcl

qi � q rD; tDð Þ½ � ¼ 1
2

Z 1

r2
D

4tD

exp �u0ð Þ
u0 du0: ð56Þ

Now on expressing the solution in terms of dimensionless
pressure, pD(rD, tD), through the definition of density in
terms of pressure, we obtain

pD rD; tDð Þ ¼ 1
cD

ln 1� cD
2
Ei � r2D

4tD

� �� �
; ð57Þ

where�Ei(�u) is the Exponential Integral with the restric-
tion that exp{c[p(r) � p0]} � 1 + �, or c[p(r) � p0] � �.

Incidentally, the analogue of the solution given in
equation (56) for a line-source well that completely pene-
trates the formation given in equation (18) of Braeuning
et al. (1998) which is obtained by the source-sink approach,
in our terminology yields the solution at the wellbore to be

�pH 1; sð Þ ¼ 1
s

1� cD
K 0

ffiffiffi
s

pð Þ
1þ cDK 0

ffiffiffi
s

pð Þ
� � �

: ð58Þ

2.5 Formulation in terms of pseudopressure;
the Kirchhoff transform

We define the pseudopressure, m(p), through a new vari-
able, defined by

m pð Þ ¼
Z p

po

qdp0; ð59Þ

or by

m pð Þ ¼
Z p

0

1
B

dp0; ð60Þ

where B is the formation volume factor. The compressibil-
ity of the liquid in terms of B is

c ¼ � 1
B

oB
op

: ð61Þ

We may replace the integrand in equation (59) by q/qsc in
which case m(p) would have the same dimensions as pres-
sure, p. Also, there are advantages to using the second
definition of m(p) in terms of practical considerations. A
formal solution in terms of pseudopressure yields

2pkh
qml

m pið Þ �m rD; tDð Þ½ � ¼ � 1
2
Ei � r2D

4tD

� �
: ð62Þ

On substituting the expression for the equation of state we
may show that the left-hand side of equation (62) will yield
the left-hand side of equation (56); thus, on re-expressing
this solution in terms of pressure, p(rD, tD), we obtain
equation (57).

Equation (57) applies to a line-source well; in the
previous case no such solution was possible. As ln(1 + x) �
x as x ? 0, we have for small enough cD, as cD ? 0 the
Theis (1935) solution, namely

pD rD; tDð Þ ¼ � 1
2
Ei � r2D

4tD

� �
: ð63Þ

3 Computational results

The goals of the computations noted below are three-fold.
First, we establish quantitatively the bounds for which
the classical solutions, the linchpins for determining the
properties of reservoir rocks for close to a century, apply;
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this limit carries over to all well configurations as, ulti-
mately, radial or pseudoradial flow will prevail. Second,
responses to the finite-well-radius solution are compared
through both transformations. The basis to apply the
Kirchhoff transformation is established analytically. Third,
because the Theis solution plays an important role in
evaluating interference or tomographic tests, the Mueller
and Witherspoon (1965) criteria are explored and new
guidelines are provided to consider situations should nonlin-
ear terms be important. Insights into the structure of the
nonlinear solutions are provided. All solutions presented
here are yet to be available in the literature.

The following steps were taken to ensure the accuracy of
our solutions. First, we verified that the Cole-Hopf solutions
do approach the classical solutions in the limit; that is, as
cD ? 0. Second, concurrence with the two asymptotic
solutions, equations (45) and (50), is obtained for 0.01 	
cD 	 3.0. Third, the Cole-Hopf solutions are reexpressed
in terms of pseudopressures to show concurrence with the
solutions for a slightly compressible fluid. Additional details
are given in the discussion below. It appears to us that this
result also establishes the validity of our recommendation
to use the pseudopressure procedure when the compressibil-
ity is high even though a single-phase liquid is produced.

Figure 1 examines the influence of dimensionless
compressibility, cD, on responses at a well in terms of the
logarithmic derivative, p0wD, as the slopes of the pressure
response curves are central to the evaluation of rock
properties as well as the well condition, namely the skin
factor, s. For values of cD 	 10�2, the conventional value
of 1/2 is obtained. For larger cD, as time increases, the
slopes depend on both dimensionless time, tD, and dimen-
sionless compressibility, cD. Of particular importance, of
course, is the fact that the classical semilog straight line
that forms the nucleus of many methods of analysis is no
longer applicable if cD is large enough, and that values of
cD > 10�2 would negate many of the basic techniques devel-
oped over the years to estimate rock properties through
transient tests. Except for the upper bound given here that
is yet to be available, the result that the slopes depend on
cD if it were large enough, may be intuitively expected from
the works of Al-Hussainy et al. (1966) and Raghavan et al.
(1972). In concluding this phase of our discussion, we
emphasize that the criterion presented is based on the slope
of the curves and not the value of dimensionless pressure.

The advantage of the pseudopressure transformation is
demonstrated in Figure 2. Solutions for three values of
compressibility, cD, obtained through the Cole-Hopf
transformation shown as dashed lines are considered; these
values of cD are large enough for the conventional semilog-
arithmic approximation to not exist. The solutions assume
rD to be 1. The top unbroken line is the finite-well-radius
solution obtained through the expression

�pD rD; sð Þ ¼ 1
2

ffiffiffi
s

p K 0 rD
ffiffiffi
s

pð Þ
K 1

ffiffiffi
s

pð Þ : ð64Þ

The circles, squares and diamonds that essentially form a
single curve and fall in alignment with the finite-well-
radius solution represent solutions of the dashed lines, the
Cole-Hopf responses, when represented in terms of the

dimensionless well pseudopressure, mwD. This result
unequivocally establishes the power of the pseudopressure
concept to address the matter of second-degree terms; most
importantly, when done so, the semilog-straight line exists.
Furthermore, the information in Figure 2 suggests that for
evaluation of well performance and for the evaluation of
rock properties through transient diffusion it would be
appropriate to reexpress measured pressure responses
obtained through pseudopressures when second degree
terms are important as the classical norms for a slightly-
compressible fluid developed in the literature would hold
and one does not have to appraise the role of the magnitude
of the value of compressibility with respect to pressure

Fig. 1. Pressure responses at a well in terms of the pressure
derivative, p0wDðtDÞ, illustrating the influence of dimensionless
compressibility, cD.

Fig. 2. Advantages of the pseudopressure concept to incorpo-
rate second-degree terms. The circles, squares and diamonds are
the Cole-Hopf solutions (dashed lines) when expressed in terms
of pseudopressures. Alignment with the classical finite-well-
radius solution shown as a unbroken line is excellent. Norms
based on the concept of a slightly-compressible fluid apply when
pressures are evaluated through the pseudopressure concept or
Kirchhoff transformation.
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gradients in evaluating rock properties. As we noted earlier,
such a result establishes the validity of our recommenda-
tion concerning the pseudopressure approach when the
compressibility is high even though a single-phase liquid is
produced. The results establish the accuracy, viability and
concurrence between the two methods explored in this
work. This observation carries over to all Ozkan-Raghavan
tabulations for other well configurations and is given
further credence in the solutions given in Figure 3 which
we assess next.

Mueller and Witherspoon (1965) note that for rD � 20,
the line-source solution of Theis (1935) and the finite-well
radius solution are indistinguishable if tD=r2D � 10�2; in
addition if rD were 1, namely the wellbore, then the two
solutions are within one percent if tD=r2D � 50. The first
observation permits use of the Theis solution for evaluating
multiple-well or interference tests and the second permits us
to use the Theis solution at the flowing well if times are
long enough. Figure 3 considers responses in terms of
the Mueller-Witherspoon scale for cD = 10�1. A careful
examination indicates that solutions are approximately
correlatable in terms of tD=r2D for rD � 102; a dependence
on rD does exist for rD > 102 but it is negligibly small; this
observation, however, applies to the time range considered
in Figure 3. For larger times, the differences in the solutions
are significant; the slopes depend on rD. For cD > 10�1,
computations indicate the limit of rD of 102 suggested above
should be increased. After examining results up to cD = 1,
we suggest that, for all practical purposes, the influence of
distance may be ignored if rD were �350 and
tD=r2D 	 102. Most important for our needs, however, is
the fact that the curves do not merge and become indepen-
dent of rD if times are long enough. Naturally, again, it is
needless to say that through inspection of equation (62)

the use of the pseudopressure concept resolves concerns
should they exist.

For completeness, we note that both transforma-
tions may be used for situations beyond those addressed
here. If we were to restrict our discussion to analytical
options, then situations where porosity and permeability
are exponentially dependent on pressure of the form
exp[bk(p � p0)] where bk is a constant have been addressed
(Kikani and Pedrosa, 1991; Marshall, 2009). For testing
purposes, to evaluate rock properties all the observations
made thus far hold as these additions merely change the
meaning of cD. One point that needs to be considered is that
the constant bk must be small; otherwise limiting conditions
may be approached in unrealistically short times. Experi-
ence with assuming an exponential dependence for perme-
ability in situations such as the Ekofisk oil field in the
North Sea and others indicate that such an assumption is
of limited utility (Chin et al., 2000). Finally, we should note
the Mueller-Witherspoon (1965) criterion should not be
relaxed should interference tests be evaluated through
pseudopressures.

4 Discussion and concluding remarks

One impetus for this work is the evaluation of systems that
produce highly compressible fluids such as shales. Although,
as mentioned in the Introduction, the topic may appear to
be well-worn, the ideas explored here are transformational
in many senses. The role of compressibility on transient
diffusion has been evaluated and a quantitative measure
to ensure the applicability of analyses in many contexts is
given. Although, the role of compressibility through the
Cole-Hopf transformation has been evaluated numerous
times as we have cited, the manner in which we have con-
sidered the problem and the observations we have made
are yet to be noted. Furthermore practical options to
address limitations noted by means of the Kirchhoff trans-
formation are discussed. Two concrete contributions should
be noted. First, it is shown, for the first time, that the
classical assumption of a slightly-compressible fluid holds
if cD 	 10�2. This bound addresses conditions under which
classical solutions apply. Second, using the line-source-well
problem that is intractable through the Cole-Hopf transfor-
mation, the advantages that accrue through the Kirchhoff
transformation are explicitly demonstrated. Although solu-
tions have been discussed in the context of the line-source
solution, the observations we have made are of a more
general import for our observations are not restricted to
the line-source idealization and apply to all well completion
schemes and models (see, e.g., the Ozkan-Raghavan tabula-
tions) used to evaluate flow in porous rocks; the same holds
true when fluid density is used as the dependent variable.
Additionally, there is no change in the nature of the bound-
ary condition and is thus convenient for considering
other well configurations especially in 2D. In using density,
q(x, t), or pseudopressure, m[p(x, t)], as the dependent
variable we may directly use the Ozkan-Raghavan (1991)
tabulations; furthermore, no theoretical framework
needs to be developed as all rules and expressions that are

Fig. 3. Correlation of pressure distributions along the lines
indicated in Mueller and Witherspoon (1965) for a line-source
well. For values of rD > 350 pressure responses may be correlated
in terms of tD=r2D for the time range shown for the value of cD
considered. At longer times, solutions have to be expressed in
terms of tD=r2D and rD.
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available for a slightly-compressible fluid (including those
for multirate tests) apply. Additionally, if pseudopressures
are used one may go beyond the constant compressibility
idealization and may also incorporate changes in viscosity
(see Raghavan et al., 1972). In passing, we note that we
have compared responses predicted by equation (58) with
the rigorous solution. The Braeuning et al. (1998) approxi-
mation is adequate if cD 	 0.1. For larger values of cD rea-
sonable agreement in slopes is obtained at large times
(within 5%), however, during the transition period differ-
ences are significant. For other situations, the validity of
the Braeuning et al. (1998) two-term approximation
remains an open question. For problems of the type consid-
ered by Ren and Guo (2017), as noted here, the analysis in
terms of pseudopressures is the best option; in addition, the
formulation of Chen and Raghavan (1995) is recommended.
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