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Abstract. The objective of this study is to increase the efficiency of an initial passive Tuned Mass Damper
(TMD) by adding an active control unit. A critical issue in many engineering domains is the design of fail-safe
active systems. The proposed hybrid system aims to address this issue and realizes the said objective. It
emulates the behavior of a skyhook damper parallel to a passive TMD. Skyhook dampers acts like viscous
dampers connected to the ground, reducing the vibration amplitudes without any overshoot. It can be difficult
to design a specific control law to obtain a desired dynamical behavior. The paper presents two ways to
understand and design the hyperstable control law for Hybrid Mass Damper (HMD) (also called Active TMD),
using the power flow formulation or the mechanical impedance analysis. These approaches are illustrated
through the synthesis of this hybrid device and the emulation of the Skyhook damper. It is shown that a
well-designed control law for this kind of system may result in high damping performance, ensuring stability
and a fail-safe behavior. In addition, the amplitude of the primary system’s response is reduced over the
entire frequency range which is not the case for the usual active or hybrid systems. Robustness is analyzed
and compared to that of the classical active mass damper, and an experimental set up validates the proposed
hybrid system.

Keywords: Tuned mass samper / active vibration control / skyhook damper / velocity feedback /

electromagnetic damper

1 Introduction

Tuned Mass Dampers (TMDs) are a very well known
device that reduces vibration amplitude on targeted
modes. For decades, many successful applications have
proven their efficiency and robustness, using the usual
equal peak design proposed by Den Hartog [1,2]. The
closed form of the optimization’s solution has been estab-
lished recently by Asami [3]. Nevertheless, amplitude
reduction on the targeted mode is limited by the oscillat-
ing mass of the device. To overcome this problem, many
authors have proposed to modify the initial passive sys-
tem, by introducing non linearities [4,5] or by adding an
active system to the passive TMD. Due to the resulting
large stroke, such systems are usually designed using a
voice coil actuator as a hybrid TMD. However, even if the
performance is drastically increased, the stability limit
remains a critical issue. Performance and stability are
linked to the resulting power flows in the system [6]. The
impedance or mobility analysis helps authors understand
these flows and tune the control to ensure the stability of
the proposed active systems [7-9]. To improve the perfor-
mance, others approaches tried to modify the dynamical
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behavior of the TMD by reducing its resonance frequency
of the oscillator. In this way it can be used as an Active
Mass Damper (AMD) through a dual loop configuration
[10]. Few of these configurations are hyperstable. In many
cases, the stability is ensured by more complex controllers
necessitating feedback loops using many measurements,
such as the backstepping control approach [11], H., robust
control [12], zero/pole-assignment [13], and fuzzy neural
network algorithm [14]. Hybridization can also be used
to reduce the power consumption of an active controller
[15], or embedded on a rotating machine, can be fully
autonomous [16]. Recently, a control law, acting as a
phase compensator, has been proposed to get this device
unconditionally stable [17,18].

Most of these approaches drastically reduce the sys-
tem’s response at the desired frequency but increase
the vibration amplitude around the initial resonance fre-
quency, as a passive TMD does. One passive way to reduce
the amplitude in the whole frequency range is to use a Sky-
Hook Damper. Skyhook damping requires that a viscous
damper be connected to the ground, which is not phys-
ically possible for embedded applications. Many purely
active sustems try to synthetize the dynamical behavior
of ashyhook damper in order to increase the damping of
the primary structure. It can easily be realized using an
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AMD and a direct velocity feedback [19-21], but the sys-
tem is not hyperstable and the fail-safe behavior is not
certain as the actuator is not tuned on the main reso-
nance as for a TMD. Recently, [22] proposed to combine
a dynamic vibration absorber (DVA) with an electromag-
netic shunt damper, showing that this association allows
damping the resonances while keeping the strict antires-
onance created by the DVA. A semi-active controller can
also be a good candidate for hybridization [23], to reduce
the energy demand again. Many realizations and appli-
cations are proposed [24,25]. Hybridization can also be
extended to isolation problem when using an inertial iso-
lator and feedforward architecture [26]. As underlined in
[17] or [25], the hybrid system needs to be carefully ana-
lyzed in terms of stability or required power. In conclusion,
it appears that active or hybrid techniques provide us with
a very flexible tool to reduce vibration depending on the
available device and the defined objectives.

This paper presents a new hybrid device associating
a single feedback loop and a TMD used as actuator. It
also shows how to use power flow formulation and equiva-
lent mechanical impedance to design a specific control law
for this HMD. Due to the existence of a full mechanical
analogy, the resulting hybrid device is theoretically hyper-
stable and provides infinite gain margins. The device also
presents a so-called fail-safe behavior because the cho-
sen actuator parameters are equal to those of an optimal
passive TMD. The resulting system emulates a Skyhook
damper parallel to this optimal TMD. After the theoreti-
cal presentation of the hybrid device on a simple structure,
the paper illustrates how to design this kind of control
law. Then, the resulting stability, the performance, and
the robustness are analyzed through numerical simula-
tions. All these aspects are also compared with a standard
AMD (which is purely active and not fail-safe) that pro-
vides the usual skyhook damping. Finally, experimental
results validate the proposed hybrid device and its per-
formance. It clearly shows the main advantages of such
a device: performance, stability and vibration reduction
over the entire frequency band of interest.

2 Mathematical model

This section illustrates the principle of the HMD and its
equivalent full mechanical analogy in the case developed
in this paper.

A typical linear hybrid system is shown in Figure la.
It is composed of a primary system (index 1) associated
with a TMD (index 2). Hybridization is done by adding
an active force driven by a control unit. The disturbance
on the primary system can come from the ground (Xj)
or from an external force on the primary structure (F}).
Control performance is similar regardless of the distur-
bance. In the following, I} will be mainly used. Figure 1b
represents the equivalent mechanical system when the
controller is adequately tuned to synthesize a skyhook
damper (as shown in the following parts). It results in the
association of an optimal passive TMD with a synthesized
skyhook damper.

a) b)
Fig. 1. Schematics of the control unit model used in the simula-

tions. a) Hybrid Tuned Mass Damper, b) Passive system (Tuned
Mass Damper and Skyhook Damper).

The governing equations of motion are written in the
Laplace domain as follows:

52m1X1 = (kg —+ SCQ)(XQ — Xl) - Fa
+F1+(k'1 +561)(X0*X1) (1)

s2m2X2 = (kg + SCQ)(Xl — XQ) + Fa (2)

where s is the Laplace variable, m; and ms are the masses,
X, and X5 are their displacements in the Laplace domain,
k1 and ko are the stiffness values, and ¢; and ¢y are the
mechanical damping values of the primary system and the
TMD. ¢y, is the damping value of the equivalent mechan-
ical skyhook damper. X, represents the ground motion,
F the external disturbance force applied on the primary
system, and F, the control force. The TMD is designed
using the equal peak design rules [2]:

k k
wy = — =L sy (3)
mo mq

with v =1/(1 + u) and

3 (4)

$2= 2y kameo 8(1 + p)

where ws is the natural frequency of the TMD, & is
its damping ratio and p is the mass ratio (me/mg).
For this study, p is set at 1%, which is representative
of the concerned applications. The controller H, gener-
ating the equivalent mechanical behavior illustrated in
Figure 1b, will be defined in the next part. Based on the
measurement of the primary system’s velocity (as a clas-
sical velocity feedback), the resulting active force can be
written as follows:

F, = sHX, (5)
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3 Active damping: Skyhook synthesis

In this section, the idea is to use a simple formulation in
terms of power flow to design the appropriate control law.
For the analysis developed here, only active damping is
conside where the actuator force is fed by a specific veloc-
ity feedback. For sake of simplicity we consider the system
without internal mechanical damping (¢; = ¢o = 0). As
explained previously, to ensure the fail-safe behaviour, the
design of the actuator is based on the parameter of a
TMD. Consequently, the usual control law of the Direct
Velocity Feedback presents poor stability margins [17,18]
and has to be modified.

3.1 Power flow formulation

The well-known energy conservation principle, satisfied
by any physical systems, explained that the variation of
stored energy is the sum of external power input and
internal power generation [27].

As the internal mechanical damping values (¢; and c2)
are set to zero, the internal power generation mechanisms
are only linked to the power flow generated by the actu-
ator driven by the controller and its control law H(s).
Considering perfect transducers, the function G(s) that
represents this dissipating mechanism can be written in
the Laplace domain as follows:

G(S) = —FaS(Xl — Xg) (6)

Using equation (5), it becomes:

G(s) = (sX1)*H(s) <1 - X2> (7)

In terms of stability, the resulting system is passive
(hyperstable) if [27]

Re[G(s)] >0 (8)

where Re[] denotes the real part of the function. This
condition means that the system is purely dissipative.
On the other hand, one can easily show that the
power dissipated by a mechanical Skyhook Damper (as
represented in Figure 1 with a damping value of c¢gp,) is:

G(s) = (sX1)%can (9)

Consequently H(s) can be designed in interaction with
the TMD’s dynamics to ensure stability (Re[G(s)] > 0)
and the Skyhook Damper emulation. To obtain an equiva-
lence between equations (7) and (9), one can simply define

H(s) as:

where g is the gain of the feedback loop and will be equal
to synthesized skyhook damping cgp. Using equations (1)
and (2), one can rewrite the previous equation and observe

(10)

ZHMD

Fig. 2. (a) Parallel representation of the global system, (b)
Schematic of the hybrid device and (¢) its equivalent mechanical
model.

that H(s) depends only on the TMD parameters, not on
the primary structure parameters:
H(s)=yg (1 +

C UJ2
2 + 2)
g

- 57( 2 4 sco/mo +w§)

(11)

With this control law, equation (7) verifies condi-
tion (8).

3.2 Mechanical impedance analysis

In practice, the simple control law defined in equation (11)
will correct TMD’s dynamical behavior to generate a vir-
tual skyhook damper attached to the ground. This fact
is noticeable because it provides absolute damping on the
primary structure, even for embedded applications. The
following gives another overview of the approach in terms
of mechanical impedance.

On a single degree of freedom, the mechanical
impedance Z in Laplace domain can be defined as the
ratio between the applied force and the resulting velocity:

Z =F/(sX) (12)
Figure 2a shows a representation of the global system,
illustrating the fact that the impedance of the primary
structure is in parallel with that of the HMD. Figure 2b
isolates the HMD. One can compute the resulting force Fy
generated by the hybrid device at its interface as follows:

FH: (k'2+862)(X17X2)+Fa (13)
By using equation (2), one can write:
2 2

Py — s*ma(ka + sc2) s%ms HsX, (14)

s2mo + scg + ko s2mg + scy + ko
Then, by introducing the proposed control law H(s)
defined in equation (11), the mechanical impedance of
the proposed device is:

F k
Zunp = LH _ smalka +5¢2)

15
sX1  $2meq + sco + ko (15)
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Fig. 3. Root locus of hybrid devices. Blue: Direct Velocity Feedback. Red: Hybrid SkyHook Mass Damper. Black: Active Mass

Damper.

= ZrMD + ZSkyHook (16)

One can clearly identify the terms representing the
mechanical impedance of a purely passive TMD (Zryp)
in parallel to skyhook damper with a damping value g (=
ZskyHook)- The resulting mechanical system is illustrated
in Figure 2c.

This section shows that, knowing the actuator’s dynam-
ical behavior, and the desired impedance one can easily
find a control law using this equivalent impedance anal-
ysis. Associated with the power flow formulation, it is
a useful tool to understand the stability of the control
system.

4 Stability analysis

Considering the system shown in Figure 1, the proposed
hybrid device (Hybrid SkyHook Mass Damper: HSHMD),
was compared to two classical devices in term of stability.
The first was a classical Direct Velocity Feedback (DVF)
using the TMD as actuator. The second was an Active
Mass Damper (AMD), which is a DVF law applied on
an inertial actuator tuned 2 octave lower than the TMD.
For the main structure, the mechanical parameters used
in these simulations were: m; = 1kg, k&; = 1N/m and
&1 = 1%. The added mass was 1% of the mass of the main
structure, mo = 0.01 x m;. These normalized parameters
were chosen to be consistent with many transportation
and aeronautical applications.

The corresponding root locus and a zoom around the
modes of interest are shown in Figure 3.

The root locus of the AMD (black dotted line) shows
two loops: a small loop at low frequency associated with
the dynamics of the actuator, and a bigger one linked
to the mode to damp. This kind of active device is very
efficient to damp the main mode of the host structure.
However, in case of failure, the system is no longer damped
because the AMD parameters are not tuned adequately.
The fail-safe behavior is no longer certain. Moreover, for
high gains, the system is not stable at low frequency.

To obtain a fail-safe system, the mechanical parameters
ko and & were chosen according Den Hartog’s rules [28].
If applying a DVF to this system (blue dash-dotted line),
the lower frequency pole goes immediately in the right
half-plane, leading to instability.

Now if the control law defined in equation (11) is used
on the tuned device, we obtain the root locus plotted in
red in Figure 3. We can see that the poles stay in the left
half-plane of the plot whatever the gain is. This illustrates
the infinite gain margin characterizing the hyperstability.
For very high gains, it can be seen that the pole linked
to the main structure becomes real and the pole linked
to the actuator moves to a location representative of the
pole of the isolated passive TMD.

The above-mentioned behaviors and limits can also be
observed on the open-loop transfer functions of these
hybrid devices (Fig. 4). On the bode representation,
the phase of the HSHMD always stays far from the
+/ — 180 deg limits. The Nyquist representation clearly
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Fig. 4. Bode and Nyquist open loop transfer functions. Blue: Direct Velocity Feedback. Red: Hybrid SkyHook Mass Damper.

Black: Active Mass Damper.

shows the hypertability property of the HSHMD. For
instance, for the open loop frequency response function
with the proposed control law, the circle of the resonance
is rotated clockwise into the real-positive quadrants. This
indicates that the closed feedback loop is unconditionally
stable.

In addition, we can understand that because of the full
analogy with a mechanical network presented in the previ-
ous section, the stability of the active system is guaranteed
if we consider idealized force sensors and actuators.

5 Performance

In the following, the HSHMD is compared with the passive
TMD and the purely active AMD. The DVF control law
applied on a TMD is no longer considered due to its lack of
stability. Each of these devices is considered to be mounted
alternatively on the system shown in Figure 1. As these
devices are clearly different, their parameters have been
chosen arbitrarily. The damping of the initial system is
1%, and the poles with a passive TMD present a damping
of 3.5%, which is coherent with the mass ratio u = 1%.
The active control gain of the HSHMD and that of the
AMD are both tuned to obtain modes with about 6.5% of
damping. For these tuning parameters, the resulting active
forces for both configurations, reach the same maximum
amplitudes in impulse perturbation.

Compliance
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Fig. 5. Frequency Response Functions z1/F1 of the closed loop
system.

Figure 5 shows the frequency response functions z1 /F;
for the controlled systems. The black, green, and dot-
ted lines represent the responses of the classical systems
used as a reference here. They are the uncontrolled sys-
tem (black line), the passively controledl system with a
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TMD (green line), and the actively controlled system with
an AMD (black dotted line). Looking at the red curve
(for the HSHMD), we can understand that the proposed
hybrid device perfectly combines the passive properties
of the TMD (pole duplication) and the synthesis of a
skyhook damper as the AMD does (add of an absolute
damping).

In [29], it was shown that other classical hybrid systems,
present a compromise in their response. An amplitude
reduction in a given frequency range, often results in an
increase elsewhere. In contrast to these hybrid systems,
one can note here for the HSHMD, that the resulting
curve is fully under the reference curve of the passive
TMD. No overshoot is observed. This is due to the abso-
lute damping introduced by the skyhook damper. This
property represents an important gap in the development
of future hybrid absorbers.

The final behavior of the hybrid device corresponds
exactly to its mechanical analogy illustrated in Figure 2.

6 Practical considerations

Even if the performance previously shown are very attrac-
tive, other phenomena have to be considered. It will
results in some compromises that have to be anticipated.
In the following, the perturbation force F} is a white noise
with a power spectral density equal to 1.

6.1 Robustness

Because the control law (11) is tuned on the mechanical
parameters, one has to investigate the robustness of the
system versus a stiffness variation. This type of variation
seems to be more relevant to this study.

Both variations on k; (main structure) and ko (mass
damper) are considered. A(k;) is a multiplicative factor
applied to the stiffness k;. The case A(k;) = 1 repre-
sents the reference case of the previous section. Figure 6
illustrates the resulting attenuation in terms of the H.,
norm.

As expected, the AMD (black dotted line) is not really
affected by these variations. It is due to the fact that
neither the control law nor the actuator is tuned on the
mechanical parameters. The performance of the passive
TMD (in green) decreases rapidly for any variations on
k1 or kg, which corresponds to both cases of the device
detuning.

HSHMD (in red) presents a combination of both behav-
iors. In the case of a ky variation, the attenuation is still
very high. The control law is still adapted to its actuator,
and the synthetic skyhook damper is still very effective.
For a ko variation, the control law (which is always tuned
on the initial parameters) seems less effective, and the
system behaves like a detuned TMD.

These observations are coherent with the philosophy
of the proposed control law. Indeed it can be seen as a
compensator of the dynamical behavior of the TMD to
use its mass as a ground reference. The control law is
directly linked to the parameters of the device.

Attenuation(dB), H
>

ar Passive TMD "

) PSR AMD |
= HSHMD

0 | I ! | I I I

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Fig. 6. Evolution of the Hoo attenuation for (a) a variation on
k1 and (b) a variation on k2. Green: Passive TMD. Black dotted
line: AMD. Red line: HSHMD.

Whatever the case, the resulting stability margins are
still very high. The gain margin is always infinite, and the
phase margin is reduced from 90 deg (see Fig. 4) to 85 deg
in the worst case. Observations on the Hs norm are very
similar and are not presented here. Note that the stiffness
variations simulated here are very high (4/ — 40%).

6.2 Actuator stroke

The actuator stroke is another point of view from which
to analyze the hybrid device. The stroke of a passive TMD
is linked to the resulting dissipated energy. In case of
the hybrid devices, it is combined with the active force
effect. However the stroke can always appear as a practi-
cal limitation (available space, stiffness linearity, etc). The
stroke spectrum is shown in Figure 7. The stroke is simply
assumed to be equal to (z9 — 7).
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Passive TMD. Black dotted line: AMD. Red line: HSHMD).

At the vicinity of the resonant frequency of the primary
structure, all the simulated strokes are important. The
passive TMD dissipates energy in its dashpot, and the
AMD generates high force by using the inertia of its actu-
ator. At these frequencies, the HSHMD presents a slightly
higher stroke (+1dB).

The main drawback can be seen at low frequen-
cies where the effect of the integrator of the control
law generates important relative displacements. One can
understand that the superior performance of the HSHMD
controller is obtained at the cost of a much larger stroke
of the device mainly at low frequencies. The last section
discusses this point and how to avoid this important
theoretical drawback.

6.3 Active force and effective power

Using the previous simulation parameters, the active force
and the effective power for AMD and HSHMD are shown
in Figure 8. These quantities are extremely important for
any practical implementations of the device. Indeed, the
transducer (usually electromagnetic) has to generate the
active force, and its related amplifier must provide the
needed power (usually electrical).

As expected, these two quantities present similar behav-
iors. Near the resonant frequency, the hybrid device needs
less active force and then, less power than the purely
active device. Because the actuator of the hybrid device
is tuned on this frequency. A small force is necessary
to generate high displacements and inertial forces. This
property can be of interest to counter harmonic perturba-
tion, as already shown in [10]. Again, one can observe the
main drawback of the hybrid system at low frequencies.
In fact, the control law generates a high active force and
requires a significant effective power, mainly because of
the integrators present in the control law.

Active Force
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& .

ot
o
o
.
.
.

Frequency (rad/s)

Effective power

Magnitude (dB)

o
0‘.‘
-20 | g 1
o

-30

40 :
107! 10°
Frequency (rad/s)

Fig. 8. Comparison of active force and global power consump-
tion (Black dotted line: AMD. Red line: HSHMD).

7 Experimental validation

7.1 Set-up description

The control system and the setup is represented in
Figure 9. It is a cantilever steel beam (58 x 10 x 1 cm).
The hybrid device is rigidly mounted on the beam at
48 cm from the base. This electromagnetic system is a
Micromega product (ADD-5N), originally designed for
active control. This transducer has not been specifically
designed or optimized for this application, but its mechan-
ical parameters correspond to those we are looking for in
this demonstration. Its moving mass is 160 g. When asso-
ciated with its current amplifier, its resulting resonant
frequency is around 25 Hz, and its internal damping of
&o = 19%. All these parameters have be estimated using
the rational fraction form method (RFP) [30] from the



8 S. Chesné: Mechanics & Industry 22, 49 (2021)

Laser displacement Filters & S ==L
sensor Derivator l i
1 Y = =
Digital controller
Hybrid device Coil Reaction .
ol Mass Icontrol
S N Current
S Amplifier

Permanent magnet

Cantilever beam

-

BEAM

Fig. 9. The control system, its feedback loop, and the experimental setup.

measured transfer functions shown in Figure 10. The pas-
sive attenuation observed in Figure 10 is around 18 dB,
then the resulting mass ratio p is estimated at around
8%. A laser displacement sensor is used to measure the
displacement at the device location. The resulting velocity
used in the control loop can be estimated by derivation.

In this proof of concept, the focus is given to the first
bending mode. In practice, neither the resonant frequency
nor the damping of the TMD is perfectly tuned to verify
the equal peak design as defined by [2]. Nevertheless, as
shown in the next section, it doesn’t compromise the good
performance of the proposed approach. The perturbation
is a white noise applied at the free extremity of the beam
through an electromagnetic actuator.

7.2 Filters and velocity estimation

Many control systems to increase damping in a structure
use a velocity feedback loop. This input usually comes
from an accelerometer associated with an integrator. As
pointed out in the previous sections, the main drawback
of the proposed controller is the presence of integrators in
the control law (poles in zero in Eq. (11)). It may enhance
the command at low frequencies and then lead to stroke
or force saturation effects in the actuator. To avoid these
negative effects, two solutions are implemented.

First, a laser displacement sensor is used in the feedback
loop. It allows to cancel one integration step in the control
loop with the derivative step necessary to estimate the
velocity. It then reduces the order of the integrator.

Moreover, a high-pass filter is added in the feedback
loop (second-order Chebychev filter at 1Hz). Theoreti-
cally, the introduction of this high pass filter compromises
the hyperstability of the proposed control law (no more
infinite gain margin). However, in practice, the stability

margins are still extremely high, and don’t appear as a
limitation, as proven in the following.

7.3 Results

The performance of the control device is observed in
terms of the displacement response at the actuator loca-
tion. The white noise feeding the perturbation actuator
is used as reference. Figure 10 shows the displacements
of the beam without a TMD (gray line), with a passive
TMD (green line), and with the HSHMD using differ-
ent gains in red (continuous line: g = 60, dotted line:
g = 180). The TMD almost verifies the equal peak prop-
erty. One can observe the effect of the HSHMD device
on the first mode. Depending on the gain, it can reach
a huge attenuation compared to the passive device. Also,
the dynamical amplification of the two resulting modes
are almost canceled.

The red curves are always under the green one regard-
less of the frequency range. This is one of the main
particularities and advantages of this HSHMD, which is
linked to the synthesis of the skyhook damper.

This property can also be observed in Figure 11. It
shows the cumulative sum of the previous frequency
response functions. The hybrid system drastically reduces
this cumulative sum.

Figure 12 shows the root locations for various values
of the gain compared with the simulated root locus. Note
that the initial state (passive TMD) represented by the
gray cross is experimentally identified. This figure shows
a good correlation between a simulated control and an
experiment.

The effect of the high-pass filter is negligible and not
represented here. Even if the theoretical hyperstability is
lost, the resulting gain margin is still very high, around
75dB. The stability is not the main limitation to increase
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Fig. 10. Frequency response function in term of displacements
without TMD (grey line), with passive TMD (green line) and
with the HSHMD using different gains in red (Continuous line:
g = 60, dotted line: g = 180).

30

Without TMD
With passive TMD (g=0)
Hybrid g=60

= === Hybrid g=180

20

15

FRF cumulative sum

10

10’ 102
Frequency (Hz)

Fig. 11. Cumulative sums of FRF represented in Figure 10.

the controller gain. In this setup, higher gains have not
been tested due to the saturation limit of the current
amplifier driving the HSHMD.

In any case, the principle proves its high efficiency. The
final damping values with gain g = 180 of the two poles
are around 24% and 38% (blue squares).

8 Conclusion

This article presents a new control law for hybrid vibration
attenuation called hybrid skyHook mass damper. The-
oretical analyses, based on a mechanical analogy or a
power flow formulation, shows that it enables the syn-
thesis of an active skyhook damper, associated with a

-160 -140 -120 -100 -80 -60 -40 -20 0
Real Axis (seconds'1)

Fig. 12. Root locus of the hybrid controller as a function of the
control gain. Square: Experimental results.

passive TMD. With this hybrid device using the TMD
as an inertial actuator, the system can be considered
as fail-safe. The hyperstability property is theoretically
ensured, which means that the stability of the controlled
system is guaranteed. The performance and robustness
have been illustrated through numerical simulations, and
an experimental application validates the concept. It was
shown that the HSHMD has remarkable properties in
term of vibration attenuation on the whole frequency
range. Contrary to many hybrid controllers, no response
amplifications are observed which appears as its main
advantage. Future works will focus on multiple degree of
freedom systems and the effect of actuator saturation or
non-linearities on the controller.
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