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Abstract: Fluorescent imaging is widely used in the diagnosis and tracking of the distribution,
interaction, and transformation processes at molecular, cellular, and tissue levels. To be detectable,
delivery systems should exhibit a strong and bright fluorescence. Quantum dots (QDs) are highly
photostable fluorescent semiconductor nanocrystals with wide absorption spectra and narrow, size-
tunable emission spectra, which make them suitable fluorescent nanolabels to be embedded into
microparticles used as bioimaging and theranostic agents. The layer-by-layer deposition approach
allows the entrapping of QDs, resulting in bright fluorescent microcapsules with tunable surface
charge, size, rigidity, and functional properties. Here, we report on the engineering and validation
of the structural and photoluminescent characteristics of nanoparticle-doped hybrid microcapsules
assembled by the deposition of alternating oppositely charged polyelectrolytes, water-soluble PE-
Gylated core/shell QDs with a cadmium selenide core and a zinc sulfide shell (CdSe/ZnS), and
carboxylated magnetic nanoparticles (MNPs) onto calcium carbonate microtemplates. The results
demonstrate the efficiency of the layer-by-layer approach to designing QD-, MNP-doped microcap-
sules with controlled photoluminescence properties, and pave the way for the further development
of next-generation bioimaging agents based on hybrid materials for continuous fluorescence imaging.

Keywords: quantum dots; magnetic nanoparticles; hybrid polyelectrolyte microcapsules; nanoparticle-
encoding; photobrightening; ultramicrostructure

1. Introduction

Fluorescence sensing and imaging techniques have been actively employed for bioimag-
ing applications, including controlling intracellular acidification, vesicular trafficking, and
cytoskeletal reorganizations, as well as in vivo monitoring of delivery, release, and biodis-
tribution [1–3]. Dual doping of micro- and nanoparticles with fluorescent and magnetic
components has recently been established and frequently used in the design of advanced
bioimaging and theranostic tools. A combination of fluorescent organic dyes, or their
conjugates, with proteins, polymers, and magnetic nanoparticles (MNPs) is well known to
be used in the development of stimulus-responsive diagnostic and therapeutic agents [3,4].
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However, the in vivo release of Cy7-labeled BSA used to dope microcapsules has been
shown to be initially quenched by MNPs, which was confirmed by fluorescent tomog-
raphy [2]. In addition, the use of the magnetic component ensures the enhancement of
contrast for the magnetic resonance imaging of tumors in vivo [5]. The presence of MNPs
also enables the controlled transportation and delivery of the inner content of the microcap-
sules to the desired location [6]. The simultaneous entrapment of MNPs and fluorescent
nanolabels, such as quantum dots (QDs), into polyelectrolyte polymer microcapsules en-
ables their dual sensitivity to light and magnetic fields [7]. The dual doping with light- and
magneto-sensitive components makes it possible to enhance the biomedical potential of
these systems, enabling their magnetic-field-stimulated transportation, as well as fluores-
cent and magnetic resonance imaging in the region of interest. The designed polyelectrolyte
microcapsules functionalized with metal nanoparticles, drugs, and fluorescent dyes have
been recently demonstrated to be effective multifunctional delivery systems that can be
easily adapted for theranostic, bioimaging, and sensing applications [8–13].

Quantum dots, being fluorescent semiconductor nanocrystals, are characterized by
bright, stable fluorescence, a prolonged fluorescence lifetime, and a high quantum yield
compared to those of conventional organic dyes and, thus, represent an excellent alternative
as fluorescent nanoprobes [14,15]. Core/shell QDs have emerged as excellent fluorescent
nanolabels with quantum yield values that may reach 100% [16]. QDs of this type typically
represent Cd-based cores (e.g., CdSe, CdTe, or CdS) coated with protective layers of a ZnS
or CdS shell to improve the photoluminescence properties of the QD cores, their stability,
and their surface functionalization capacity [17–20]. Core/shell QDs have been successfully
introduced as nanolabels for fluorescent imaging, including laser scanning confocal mi-
croscopy, super-resolution imaging, and stimulated emission depletion nanoscopy [21–23].
However, oxidation of CdZe/ZnS nanocrystals may lead to the leakage of free metal ions
from their cores and the resultant toxicity [24]. Core/shell Cd-based QDs possess redox
capacity and, along with graphene-based QDs, have also been shown to generate reactive
oxygen species (ROSs) [25,26]. Thus, QD encapsulation within the polyelectrolyte shell
of the microcapsules prevents direct contact of cells and nanoparticles, which makes it
possible to decrease their potential toxicity and enhance their biocompatibility upon their
interaction with live cells [27]. Polyelectrolyte microcapsule functionalization with metal
nanoparticles, fluorescent dyes, and QDs can be performed using the layer-by-layer ap-
proach, which is widely used for microcapsule fabrication [28,29]. QD encapsulation into
the polyelectrolyte shell of the microcapsules results in the formation of brightly fluorescent
hybrid nanoparticle–polyelectrolyte microstructures that have been demonstrated to be
advanced and biocompatible bioimaging tools [30,31].

Layer-by-layer deposition allows for the dual doping of the polyelectrolyte shell
with different nanoparticle types, including MNP and fluorescent semiconductor particles.
However, the inner complexity of the microcapsule polyelectrolyte shell microenvironment,
as well as microcapsule surface charge, has been determined to affect QD fluorescence
stability under prolonged laser irradiation, leading to photodarkening or photobrightening
of the encapsulated QDs [28].

Our previous research has demonstrated the most stable fluorescence of the QD-
and MNP-doped microcapsules that had a negatively charged surface, which acted as a
barrier that blocked the transfer of the negative carriers from the QD cores, leading to
fluorescence stabilization [28]. However, the poor reproducibility of the layer-by-layer
assembly of polyelectrolytes and nanoparticles still represents a challenge in microcapsule
engineering [32], demonstrating the necessity to control and validate the structure and
optical characteristics of the nanoparticle-doped microcapsules. This study was aimed at
the characterization and validation of the structural and fluorescent properties of newly
engineered magneto-optical hybrid polyelectrolyte microcapsules dually doped with QDs
and MNPs. Our data demonstrate that the designed microcapsules exhibit reproducible and
improved fluorescent properties, enabling fluorescence signal detection under continuous
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irradiation in multicomponent cell culture media, and are promising bioimaging tools for
continuous fluorescence imaging.

2. Materials and Methods
2.1. Fabrication of Nanoparticle-Doped Hybrid Polyelectrolyte Microcapsules

The nanoparticle-doped polyelectrolyte microcapsules were prepared by the electro-
statically driven co-assembly of polyelectrolyte polymers on the surface of 5 µm calcium
carbonate microparticles used as template cores. The calcium carbonate templates were
fabricated via crystallization by mixing equal volumes of equimolar solutions of calcium
chloride and sodium carbonate as described elsewhere [30,33]. Initially, 0.5 mL of a suspen-
sion containing ~108–109 calcium carbonate microparticles was prepared and sonicated
using an ultrasound bath. Then, 0.5 mL of a 2 mg/mL poly (allylamine) hydrochloride
(PAH) solution (Mw = 65 kDa, Merck Group, Sigma-Aldrich, Saint-Quentin-Fallavier,
France) in 0.5 M sodium chloride was added to 0.5 mL of the suspension and incubated
for 20 min under permanent stirring. After incubation, the polymer solution was re-
placed with ultrapure water by centrifugation, and the resultant pellet was washed thrice.
Then, a similar procedure was performed to apply poly (sodium 4-styrenesulfonate) (PSS,
Mw = 70 kDa, Merck Group, Sigma-Aldrich, Saint-Quentin-Fallavier, France). A 2 mg/mL
PSS solution in 0.5 M sodium chloride was used. The alternating cycles of the deposition of
PAH and PSS polyelectrolytes were repeated until the desired shell thickness was achieved.
The polyelectrolyte shell was assembled and simultaneously functionalized with both
types of nanoparticles using the layer-by-layer approach as described earlier [28,34].

For this purpose, water-soluble core/shell CdSe/ZnS QDs with a fluorescence max-
imum at 594 nm solubilized with a polyethyleneglycol (PEG) derivative containing a
12-unit PEG-spacer arm and thiol and carboxylic functional groups were prepared as
described elsewhere [8,30,35]. Carboxylated iron (II, III) oxide MNPs (Merck Group,
Sigma-Aldrich, Saint-Quentin-Fallavier, France) were used for polyelectrolyte shell func-
tionalization. The microcapsules were labeled with the prepared solubilized QDs via
adsorption onto the calcium carbonate microparticles that were preliminarily coated with
the (PAH/PSS)2/PAH layers as described elsewhere [28]. After QD layer deposition, the
PAH/PSS/PAH or (PAH/PSS)2PAH polyelectrolyte sequence was assembled for further
MNP adsorption. Finally, the preformed MNP layer was coated with (PAH/PSS)3. Neg-
atively charged microcapsules were prepared by applying the final layer of polyacrylic
acid (Mw = 100 kDa, Merck Group, Sigma-Aldrich, Saint-Quentin-Fallavier, France) to
obtain the (PAH/PSS)2/PAH/PAA sequence. Hollow microcapsules were produced by
the incubation of the suspended microparticles in EDTA solution.

2.2. Measurements of the Zeta-Potential and Size

The charge and hydrodynamic diameter distribution analyses were performed by
means of laser Doppler electrophoresis and dynamic light scattering using a Zetasizer Nano-
ZS instrument (Malvern Panalytical, Palaiseau, France). Additionally, the microcapsule
size was verified by optical microscopy.

2.3. Analysis of Microcapsule Photoluminescence

The photoluminescence spectra of the QD-, MNP-encoded hybrid microcapsules were an-
alyzed using an Infinite 200 PRO multimodal plate reader (TECAN, Männedorf, Switzerland).

The photoluminescence signal stability of the QD-, MNP-doped microcapsules was
investigated by the continuous irradiation of the microcapsule suspension containing
6×106 particles using a homemade setup [28,36]. The microcapsule sample was irradiated
under permanent stirring. The laser radiation power was detected using a Nova II (Ophir)
power meter. The PL intensity of the sample during irradiation was measured using a
two-lens objective to collect the light emitted by the sample to an M266 monochromator
spectrograph (Solar Laser Systems) with a connected Hamamatsu photodetector matrix.
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Microcapsule fluorescence was also investigated using fluorescence microscopy and
microcapsule sections as described elsewhere [28]. Fluorescent images were obtained using
an Axio Vert.A1 fluorescent microscope (Carl Zeiss, Jena, Germany). The images were
analyzed and processed using Zen software (Carl Zeiss).

2.4. Transmission Electron Microscopy

The 70 nm-thick microcapsule sections were prepared as described in detail elsewhere,
placed onto 200 mesh Formvar/carbon grids (Agar Scientific, Essex, UK), and analyzed
using a JEM-2100 transmission electron microscope (JEOL, Akishima, Japan) as described
elsewhere [8,28].

2.5. Preparation of Microcapsule Sections and Study of Magnetization Distribution

The surface of the microcapsule section was analyzed using atomic force microscopy
(AFM) and magnetic force microscopy (MFM) by means of a combined SPM–ultramicrotomy
system. The microcapsule section surface was initially scanned in the AFM semicontact
mode; then, a phase image indicating the distribution of magnetic forces at the microcapsule
section was acquired using MFM_HC magnetic cantilevers (Tipsnano OÜ, Tallinn, Estonia)
with probes covered with CoCr (resonance frequency, 64.2 kHz) for magnetization distribu-
tion analysis as described earlier [28,37].

3. Results and Discussion
3.1. Engineering of Nanoparticle-Doped Hybrid Polyelectrolyte Microcapsules

Layer-by-layer adsorption of polyelectrolytes has been shown to be a promising
approach to the encapsulation of aqueous nanoparticle colloids, which enables further
stimulus-responsiveness of the polyelectrolyte shell to light and/or magnetic field stim-
uli. Dual microcapsule functionalization can be performed during polyelectrolyte shell
formation due to electrostatically driven adsorption onto calcium carbonate microbeads
previously coated with polyelectrolyte layers (Figure 1). The efficiency of the layer-by-layer
deposition of polyelectrolytes and nanoparticles is determined by the surface properties of
the templates, charge of polyelectrolyte molecules, zeta-potential, and colloidal stability of
the nanoparticles to be encapsulated in the preformed polyelectrolyte shell.
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Figure 1. Schematic diagram of nanoparticle deposition during the assembly of the polyelectrolyte
shell of the microcapsules. Abbreviations: QD, quantum dot; MNP, magnetic nanoparticle; PAH,
poly (allylamine) hydrochloride; and PSS, poly (sodium 4-styrene sulfonate).

The first step in the fabrication of the microcapsules involves the validation of
the charge characteristics of the major building blocks (templates, polyelectrolytes, and
nanoparticles). The charge characteristics of the microcapsule building blocks used for
the engineering of nanoparticle-doped hybrid microcapsules are presented in Table 1.
Therefore, controlling the surface charge during the deposition of the major functional
components is a crucial step in the validation of the microcapsule fabrication approach. Our
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earlier data indicated flips of the microcapsule surface charge upon subsequent deposition
of polyelectrolytes and nanoparticles [8,28,30].

Table 1. Mean hydrodynamic diameters and ς-potential values of the major microcapsule
building blocks.

Building Block ς-Potential, mV Hydrodynamic Diameter, nm *

Calcium carbonate
microbeads −8.86 ± 1.14 4137.00 ± 883.70

PSS 70 kDa −18.10 ± 7.86 309.00 ± 88.03
PAH 65 kDa +25.0 ± 1.85 320.60 ± 36.13
PAA 100 kDa −9.30 ± 2.96 298.60 ± 36.90

QDs carboxylated −36.90 ± 0.31 58.70 ± 9.54
MNPs carboxylated −41.80 ± 4.24 31.22 ± 0.46

* The data presented by light scattering intensity.

Nanoparticles (QDs as well as MNPs) were assembled onto the surface of the PAH-
coated calcium carbonate microbeads. Both QDs and MNPs bore carboxylic functional
groups on their surface and had a negative surface charge, which enabled effective
electrostatically driven nanoparticle adsorption onto positively charged, PAH-coated
microbeads. After the QDs were applied intermediate alternating PAH/PSS polyelec-
trolyte layers of the desired total thickness were assembled. Then, MNPs were ab-
sorbed from the colloidal solution onto the calcium carbonate microbead surface with pre-
assembled QD–polyelectrolyte layers terminated with PAH; then, the surface was coated
with a final succession of polyelectrolyte layers resulting in the formation of the follow-
ing structures: CaCO3/(PAH/PSS)2/PAH/QDs/PAH/PSS/PAH/MNPs/(PAH/PSS)3 or
CaCO3/(PAH/PSS)2/PAH/QDs/PAH/PSS/PAH/MNPs/(PAH/PSS)2/PAH/PAA. The
functionalization of the polyelectrolyte shell with nanoparticles was characterized by flips
of the particle surface charge (Figure 2). Nanoparticle sorption from the colloidal solution
was accompanied by overcharging of the template surface, indicating the deposition of
negatively charged QDs and MNPs.
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Figure 2. Flips of the surface charge of the calcium carbonate microbead templates
(CaCO3/(PAH/PSS)2) during the deposition of nanoparticles and the intermediate polyelectrolyte
layers PAH/PSS/PAH. Abbreviations: QD, quantum dot; MNP, magnetic nanoparticle; PAH, poly
(allylamine) hydrochloride; and PSS, poly (sodium 4-styrene sulfonate). Error bars indicate the stan-
dard deviations of the mean values of the surface charges measured (the number of measurements
was 5).

To estimate the efficiency of the layer-by-layer deposition of QDs and MNPs, a trans-
mission electron microscopy (TEM) analysis of microcapsule sections was performed. The
results of microparticle encoding with QDs and MNPs were estimated using TEM analysis
(Figure 3). The deposition of nanoparticles into the shell was observed, with nanoparticles
of both types forming multilayered assemblies (Figure 3a,c,d), which was especially typical
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of QDs as smaller-sized particles (Figure 3b,d). The MNPs embedded in the microcapsules
had a larger physical size (Figure 3b) and were also assembled in non-uniform layers
(Figure 3c,d). In addition, the rough surface of the polyelectrolyte-coated calcium car-
bonate microbeads (Figure 3a) may also have contributed to the nanoparticle deposition
pattern [30].
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electron microscopy (TEM): (a) a section of a nanoparticle-doped hybrid polyelectrolyte microcapsule;
(b) original MNPs and QDs used for microcapsule functionalization (scale bars, 50 nm); (c,d) selected
regions of the microcapsule shell doped both with QDs and MNPs at different magnifications (scale
bars, 200 and 500 nm, respectively). The deposition area of some QDs is indicated with dark arrows.
The data on (PAH/PSS)2/PAH/QDs/PAH/PSS/PAH/MNPs/(PAH/PSS)3 nanoparticle-doped
microcapsules are presented. Abbreviations: QDs, quantum dots; MNPs, magnetic nanoparticles;
PAH, poly (allylamine) hydrochloride; and PSS, poly (sodium 4-styrene sulfonate).

The QD deposition pattern was also verified using a fluorescence microscopy analysis.
The uniform fluorescence of the microcapsule shell is shown in Figure 4. The obtained data
showed homogeneous distribution of the fluorescent nanoparticles in the polyelectrolyte
shell (Figure 4a,b), which agrees with the transmission electron microscopy (TEM) results.

Additionally, to verify the MNP localization in the microcapsule shell, magnetic force
microscopy (MFM) of the microcapsules dually doped with both QDs and MNPs was
performed. The areas of the highest surface magnetization lying around the microcapsule
shell correspond to the MNP deposition sites (Figure 4c). Results of MFM measurements
of the microcapsule sections were controlled by AFM topography scanning (Figure 4d).

3.2. Analysis of Microcapsules’ Photoluminescence Properties

The embedment of the QDs within the polyelectrolyte shell of the microcapsules
could lead to an alternation of their fluorescence properties; in particular, a slight red shift
(up to 2 nm) of the fluorescence maximum of the CdSe/ZnS QDs was observed earlier
after immobilization between polycation layers [30,35] Therefore, first, the fluorescence
spectra of the designed QD-, MNP-encoded microcapsules were estimated. The resultant
microcapsules were characterized by fluorescence maxima close to those of the original
QDs used for microcapsule encoding, and the red shift did not exceed 2 nm (Figure S1).
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Figure 4. Fluorescence and magneto-responsive properties of the QD-, MNP-doped hybrid poly-
electrolyte microcapsules: (a) an overview image of fluorescent microcapsules; (b) an image of a
selected microcapsule section; (c) magnetic force microscopy and (d) atomic force microscopy images
of a single microcapsule section; scan size, 10.9 µm × 10.9 µm; scanning was performed at a rate of
0.85 Hz.

To estimate the PL signal stability of the QDs embedded within the interpolymer
matrix of the microcapsule shell, both positively and negatively charged PSS microcapsules
dually doped with both nanoparticle types were prepared and continuously irradiated with
a laser. The PL properties of the engineered QD-, MNP-doped hybrid microcapsules were
investigated under prolonged irradiation in a multicomponent cell culture media widely
used for cell culturing and, therefore, actively employed in live-cell imaging studies, where
salted buffer solutions are unsuitable for long-term cell maintenance [38,39]. However,
most cell culture media contains phenol red, and thus exhibit fluorescence. Although
background fluorescence of the standard phenol-red-containing media can be cut off
during confocal measurements using an optimized filter set up, it may nevertheless directly
affect the PL signal of the designed QD-, MNP-doped hybrid microcapsules.

Thus, in this study, we have analyzed the stability of the PL signal of the QD-,
MNP-doped microcapsules placed in both the medium containing phenol red and its
phenol-red-free modification (Figure 5). Negatively charged PAA-coated microcapsules
suspended in the phenol-red-containing medium were characterized by quick initial pho-
tobrightening followed by the stabilization of the PL signal, which agrees with our earlier
data [28] (Figure 5a). The surface charge of the PAA-coated microcapsules suspended in
this medium remained negative and was determined to be −18.2 ± 0.3 mV. In the case
of the PSS-terminated microcapsules, which were earlier found to be positively charged
(+8.9 ± 0.2 mV), we observed photobrightening kinetics similar to that of the negatively
charged samples (Figure 5a). However, the PL stabilization was characterized with a slower
rate than in the case of negatively charged microcapsules and took several hundreds of
seconds before reaching a permanent PL signal. The zeta-potential measurements showed
that there was a flip of the surface charge of the PSS-coated microcapsules in the cell culture
medium after irradiation, and the microcapsule surface charge was found to be slightly
negative (−7.8 ± 0.5 mV). The observed change in microcapsule surface charge might
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have led to the deceleration of the migration of the negative charges from QDs to the
polyelectrolyte layers according to the model suggested [28].
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The photoinduced changes in the photoluminescence of the prepared microcapsules
in the phenol-red-free medium were characterized by trends similar to that observed
for both negatively and positively charged samples in the standard cell culture medium
(Figure 5b). In the case of the positively charged microcapsule samples dispersed in the
phenol-red-free medium, a similar flip of the particle surface charge was also detected. The
particle surface charge was found to change from positive to negative (−7.2 ± 0.6 mV).
The observed changes in the surface charge of the microcapsules suspended in cell cul-
ture media can be explained by surface sorption of its negatively charged components
(e.g., amino acids) that possibly form an external barrier of negative charges, preventing
charge transfer from the QD cores. The control samples of positively and negatively charged
microcapsules placed in ultrapure water exhibited the photobrightening kinetics observed
earlier [28]. Specifically, positively charged microcapsules exhibited initial photobrighten-
ing followed by photodarkening, whereas negatively charged samples exhibited ultrafast
initial photobrightening and stabilization of the photoluminescence signal (Figure 5c). The
bi-exponential approximation of the results (Equation (1)) of the photoinduced changes in
the photoluminescence of polyelectrolyte microcapsules with opposite surface charges in
different cell culture media is shown in Table 2.

PL = A1e−k1t + A2e−k2t (1)

We have previously studied QD-encoded polyelectrolyte microcapsules bearing a neg-
ative surface charge as ultrabright tools providing effective fluorescence imaging of their
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interaction with live phagocytic and cancer cells [30,40]. It has been shown that microcap-
sule internalization and uptake are driven by a complex mechanism, primarily including
the attachment of microcapsules to the cell surface due to strong electrostatic interactions
and the subsequent lipid-raft-mediated micropinocytosis of the capsules, which have
been established for breast cancer cells. After entering the cytosol, the microcapsules are
known to reach heterophagolysosomes, which are considered to be their final localization
in cells [41]. The same mechanism has also been reported for normal bone-marrow-derived
dendritic cells [42]. However, in the case of normal human vascular smooth muscle cells, it
was shown that micropinocytosis, caveola-mediated endocytosis, and cytoskeleton rear-
rangement took place upon the interaction of these cells with microcapsules. After being
internalized by muscle cells, the capsules were found to eventually accumulate around
the cell nuclei [43]. Upon interaction with live cells, QD-doped and MNP-doped poly-
electrolyte microcapsules did not exhibit significant cytotoxicity, which resulted in a total
cell viability of 80–90% in the cases of both normal and cancer cells [27,31,43,44]. These
data confirm the efficacy of the encapsulation approach for enhancing the nanoparticle
biocompatibility and demonstrate that nanoparticle-doped polyelectrolyte microcapsules
can be used as agents to follow particle–cell interaction.

Table 2. Approximation results of the photoinduced changes in the photoluminescence of polyelec-
trolyte microcapsules with opposite surface charges in multicomponent media.

Parameter Water Regular Cell Culture
Medium

Phenol-Red-Free Cell
Culture Medium

Positively
charged

Negatively
charged

Positively
charged

Negatively
charged

Positively
charged

Negatively
charged

A1 −1.900 −0.100 −0.363 0.065 −1.420 −0.135
k1 0.0534 0.063 −0.067 0.096 −0.001 −0.003
A2 +2.500 −0.520 −0.807 - - -
k2 0.001 0.003 −0.002 - - -

The possibility of ROS generation by MNPs, QDs, or carbon nanotubes significantly
restricts their biomedical application [45,46]. However, the encapsulation of MNPs and
QDs within the polyelectrolyte has been shown to enhance nanoparticle biocompatibility,
probably due to the limitation of direct contact of the nanoparticles with live cells due
to their entrapment between polymer layers, which mitigates the possible effect of ROS
entities on live cells [27].

4. Conclusions

Thus, the obtained results demonstrate the efficacy of the use of water-soluble QDs and
MNPs, as well as the layer-by-layer approach to the functionalization of the polyelectrolyte
microcapsules. The characterization of the fluorescent and structural properties of the
nanoparticle-doped hybrid microcapsules represents a crucial step in the validation of their
applicability as agents for prolonged fluorescence bioimaging. The presented data indicate
the capacity of the negatively charged, PAA-coated hybrid microcapsule to provide a stable
photoluminescence signal, whereas the originally positively charged microcapsules in
the cell culture media tested exhibited a delayed stabilization of the optical signal of the
QDs encapsulated in the polyelectrolyte shell as the surface charge declines. The obtained
data will allow for the further sophistication of the functionality of imaging tools based
on QD-encoded microcapsules. The designed QD-, MNP-doped hybrid polyelectrolyte
microcapsules are promising stimulus-controlled agents to be used as tools for continuous
fluorescence imaging.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13234076/s1, Figure S1: Fluorescence spectrum of the nanoparticle-doped hybrid
polyelectrolyte microcapsules.

https://www.mdpi.com/article/10.3390/polym13234076/s1
https://www.mdpi.com/article/10.3390/polym13234076/s1
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