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Non-Binary Polar Codes for Spread-Spectrum
Modulations

Valentin Savin, CEA-LETI, Université Grenoble Alpes, France (valentin.savin@cea.fr)

The paper is organized as follows. In Section II, we intro-
duce the system model and derive the achievable rates in the
both asymptotic and finite blocklength regimes. In Section III,
we shortly discusses non-binary polar coding, and present non-
binary polar codes defined over Galois fields. In Section IV,
we present the non-binary code design methodology, aimed
at optimizing the choice of the kernel coefficients. Numerical
results are presented in Section V.

II. SYSTEM MODEL

A. CCSK Modulation

We denote by U ∆
= {0, 1, . . . , q − 1} the set of integers

comprised between 0 and q−1, where q = 2p is a power of 2.
We shall further identify U ∼= Zp

2
∆
= {0, 1}p, by identifying an

integer to its binary representation, u ∼= (u(0), . . . , u(p−1)).
Let P0

∆
= (P0(0),P0(1), . . . ,P0(q − 1)) be a pseudo-random

noise (PN) sequence, of length q, with good cross-correlation
properties (e.g., P0 may be generated by a linear feedback shift
register, with primitive feedback polynomial). We assume that
P0(i) ∈ {−1,+1},∀i = 0, . . . , q − 1. For u ∈ U , we define
Pu to be the sequence obtained by shifting P0 circularly to
the left, by u positions, that is

Pu(i)
∆
= P0(i+ u mod q), ∀i = 0, . . . , q − 1. (1)

The CCSK modulation maps an element u ∈ U to the sequence
Pu. The ratio p/q is referred to as the spreading factor of the
modulation.

B. Demodulation

We will use the following notation.
• U = (U(0), . . . , U(p − 1)) denotes a uniform random

variable, with values in U . Realizations of a U represent
unmodulated symbols (input to the CCSK modulation).

• X = (X(0), X(1), . . . , X(q − 1)) ∈ {−1,+1}q denotes
the random variable defined by modulating U . Hence,
X = Pu ⇔ U = u.

• Y = (Y (0), Y (1), . . . , Y (q − 1)) ∈ Rq denotes the
received signal.

• Ỹ = (Ỹ (0), Ỹ (1), . . . , Ỹ (q − 1)) ∈ Rq , where

Ỹ (i)
∆
= log

Pr (X(i) = +1 | Y (i))

Pr (X(i) = −1 | Y (i))
(2)

Assuming that the CCSK modulated signal X undergoes real
additive white Gaussian noise, we have

Y (i) = X(i) + Z(i) and Ỹ (i) =
2

σ2
Y (i), (3)
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where Z(i) are real-valued, mutually independent, normal
random variables, with mean 0 and variance σ2.

Given the received signal Y , the symbol-level Log-
Likelihood Ratio (LLR) values are defined by

Γ(u)
∆
= log

Pr (U = 0 | Y )

Pr (U = u | Y )
, ∀u ∈ U (4)

Hence, we have

Γ(u) = log
Pr (U = 0 | Y )

Pr (U = u | Y )
= log

Pr (X = P0 | Y )

Pr (X = Pu | Y )
(5)

=

q−1∑
i=0

log
Pr (X(i) = P0(i) | Y (i))

Pr (X(i) = Pu(i) | Y (i))
(6)

=

q−1∑
i=0

P0(i)−Pu(i)

2
log

Pr (X(i) = +1 | Y (i))

Pr (X(i) = −1 | Y (i))
(7)

=
1

2

(
Ỹ ·P0 − Ỹ ·Pu

)
(8)

where Ỹ · P ∆
=
∑

i Ỹ (i)P(i) denotes the usual dot product
of sequences (vectors) Ỹ and P. Since that Pu is a circular
shifted version of P0, dot products Y ·Pu, u ∈ U , can be con-
veniently computed by using the discrete Fourier transform,
denoted by F . Precisely,

Y ·Pu = (Y ∗P0)(u) = F−1 (F(Y )∗ · F(P0)) (u), (9)

where F(Y )∗ is the complex conjugate of F(Y ). Finally,
from the above LLR values, the probability distribution of U
conditional on Y can be computed by

Π(u)
∆
= Pr(U = u | Y ) =

e−Γ(u)∑
u′∈U e

−Γ(u′)
(10)

In case that the unmodulated symbols are encoded by a non-
binary code, the received signal is first demodulated, then the
symbol-level LLR values (or equivalently, the corresponding
probability distribution on the alphabet U) are supplied to the
non-binary decoder.

C. Achievable Rates
We assume that the unmodulated symbols are encoded by a

non-binary code, with alphabet U . The coding rate is the ratio
between the number of source symbols and the total number
of encoded symbols.

Asymptotic Blocklength Regime: By Shannon’s noisy-
channel coding theorem [9], the maximum achievable (coding)
rate, denoted in the sequel by R, is given by mutual informa-
tion between the input U of the CCSK modulation and the
output Y of the channel

R
∆
= I(U ;Y ) = H(U)−H(U |Y ), (11)

where H denotes the Shannon entropy. We assume a base-
q logarithm for the entropy, such that R ∈ [0, 1]. Since the
channel is symmetric, its capacity is achieved for an uniformly
distribution input U . Hence, we have H(U) = 1, while the
conditional entropy H(U |Y ) can be conveniently estimated
numerically, by averaging over the channel output Y ,

H(U |Y ) = EY

[
−
∑
u∈U

Π(u) logq Π(u)
]
. (12)

Finite Blocklength Regime: In the non-asymptotic regime,
the backoff from channel capacity can be accurately char-
acterized by a parameter known as channel dispersion [10].
Specifically, the maximum achievable coding rate can be
tightly approximated by

R∗
∆
= R−

√
V

N
Q−1(ε), (13)

where R is the channel capacity, and V is the channel disper-
sion. R∗ is usually referred to as the normal approximation.
Using [10, Theorem 49], the channel dispersion parameter can
be computed as

V = H2(U | Y )−H(U | Y )2, (14)

where H2(U | Y )
∆
= EY

[
−
∑

u∈U Π(u) log2
q Π(u)

]
, (15)

which can again be be conveniently estimated numerically by
Monte-Carlo simulation.

III. NON-BINARY POLAR CODES

Two main approaches have been proposed in the literature
for polarizing channels with non-binary input alphabets. The
first one relies on using higher-dimensional non-binary ker-
nels, that is, kernels of size ` × `, with ` > 2 [4]–[6]. Such
an approach is characterized by an increased complexity, due
to both the size of the non-binary alphabet, and the higher
kernel dimension. A different approach, proposed in [3], is to
use a randomized construction, based on the original kernel
proposed by Arikan. Precisely, the kernel transformation is
defined by (u0, u1) 7→ (u0⊕u1, π(u1)), where π is a random
permutation of the non-binary alphabet (here ‘⊕’ may be any
additive group operation on the non-binary alphabet). Channel
polarization essentially states that for a random choice of
permutations throughout the recursive channel combining and
splitting procedure, the synthesized virtual channels polarize
to either useless or perfect channels. In this case, the polar
code construction encompasses the choice of both channel
combining permutations and virtual channels used to transmit
information symbols. Of course, once the code is constructed,
randomness does no longer exist, and the complexity of polar
code encoding and decoding is essentially the same as for the
Arikan’s kernel.

The non-binary polar codes considered in this work are
based on the randomized construction described above. How-
ever, we consider non-binary polar codes defined over Galois
fields (GF), and rather than random GF permutations, we
consider linear permutations defined by the multiplication
with a non-zero GF element [7], [8]. Precisely, using the
notation from the previous section, we denote by W (Y | U)
the channel with non-binary input alphabet U , encompass-
ing both the CCSK modulation and the actual transmission
channel. We further endow U with a GF structure, with
(additive, multiplicative) operations denoted by (⊕, ·). Finally,
the kernel transformation, illustrated in Fig. 1, is defined by
(u0, u1) 7→ (v0, v1)

∆
= (u0 ⊕ u1, h · u1), where h ∈ U∗ (the

multiplicative group of non-zero GF elements), referred to as
kernel coefficient.



+

= h

u0

u1 v1 = h · u1

v0 = u0 ⊕ u1

Fig. 1: GF kernel, with h a non-zero GF-element.

IV. DESIGN METHODOLOGY

Throughout the rest of the paper, we denote by GF(q) the
Galois field with q elements, and further identify U ∼= GF(q).

A. Optimization of the kernel coefficients

While the polarization result in [3], [7] essentially states that
a random choice of the kernel coefficients is good enough, it
might not be optimal. Thus, the optimization of the kernel
coefficients is aimed at accelerating the speed of polarization
of the synthesized virtual channels. There are three parameters
that may be used to describe the polarization process: the
mutual information, the Bhattacharyya parameter, and the error
probability of the synthesized virtual channels. The former
approaches 0 (respectively1, 1) if and only if the latter two
approach 1 (respectively, 0). Any of these parameters may
be used within the proposed optimization procedure, and for
the moment we shall simply use polarizing parameter to
refer to any of them. To accelerate the speed of polarization,
we choose the kernel coefficients so as to maximize the
difference between the polarizing parameters of the bad and
good channels synthesized by the channel combining and
splitting procedure.

The optimization procedure is illustrated at Fig. 2, for
a polar code of length N = 8, corresponding to n = 3
polarization steps. The original non-binary channel is denoted
by W . We denote by W (0) and W (1) the bad and good
channels, respectively, after one step of polarization. Then,
for n > 0, we define recursively

W (i1...in) :=
(
W (i1...in−1)

)
(in), ∀(i1 . . . in) ∈ {0, 1}n (16)

In Fig. 2, we have indicated on each horizontal wire the
virtual channel W (i1i2... ) “seen” by the corresponding symbol
throughout the polarization process. All the kernels on the first
(right-most) polarization step combine two copies of the W
channel. Therefore, only one coefficient needs to be optimized,
denoted by h0. We define h0 as

h0 := argmax
h∈GF(q)

∣∣∣P (0)(h)− P (1)(h)
∣∣∣ , (17)

where P (0)(h) and P (1)(h) denote the polarizing parameters
of W (0) and W (1) channels, respectively, assuming that the
channel combining coefficient is equal to h. We numerically
estimate the values of P (0)(h) and P (1)(h), for all h ∈ GF(q)\
{0}, based on Monte Carlo simulation (see also Section IV-C).

Once the value of h0 is determined, we can optimize
the kernel coefficients for the second (middle) polarization

1We assume here that the mutual information is normalized (expressed in
terms of symbols per channel use), thus taking values between 0 and 1.

3rd step 2nd step 1st step

Fig. 2: Non-binary polar code of length N = 8, corresponding
to n = 3 steps of polarization

step. There are two different types of kernels on the second
polarization step, combining either two copies of W (0), or
two copies of W (1). Therefore, two coefficients need to be
optimized, denoted by h1 and h2 in Fig. 2. Hence, we define

h1 := argmax
h∈GF(q)

∣∣∣P (00)(h)− P (10)(h)
∣∣∣ , (18)

h2 := argmax
h∈GF(q)

∣∣∣P (10)(h)− P (11)(h)
∣∣∣ , (19)

where P (i1i2)(h) denotes the polarizing parameters of the
W (i1i2) channel, assuming the channel combining coefficient
on the second polarization step is equal to h. The value
of P (i1i2)(h) is again estimated numerically through Monte
Carlo simulation. Then the optimization process continue
recursively, until the desired number of polarization steps is
reached.

B. Non-binary polar decoding

We first consider the decoding of a non-binary kernel, which
is illustrated at Fig. 3. As before, let u0, u1 ∈ GF(q) denote the
kernel inputs, and v0, v1 ∈ GF(q) denote the kernel outputs.
Decoding operates in the opposite direction, i.e., it takes as
inputs Π

(0)
V and Π

(1)
V , the probability distribution functions

(PDFs) of v0 and v1, respectively, and outputs Π
(0)
U and Π

(1)
U ,

the PDFs of u0 and u1, respectively. It can be easily seen that
Π

(0)
U and Π

(1)
U can be computed from Π

(0)
V and Π

(1)
V , by the

following formulas:

Π
(0)
U (u) =

∑
u′∈GF(q)

Π
(0)
V (u⊕ u′)Π(1)

V (h · u′) (20)

Π
(1)
U (u) = ηΠ

(0)
V (u0 ⊕ u)Π

(1)
V (h · u), (21)

where η is a normalization factor, determined such that∑
u∈GF(q) Π

(1)
U (u) = 1. In equation (21), the computation

of Π
(1)
U (u) requires the knowledge of u0. Such a decoder is

referred to as genie-aided, and it is used at the code design
stage. For a real-world decoder, used to decode a codeword
transmitted over a noisy channel, equation (21) is replaced by

Π
(1)
U (u) = ηΠ

(0)
V (û0 ⊕ u)Π

(1)
V (h · u), (22)
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=

Π
(0)
U

h

Π
(0)
V

Π
(1)
V

(a) Bad channel decoding
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=

u0

Π
(1)
U h

Π
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(b) Bad channel decoding

Fig. 3: Decoding of bad and good virtual channels. For
decoding the good channel, the decoder uses the knowledge
of u0 (genie decoder), or an estimate of it, û0 (real decoder).

where either û0 = u0 if the latter is known (frozen bad
channel), or û0 = argmaxu∈GF(q) Π

(0)
U (u) is the estimate of

u0, otherwise.
The successive cancellation (SC) decoder (either genie-

aided or real-world) uses the above kernel decoding rules
in a recursive manner, so as to propagate the PDFs of the
transmitted symbols from the right-hand side (transmission
channel side) to the left-hand side of the polar graph. There
is one such a recursion for each W (i1...in) channel (deriving
from the recursive definition of the channel), which are then
decoded successively.

C. Choice of the polarizing parameter and code construction

Since we are interested on the error rate performance of
the constructed polar code, we take the polarizing parameter
used within the optimization procedure (from Section IV-A)
to be the error probability of the synthesized virtual channels.
An efficient way to numerically estimate the error probability
of the synthesized virtual channels is described below, where
u(i1...in) ∈ GF(q) denotes the input of the W (i1...in) virtual
channel, (i1 . . . in) ∈ {0, 1}n.
1) Randomly generate a set of inputs {u(i1...in) : (i1 . . . in) ∈
{0, 1}n}, encode them, and transmit the obtained codeword
over the non-binary channel.

2) Run the genie-aided SC decoder to determine the PDFs of
the virtual channels’ inputs u(i1...in), denoted by Π

(i1...in)
U .

3) Hence, the one-run error probability of the virtual channel
W (i1...in) is given by P (i1...in)

one-run = 1−Π
(i1...in)
U

(
u(i1...in)

)
.

� Repeating the steps 1–3 many times, the error probability
of the virtual channel W (i1...in) is estimated by taking the
average of the one-run error probability:

P (i1...in) = E
[
P (i1...in)

one-run

]
(23)

The above procedure is used recursively within the op-
timization procedure from Section IV-A, to optimize the
kernel coefficients at the different polarization steps. Moreover,
once the optimization procedure completed, we may use the
P (i1...in) values to sort the virtual channels from the best
(lowest error probability) to the worst (higher error probability)
one, and then use the best channels to transmit information
symbols. This completes the polar code construction, as we
have made a choice of the kernel coefficients, and determined
the virtual channels to use for transmitting information sym-
bols. Moreover, when the polar code construction completes,
we also get an estimate the SC decoding error probability,

TABLE I: Parameters of the non-binary polar codes designed
for the AWGN channel with CCSK modulated inputs

p n N Np Nq

6 10 1024 6144 65536
8 8 256 2048 65536
10 6 64 640 65536

denoted WERSC. To simplify the notation, let us denote by
P (1), . . . , P (K) the error probability of the K virtual channels
carrying information symbols. Then, we have

WERSC := 1−
∏

k=1,...,K

(
1− P (k)

)
(24)

For binary polar codes, WERSC is known to provide a tight
upper-bound on the word error rate (WER) performance of the
SC decoder (which also explains the notation). In Section V,
we will show that the same is true for non-binary polar codes.

V. NUMERICAL RESULTS

We assume that non-binary coded symbols in GF(q = 2p)
are mapped into CCSK symbols of length q, which then un-
dergo real-valued additive white Gaussian noise. The signal to
noise ratio (SNR) value is defined as SNR = −10 log10(σ2),
where σ2 is the noise variance. We have considered SNR
values from −25 to −5 dB, with a step of 0.5 dB, and for
each SNR value we have constructed non-binary polar codes
with parameters given in Table I. Recall that n is the number
of polarization steps, N = 2n is the non-binary code length
(number of coded symbols), Np is the binary code length
(number of coded bits), and Nq is the effective number of
transmitted bits (after CCSK modulation). The number of
information bits, denoted Kbin, depends on the coding rate,
and can be obtained by Kbin = RNp. We shall also refer to
R as the native coding rate, and define the effective coding
rate Reff

∆
= pR/q, so that to take into account the spreading

factor of the CCSK modulation.
Fig. 4 shows the WER performance for various native

coding rate values R, varying from 1/48 to 9/10. Two
WER curves are shown for each native coding rate, a solid
one, corresponding to Monte Carlo simulation results, and
a dashed one, corresponding to the WER estimated at the
code construction stage (Section IV-C). It can be observed
that the WER estimates we obtain at the code construction
stage are tight. Fig. 5 shows the achievable native and effective
coding rates, for a target WER = 10−4. The figure shows the
achievable coding rates for different Galois fields, obtained
by using either the WER estimates at the code construction
stage (dashed curves), or the WER obtained by Monte Carlo
simulation (superimposed full markers). Moreover, dashed-
dotted curves show the normal approximation of the maximum
achievable rate in the finite block-length regime, while solid
curves show the maximum achievable rate in the asymptotic
block-length regime. It can be seen that the gap between the
achievable coding rates under non-binary polar coding and the
normal approximation bound is about 1− 1.5 dB.



(a) Polar codes defined on GF(64) (b) Polar codes defined on GF(256) (c) Polar codes defined on GF(1024)

Fig. 4: WER performance for various native coding rate values R. Solid curves correspond to Monte Carlo simulation results,
while dashed curves show the WER estimated at the code construction stage.

(a) Achievable native coding rates (linear scale) (b) Achievable native coding rates (log scale) (c) Achievable effective coding rates

Fig. 5: Achievable native and effective coding rates for the AWGN Legend:
channel with CCSK modulated inputs, for a target WER = 10−4.

VI. CONCLUSION

This paper investigated a new approach to reliable trans-
mission of short data packets at very low signal-to-noise ratio,
which combines CCSK modulation and non-binary polar cod-
ing. We proposed a design methodology for the non-binary po-
lar code, aimed at accelerating the polarization speed, though
maximizing the difference between the polarizing parameters
of the synthesized virtual channels. The proposed methodology
is generic and may be used for other applications. Numerical
results show that the system performance is close to the
achievable limits in the finite blocklength regime. We expect
that the observed performance may be further improved, by
using a more powerful SC-List decoder [8].
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