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A Stochastic Bregman Primal-Dual Splitting Algorithm for
Composite Optimization

Antonio Silveti-Falls∗ Cesare Molinari † Jalal Fadili‡

Abstract. We study a stochastic first order primal-dual method for solving convex-concave saddle point problems over
real reflexive Banach spaces using Bregman divergences and relative smoothness assumptions, in which we allow for
stochastic error in the computation of gradient terms within the algorithm. We show ergodic convergence in expectation
of the Lagrangian optimality gap with a rate of O (1/k) and that every almost sure weak cluster point of the ergodic
sequence is a saddle point in expectation under mild assumptions. Under slightly stricter assumptions, we show almost
sure weak convergence of the pointwise iterates to a saddle point. Under a relative strong convexity assumption on the
objective functions and a total convexity assumption on the entropies of the Bregman divergences, we establish almost
sure strong convergence of the pointwise iterates to a saddle point. Our framework is general and does not need strong
convexity of the entropies inducing the Bregman divergences in the algorithm. Numerical applications are considered
including entropically regularized Wasserstein barycenter problems and regularized inverse problems on the simplex.

Key words. Bregman divergence; primal-dual splitting; noneuclidean splitting; saddle point problems; first order
algorithms; convergence rates; relative smoothness; total convexity; Banach space.

AMS subject classifications. 49J52, 65K05, 65K10.

1 Introduction

1.1 Problem Statement and Algorithm

The goal is to solve the following primal-dual, or saddle point, problem over the real reflexive Banach spaces
Xp and Xd, where the subscript p refers to primal and d to dual:

min
x∈Xp

max
µ∈Xd

L (x, µ) (P.D .)

where

L (x, µ)
def
= f(x) + g(x) + ιCp(x) + ⟨Tx, µ⟩ − h∗(µ)− l∗(µ)− ιCd(µ) (1.1)
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is the Lagrangian functional and ιCp and ιCd are the indicator functions of the convex constraint sets Cp and
Cd, respectively, and T : Xp → X ∗

d is a linear mapping. We denote the primal and dual problems as

min
x∈Cp

{
f(x) + g(x) +

((
h□
Cd
l

)
◦ T
)
(x)

}
(P)

min
µ∈Cd

{
h∗(µ) + l∗(µ) +

((
f∗□

Cp
g∗
)
◦ (−T ∗)

)
(µ)

}
(D)

where
(
f∗□

Cp
g∗
)∗

def
= f + g + ιCp , using ∗ to denote the Fenchel conjugate, and similarly for □

Cd
. In the case

in which Cp and Cd are trivial constraints, i.e., the entire spaces Xp and Xd, the corresponding primal and
dual problems related to (P.D .) are

min
x∈Xp

{f(x) + g(x) + ((h□l) ◦ T ) (x)}

min
µ∈Xd

{h∗(µ) + l∗(µ) + ((f∗□g∗) ◦ (−T ∗)) (µ)}

where □ recovers the classical infimal convolution defined by f□g(v) = infw∈Xp (f(w) + g(v − w)). The
set of solutions for (P) and (D) are written as

SP
def
= argmin

x∈Cp

{
max
µ∈Cd

{f (x) + g (x) + ⟨Tx, µ⟩ − h∗ (µ)− l∗ (µ)}
}

SD
def
= argmax

µ∈Cd

{
min
x∈Cp

{f (x) + g (x) + ⟨Tx, µ⟩ − h∗ (µ)− l∗ (µ)}
}
.

(1.2)

The set of saddle points for the Lagrangian defined in (1.1) is denoted

S
def
= {(x⋆, µ⋆) ∈ Xp ×Xd : ∀ (x, µ) ∈ Xp ×Xd, L (x⋆, µ) ≤ L (x⋆, µ⋆) ≤ L (x, µ⋆)}

which obeys the inclusion S ⊂ SP × SD.
Given a real reflexive Banach space X , we denote by Γ0 (X ) the space of proper convex lower semicon-

tinuous functions from X to R ∪ {+∞}. For a subset C of a Banach space, int C denotes its interior. We
suppose the following standing hypotheses on the problem, which we collectively denote by (H):

(H1) The Banach spaces Xp and Xd are real and reflexive, while Cp ⊂ Xp and Cd ⊂ Xd
are nonempty convex closed subsets.

(H2) The functions f and g belong to Γ0 (Xp) while l and h belong to Γ0 (Xd), with
Cp ⊂ dom(f) (resp. Cd ⊂ dom(h∗)) and f (resp. h∗) is differentiable on int Cp
(resp. int Cd).

(H3) Cp ∩ dom(g) ̸= ∅ and Cd ∩ dom(l∗) ̸= ∅.
(H4) The operator T : Xp → X ∗

d is linear and continuous.
(H5) The set of saddle points S for (P.D .) is nonempty.

(H)

It is well-known that S is non-empty under suitable domain qualification conditions.
Before introducing the method, we recall the definition of Bregman divergence which will be key to our

algorithm and to the theoretical analysis of convergence.
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Definition 1.1 (Bregman divergence). Given a function ϕ : X → R ∪ {+∞}, often referred to as the
entropy, differentiable on int dom (ϕ), its Bregman divergence is defined by

Dϕ(x, y)
def
=

{
ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩ if x ∈ dom (ϕ) and y ∈ int dom (ϕ) ,

+∞ else.

Notice that if ϕ belongs to Γ0 (X ) then Dϕ is always nonnegative by the subdifferential inequality.

The Stochastic Bregman Primal-Dual Splitting algorithm, SBPD for short, is presented in Algorithm 1.
We introduce two entropy functions, ϕp and ϕd, and we denote by Dp and Dd their Bregman divergences,
respectively. We further consider the possibility of some stochastic error in the computation of the gradients1

∇f and ∇h∗ which we will denote for ∇f (xk) as δpk and for ∇h∗ (µk) as δdk .

Algorithm 1: Stochastic Bregman Primal-Dual Splitting (SBPD).
for k = 0, 1, . . . do

xk+1 = argmin
x∈Cp

{
g(x) + ⟨∇f(xk) + δpk, x⟩+ ⟨Tx, µ̃k⟩+

1

λk
Dp (x, xk)

}
µk+1 = argmin

µ∈Cd

{
l∗(µ) + ⟨∇h∗(µk) + δdk, µ⟩ − ⟨T x̃k, µ⟩+

1

νk
Dd (µ, µk)

}
where µ̃k = µk and x̃k = 2xk+1 − xk.

In the deterministic setting for the primal update, i.e., δpk = 0 for each k ∈ N, the first step of the algorithm
can be re-written in the following way:

xk+1 = argmin
x∈Cp

{
g(x) + f(xk) + ⟨∇f(xk), x− xk⟩+ ⟨Tx, µ̃k⟩+

1

λk
Dp (x, xk)

}
= (∇ϕp + λk∂g)

−1 (∇ϕp − λk∇ (f(·) + ⟨T ·, µ̃k⟩)) (xk)

= (∇ϕp + λk∂g)
−1 (∇ϕp (xk)− λk∇f (xk)− λkT

∗µ̃k) .

Analogously, if δdk = 0 for all k ∈ N,

µk+1 = (∇ϕd + νk∂l
∗)−1 (∇ϕd (µk)− νk∇h∗ (µk) + νkT x̃k) .

A priori, the mappings (∇ϕp + λk∂g)
−1 and (∇ϕd + νk∂l

∗)−1, sometimes referred to asD-proxmappings,
may be empty, may not be single-valued, or may not map int dom (ϕp) (resp. int dom (ϕd)) to int dom (ϕp)
(resp. int dom (ϕd)). In light of this, we will only consider ϕp and ϕd for which these mappings are well-
defined and map from int dom (ϕp) to int dom (ϕp) and the analog for ϕd (see (A1)). In Section 3.1, we
will elaborate on the class of Legendre functions on a real reflexive Banach space given in [4, Definition 2.2]
which will help us to ensure that the D-prox mappings are well-defined.

1The addition of stochastic error in the computation of D-prox operators associated to g or l∗, while interesting, is problematic
for the algorithm in the sense that the monotone inclusions may no longer hold and the iterates themselves might not remain in the
interior of the domain as desired.
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1.2 Contribution and Prior Work

The idea of using primal-dual methods to solve convex-concave saddle point problems has been around since
the 1960s, e.g., [38], [47], [33], or [37]. For an introduction into the use of primal-dual methods in convex
optimization, we refer the reader to [32]. More recently, without being exhaustive, there were the notable
works [18], [13], [20], [53], and [15] which examined problems quite similar to the one posed here using
first order primal-dual methods.

In particular, [15] studied (P.D .) using D-prox mappings, i.e., proximal mappings where the euclidean
energy has been replaced by a suitable Bregman divergence, under the assumption that f and h∗ are Lipschitz-
smooth Γ0 functions and that the entropies ϕp and ϕd are strongly convex. They show ergodic convergence
of the Lagrangian optimality gap with a rate of O (1/k) under mild assumptions and also faster rates, e.g.,
O
(
1/k2

)
and linear convergence, under stricter assumptions involving strong convexity. We generalize their

results by relaxing the Lipschitz-smooth assumption to a relative smoothness assumption, by analyzing the
totally convex and relatively strongly convex case, by introducing stochastic error to the algorithm, and by
showing almost sure weak convergence of the pointwise iterates themselves. Additionally, the recent work
[30] studied a variant of the problem considered in [15] focused on semidefinite programming with D-
prox mappings and an adaptive step size. As in [15], they assume that the entropies inducing the Bregman
divergences are strongly convex, in contrast to our work. The authors in [19] proposed a Bregman primal-dual
method that iteratively constructs the best Bregman approximation to an arbitrary point from the Kuhn-Tucker
set of a composite monotone inclusion in real reflexive Banach spaces, and for which they established strong
convergence of the iterates. When specialized to structured minimization, their framework covers (P.D .)
but without the smooth parts nor infimal-convolutions or the constraint sets Cp and Cd. Moreover, their
algorithm necessitates a complicated Bergman projection step and they do not consider stochastic versions.

Generalizations of [15] involving inexactness already exist in the form of [45] and [14], however, [45] only
considers determinstic inexactness and proximal operators computed in the euclidean sense, i.e., with entropy
equal to the euclidean energy, and requires Lipschitz-smoothness. It’s worth noting that the inexactness
considered in their paper allows for the inexact computation of the proximal operators, in contrast to our
work. While Algorithm 1 allows for inexactness, in the form of stochastic error, it is only allowable in the
computation of gradient terms. The paper [14] allows for a very particular kind of stochastic error in which
one randomly samples a set of indices at each iteration in an arbitrary but fixed way, i.e., according to some
fixed distribution. However, the stochastic error we consider in the present paper is more general while
encompassing the previous cases, although with less sharp results if the noise is not well behaved.

Another related work is that of [28] which generalizes the problem considered in [15] by allowing for
a nonlinear coupling Φ (x, µ) in (P.D .) instead of ⟨Tx, µ⟩, although they maintain essentially the same
Lipschitz-smoothness assumptions as in [15] translated to Φ (x, µ). They are able to show a O (1/k) con-
vergence rate for the ergodic Lagrangian optimality gap under mild assumptions and an accelerated rate
O
(
1/k2

)
when g in (P.D .) is strongly convex with another assumption on the coupling Φ (x, µ).

The notion of relative smoothness is key to the analysis of differentiable but not Lipschitz-smooth opti-
mization problems. The earliest reference to this notion can be found in an economics paper [6] where it
is used to address a problem in game theory involving fisher markets. Later it was parallelly developed for
Bregman Forward-Backward splitting in [29] and then in [36] (see also [39, 9]), and coined relative smooth-
ness in [36]. This idea allows one to apply arguments involving descent lemmas which are normally relegated
to Lipschitz-smooth problems and it has been extended, for instance to define relative Lipschitz-continuity in
[34], in [35] for the stochastic generalized conditional gradient, and to define a generalized curvature constant
for the generalized conditional gradient algorithm in [51]. The analogous idea of relative strong convexity,
while noted before in [15], was not explored in detail; here we analyze our algorithm under such assumptions
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in combination with total convexity of the entropies.

To our knowledge, our paper is the first to analyze (P.D .) under a relative smoothness condition withD-
prox mappings. Additionally, we are the first to include stochastic error in the computation of the gradient
terms for (P.D .) under these assumptions.

1.3 Paper Organization

The rest of the paper is divided into four sections. In Section 2, we recall some basic definitions to make
precise all the notions used in the paper along with some useful elementary results regarding sequences of
random variables.

In Section 3, we make explicit all the assumptions (A1)-(A11) we will use on the objective functions, en-
tropies, step sizes, etc. We go on to establish the main estimation of Lemma 3.10 under (H) and (A1)-(A3)
that will be used in the convergence analysis of the ergodic, pointwise, and relatively strongly convex cases.
The key idea is to utilize the descent lemma given by relative smoothness along with the usual inequalities
for Γ0 functions to estimate the optimality gap L (xk, µ)−L (x, µk) in terms of the Bregman divergences in-
duced by the entropies ϕp and ϕd. The proof of the estimation here is similar in spirit to the proof of the main
estimation in [13], with the main difference being that we are unable to use Young’s inequality to deal with the
coupling terms, which we handle using (A3). There are also some lemmas involving (H) and (A1)-(A5) re-
garding the stochastic error, culminating in a summability result for the sequences (E [⟨∆k, w − wk+1⟩])k∈N
and (E [⟨∆k, w − wk+1⟩ | Sk])k∈N which appear in the convergence analysis.

In Section 4, we use the estimation developed in Section 3 along with (H) and (A1)-(A11) regarding the
entropies ϕp and ϕd and the regularity of their induced Bregman divergences to show convergence of the al-
gorithm; first convergence of the expectation of the Lagrangian optimality gap for the ergodic iterates under
(H) and (A1)-(A5) and then almost sure weak convergence of the pointwise iterates under (H) and (A1)-
(A10). Finally, we examine the case where (A11) holds, i.e., there is relative strong convexity of the objective
functions with respect to the entropies, and total convexity of the entropies themselves. For the ergodic anal-
ysis, denote by (x∞, µ∞) an almost sure weak sequential cluster point of the ergodic primal-dual sequence
((x̄k, µ̄k))k∈N. Then we show that its expectation, namely E [(x∞, µ∞)], is a saddle point. We prove also,
for every x and µ, convergence of the expectation of the Lagrangian optimality gap E [L (x̄k, µ)− L (x, µ̄k)]
with a rate of O (1/k). For the pointwise analysis, we begin by showing an almost sure asymptotic reg-
ularity result for the primal-dual sequence (wk)k∈N. With this, we are then able to adapt the well known
Opial’s lemma (see [40]) to the Bregman primal-dual setting to establish almost sure weak convergence of
the primal-dual sequence (wk)k∈N to a saddle point w⋆. In the final part of this section, we establish almost
sure strong convergence of the primal-dual sequence (wk)k∈N to a saddle point w⋆ under (A11) and total
convexity of the entropies.

Lastly, in Section 5, we explore potential applications of the algorithm and demonstrate numerically its
effectiveness when applied to two different problems. The first is a simple linear inverse problem on the
simplex with total variation regularization, which we examine in the deterministic and stochastic case. The
second is an application in optimal transport involving the entropically regularized Wasserstein distance
and inverse problems. There is also a discussion of other possible applications of the algorithm to entropic
Wasserstein barycenter problems.
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2 Notations and preliminary facts

2.1 Basic notation

Given a real reflexive Banach space X , we denote by X ∗ its topological dual and by ⟨u, x⟩ the duality pairing
for x ∈ X and u ∈ X ∗. The norm on X is denoted ∥·∥X . The symbols ⇀ and → denote respectively weak
and strong convergence. The set of weak sequential cluster points of a sequence (xk)k∈N in X is defined as

W
[
(xk)k∈N

] def
=
{
x ∈ X : ∃

(
xkj
)
j∈N , xkj ⇀ x

}
. (2.1)

For a function f ∈ Γ0 (X ), ∂f : X → 2X is its subdifferential operator. When referring to the differ-
entiability or the gradient of a function f : X → R, it is meant in the sense of Gâteaux. For a non-empty
closed convex set C ⊂ X , NC(x) is the normal cone of C at x ∈ C. int C and C denote the interior and the
closure of a set C ⊂ X .

2.2 Bregman divergence notation

We denote byD, without subscript, the Bregman divergence associated to ϕ(x, µ) def
= ϕp(x)+ϕd(µ); namely,

given wi
def
= (xi, µi) with (xi, µi) ∈ Xp ×Xd for i ∈ {1, 2},

D (w1, w2)
def
= Dp (x1, x2) +Dd (µ1, µ2) .

We proceed with some notions about regularity of functions.

Definition 2.1 (Legendre function). The function ϕ is called a Legendre function if ∂ϕ is both locally
bounded and single-valued on its domain, (∂ϕ)−1 is locally bounded on its domain, and ϕ is strictly convex
on every convex subset of dom (∂ϕ).

Definition 2.2 (Relative smoothness). Given a function ϕ : X → R∪{+∞} differentiable on int dom (ϕ),
we say that the function f : X → R ∪ {+∞} is L-smooth with respect to ϕ if it is differentiable on
int dom (ϕ) and Lϕ− f is convex on int dom (ϕ); namely, if for every x, y ∈ int dom (ϕ)

Df (x, y) ≤ LDϕ(x, y).

Remark 2.3. The relative smoothness property, used notably in [29], [39] and [36], implies the following
fact which can be interpreted as a "generalized descent lemma": for every x, y ∈ int dom (ϕ),

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ LDϕ (x, y) . (2.2)

When ϕ is the euclidean square norm, or energy, relative smoothness is equivalent to Lipschitz-smoothness,
i.e., Lipschitz-continuity of the gradient of f .

Definition 2.4 (Relative strong convexity). Given a function ϕ : X → R ∪ {+∞} differentiable on
int dom (ϕ), and a non-empty closed convex set C ⊂ dom(f) ∩ dom(ϕ), we say that f : X → R ∪ {+∞}
is m-strongly convex on C with respect to ϕ if for every x ∈ C and y ∈ int dom (ϕ) ∩ dom(∂f) ∩ C

f(x)− f(y)− ⟨u, y − x⟩ ≥ mDϕ(x, y), for all u ∈ ∂f(y).
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Note that the idea of relative strong convexity can be found in a footnote of [15] but it was not explored
further. With these definitions, we use the following notation to improve readability(

1

Λk
− L

)
D (w1, w2)

def
=

(
1

λk
− Lp

)
Dp (x1, x2) +

(
1

νk
− Ld

)
Dd (µ1, µ2)(

1

Λ∞
− L

)
D (w1, w2)

def
=

(
1

λ∞
− Lp

)
Dp (x1, x2) +

(
1

ν∞
− Ld

)
Dd (µ1, µ2)

M(w1, w2)
def
= ⟨T (x1 − x2), µ1 − µ2⟩

(2.3)

where λk and νk are the step-sizes in Algorithm 1, and Lp and Ld are the constants introduced in (A1).

2.3 Probabilistic notation and preliminaries

We denote by (Ω,F ,P) a probability space with set of events Ω, σ-algebra F , and probability measure P.
Throughout, we assume that any real reflexive Banach space X is endowed with its Borel σ-algebra, B (X ).
Formally, we define the stochastic primal and dual errors at iteration k as δpk and δdk , i.e., δpk and δdk are
measurable functions from Ω to X ∗

p and X ∗
d with their respective Borel σ-algebras. When it makes sense,

we will also denote the combined error as ∆k in the same way that we use wk, e.g.,

⟨∆k, w − wk⟩
def
= ⟨δpk, x− xk⟩+ ⟨δdk, µ− µk⟩.

We denote a filtration on (Ω,F ,P) by F
def
= (Fk)k∈N where Fk is a sub-σ-algebra satisfying, for each k ∈ N,

Fk ⊂ Fk+1 ⊂ F . Furthermore, given a set of random variables {a0, . . . , an} we denote by σ (a0, . . . , an)
the σ-algebra generated by a0, . . . , an. Finally, an expression (P ) is said to hold (P-a.s.) if

P ({ω ∈ Ω : (P ) holds}) = 1.

Using the above notation, we denote the canonical filtration associated to the iterates of the algorithm as
S

def
= (Sk)k∈N with, for all k ∈ N,

Sk
def
= σ {(x0, µ0) , (x1, µ1) , . . . , (xk, µk)}

such that all iterates up to (xk, µk) are completely determined by Sk.
For the remainder of the paper, all equalities and inequalities involving random quantities should be un-

derstood as holding (P-a.s.) even if it is not explicitly written.

Definition 2.5. Given a filtration F, we denote by ℓ+ (F) the set of sequences of [0,+∞[-valued random
variables (ak)k∈N such that, for each k ∈ N, ak is Fk measurable. Then, we also define the following set of
summable random variables,

ℓ1+ (F)
def
=

{
(ak)k∈N ∈ ℓ+ (F) :

∑
k∈N

ak < +∞ (P-a.s.)

}
.

The set of non-negative summable sequences is denoted ℓ1+.

The following probabilistic results will be useful in the convergence analysis of Algorithm 1.
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Lemma 2.6 (Robbins-Siegmund, [46, Theorem 1]). Given a filtration F and the sequences of real-valued
random variables (rk)k∈N ∈ ℓ+ (F), (ak)k∈N ∈ ℓ+ (F), and (zk)k∈N ∈ ℓ1+ (F) satisfying, for each k ∈ N,

E [rk+1 | Fk]− rk ≤ −ak + zk (P-a.s.)

it holds that (ak)k∈N ∈ ℓ1+ (F) and (rk)k∈N converges (P-a.s.) to a random variable with value in [0,+∞[.

Remark 2.7. In the deterministic case, Lemma 2.6 reduces to the following statement. Let (ak)k∈N ∈
ℓ+, (rk)k∈N ∈ ℓ+ and (zk)k∈N ∈ ℓ1+ such that, for each k ∈ N,

rk+1 − rk ≤ −ak + zk.

Then (ak)k∈N ∈ ℓ1+ and (rk)k∈N converges to r ∈ [0,+∞[. This result is [44, Lemma 2, page 44].

Lemma 2.8. If (xn)k∈N is a sequence of X -valued random variables such that
(
E
(
∥xk∥qX

))
k∈N ∈ ℓ1+ for

some q ∈]0,+∞[, then xk → 0 almost surely.

Proof. For every ε > 0, by Markov’s inequality,
N∑
n=0

P
(
∥xn∥qX ≥ ε

)
≤ 1

ε

N∑
n=0

E
(
∥xn∥qX

)
. (2.4)

Taking the limit for N → +∞ and using the assumption
(
E
(
∥xk∥qX

))
k∈N ∈ ℓ1+, we get that, for every

ε > 0, it holds P
(
∥xn∥qX ≥ ε

)
belongs to ℓ1+. As a consequence of the Borel-Cantelli Lemma, ∥xn∥qX → 0

almost surely whence the claim follows.

3 Main assumptions and estimations

3.1 Main assumptions

We first state our assumptions and then remark on their motivations and common examples where they
hold. Note that for several results, only a subset of these assumptions are needed; we will comment ont this
hereafter. For brevity, throughout the remainder of the paper we employ the following notation

Up
def
= int dom (ϕp) ∩ dom (∂g) Ũp

def
= dom (ϕp) ∩ dom (∂g)

Ud
def
= int dom (ϕd) ∩ dom (∂l∗) Ũd

def
= dom (ϕd) ∩ dom (∂l∗) .

(A1) The entropies ϕp and ϕd belong to Γ0 (Xp) and Γ0 (Xd) with dom(ϕp) × dom(ϕd) = Cp × Cd and
with f and h∗ being Lp and Ld - smooth wrt ϕp and ϕd, respectively (see Definition 2.2). TheD-prox
mappings (∇ϕp + λk∂g)

−1 and (∇ϕd + νk∂l
∗)−1 are well-defined (i.e., nonempty and single-valued)

maps from int dom (ϕp) and int dom (ϕd) to int dom (ϕp) and int dom (ϕd), respectively.
(A2) The step size sequences (λk)k∈N and (νk)k∈N are positive, nondecreasing, and bounded above with

their limits denoted lim
k→∞

λk = λ∞ and lim
k→∞

νk = ν∞.
(A3) The step sizes satisfy (A2) and one of the following holds:

(I) there is a function d : (Xp ×Xd)2 → R+ and ε ≥ 0 such that

inf
w1∈Ũp×Ũd, w2∈Up×Ud;

w1 ̸=w2

(
1

Λ∞
− L

)
D(w1, w2)−M(w1, w2)

d(w1, w2)
≥ ε; (3.1)
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(II) the above holds with ε > 0.
(A4) The error sequence (∆k)k∈N is unbiased conditioned on the filtration S, i.e., for each k ∈ N,

E
[
δpk | Sk

]
= E

[
δdk | Sk

]
= 0.

(A5) One of the following holds:
(I) for each k ∈ N, the stochastic errors δpk and δdk are zero almost surely;

(II) the following sequences satisfy(
E
[∥∥δpk∥∥X ∗

p
| Sk

])
k∈N

∈ ℓ1+ (S) and
(
E
[∥∥δpk∥∥X ∗

p

])
k∈N

∈ ℓ1+(
E
[∥∥∥δdk∥∥∥X ∗

d

| Sk

])
k∈N

∈ ℓ1+ (S) and
(
E
[∥∥∥δdk∥∥∥X ∗

d

])
k∈N

∈ ℓ1+

and the sets Up and Ud are bounded, i.e., 0 < diamUp < +∞ and the same for diamUd
;

(III) the entropies ϕp and ϕd are strongly convex with respect to ∥·∥2Xp
and ∥·∥2Xd

with modulimp and
md, respectively. Additionally, the step sizes (λk)k∈N and (νk)k∈N satisfy (A2) with

ν∞λ∞ <
mpmd

∥T∥2p→d∗
,

where ∥·∥p→d∗ is the standard operator norm between Xp and X ∗
d and the following sequences

satisfy

E
[∥∥δpk∥∥2X ∗

p
| Sk

]
∈ ℓ1+ (S) and E

[∥∥δpk∥∥2X ∗
p

]
∈ ℓ1+.

(A6) For the function d used in (3.1) and all bounded sequences (vk)k∈N and (zk)k∈N in int dom (ϕ)
def
=

int dom (ϕp)× int dom (ϕd)

d(vk, zk) → 0 ⇒ vk − zk → 0. (3.2)

(A7) For every w def
= (x, µ) ∈ int dom (ϕ), at least one of D(w, ·) or d(w, ·) is coercive.

(A8) For any bounded sequence (wk)k∈N with wk ∈ int domϕ for each k ∈ N, if wk+1 − wk → 0, then

∇ϕp(xk+1)−∇ϕp(xk) → 0 and ∇f(xk+1)−∇f(xk) → 0;

∇ϕd(µk+1)−∇ϕd(µk) → 0 and ∇h∗(µk+1)−∇h∗(µk) → 0.

(A9) For any sequence (wk)k∈N with wk ∈ int domϕ, for each k ∈ N, if wk ⇀ w∞, then

∇ϕ(wk)⇀ ∇ϕ(w∞).

(A10) For an arbitrary sequence (wk)k∈N ∈ Xp ×Xd, if wk ⇀ 0, then

⟨Txk, µk⟩ → 0.

(A11) (I) At least one of the functions f or g is relatively strongly convex on Cp ∩ dom(g) wrt an entropy
ψp : Xp → R ∪ {+∞} with constant mf or mg, respectively (see Definition 2.4). The entropy
ψp satisfies dom (ϕp) ⊆ dom (ψp).
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(II) At least one of the functions h∗ or l∗ is relatively strongly convex on Cd∩dom(l∗) wrt an entropy
ψd : Xd → R∪ {+∞} with constant mh∗ or ml∗ , respectively (see Definition 2.4). The entropy
ψd satisfies dom (ϕd) ⊆ dom (ψd).

Analogously to (2.3), we will also use the shorhand notation using the relative strong convexity constants
and entropies from (A11):

m(f,h∗)D
′ (w1, w2)

def
= mfDψp (x1, x2) +mh∗Dψd

(µ1, µ2)

m(g,l∗)D
′ (w1, w2)

def
= mgDψp (x1, x2) +ml∗Dψd

(µ1, µ2) .
(3.3)

Remark 3.1 ((A1) and (A2)). There are several, technical characterizations of sufficient conditions that
ensure the latter half of (A1) holds. Classical examples start by assuming that the spaces are reflexive and
that ϕp and ϕd are Legendre functions and then add assumptions depending on the space being considered;
see for instance, the comprehesinve treatment in [4, Section 3]. Notice that we do not require ϕp and ϕd to be
Legendre in general, that is indeed incompatible with (A9) if the limit point is on the boundary. In practice,
the latter half of (A1) is required only for the existence and uniqueness of the sequence generated by the
algorithm and is not used explicitly elsewhere in the convergence analysis. For (A2), it is sufficient to take
the step sizes (λk)k∈N and (νk)k∈N to simply be constant.

Remark 3.2 ((A3)). The infimum in (A3) is taken with w1 ∈ Ũp × Ũd and w2 ∈ Up ×Ud because, a priori,
a solution w⋆ may lie in the boundary of Ũp× Ũd even if the iterates (wk)k∈N themselves remain in Up×Ud
due to (A1). Since the Bregman divergence is still well defined when the first argument (but not the second)
is in dom (ϕ) \ int dom (ϕ), there is no issue with taking the infimum over this set. Observe that (A3) also
entails that, for every w1 ∈ Ũp × Ũd and w2 ∈ Up × Ud, for each k ∈ N,

1

Λk
D (w1, w2)−M (w1, w2) ≥ LD (w1, w2) + εd (w1, w2) ≥ 0. (3.4)

Example 3.3. Suppose that φ : R+ → R+ is a convex nondecreasing function with φ∗ its positive conjugate
and γ a finite coercive gauge with domain R+ (Up − Up) ⊂ Xd (in the Minkowski sense) and polar γ◦.
Assume that the quantities defined by

∥T∥Dp

def
= sup

x1,x2∈Up; x1 ̸=x2

φ(γ (T (x2 − x1)))

Dp (x1, x2)
and ∥I∥Dd

def
= sup

µ1,µ2∈Ud; µ1 ̸=µ2

φ∗(γ◦ (µ2 − µ1))

Dd (µ1, µ2)

are finite. We use the notation ∥·∥Dp
and ∥·∥Dp

, but notice that they may not be norms. If, moreover, we
suppose that the step sizes verify, for each k ∈ N, for some εk ≥ 0,

(
1

λk
− Lp

)
≥ ∥T∥Dp

+ εk and
(

1

νk
− Ld

)
≥ ∥I∥Dd

+ εk, (3.5)

then (A3) is satisfied with d (w1, w2) = D (w1, w2). Indeed, for any pair w1, w2 ∈ Up × Ud, we have, for
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each k ∈ N,(
1

Λk
− L

)
D (w1, w2)−M (w1, w2)

=

(
1

λk
− Lp

)
Dp (x1, x2) +

(
1

νk
− Ld

)
Dd (µ1, µ2)− ⟨T (x1 − x2), µ1 − µ2⟩

≥ ∥T∥Dp
Dp (x1, x2) + ∥I∥Dd

Dd (µ1, µ2)− γ (T (x1 − x2)) γ
◦ (µ1 − µ2) + εkD (w1, w2)

≥ φ(γ (T (x1 − x2))) + φ∗(γ◦ (µ1 − µ2))− φ(γ (T (x1 − x2)))− φ∗(γ◦ (µ1 − µ2)) + εkD (w1, w2)

= εkD (w1, w2) .

(3.6)

Note that in this example we have taken the action of T on the primal variables into the definition of ∥·∥Dp
.

It is equally possible, and sometimes desirable, to define things such that the action of the adjoint T ∗ on the
dual variables is incorporated into ∥·∥Dd

instead, which can change the values (and consequently step sizes)
in a non-Hilbertian setting.

Remark 3.4 ((A4) and (A5)). Notice that, using Lemma 2.8, (A4) and (A5) (in any case) imply that
(
δpk
)
k∈N

and
(
δdk
)
k∈N converge strongly (with respect to ∥·∥X ∗

p
and ∥·∥X ∗

d
respectively) to zero a.s. and that, further-

more, for any fixed w ∈ Cp × Cd, (E [⟨∆k, w − wk+1⟩])k∈N ∈ ℓ1+ and (E [⟨∆k, w − wk+1⟩ | Sk])k∈N ∈
ℓ1+ (S) (see Lemma 3.14 for details). In (A5)(III), the norms ∥·∥Xp

and ∥·∥Xd
can be replaced with arbitrary

norms as long as ϕp and ϕd are strongly convex with respect to their square. The different cases for (A5) can
be mixed for the primal and dual, e.g., one can take (A5)(III) for the primal but have (A5)(II) for the dual;
the current presentation simply for convenience.

Remark 3.5 ((A6)). In the case where d (x, y) is the Bregman divergence induced by the Shannon-Boltzman
entropy, the Hellinger entropy, the fractional-power entropy, the Fermi-Dirac entropy, or the energy/euclidean
entropy, (A6) holds (see [29, Remark 4].

More generally, when d = Dζ for some entropy ζ which is Legendre, we have from [4, Example 4.10]
that (A6) is satisfied whenever one of the following holds

• ζ is uniformly convex on bounded sets;
• Xp ×Xd is finite dimensional, dom (ζ) is closed, and ζ |dom(ζ) is strictly convex and continuous.

Thus, if ζ = ϕ, with ϕ Legendre, we require only dom (ϕ) to be closed if Xp ×Xd is finite dimensional.

Remark 3.6 ((A7)). Sufficient conditions for (A7) to hold for Legendre functions in real reflexive Banach
spaces are given in [3, Lemma 7.3(viii) & (ix)]. For example, Dp (x, ·) is coercive if ϕp is supercoercive
and x ∈ int dom (ϕp); alternatively, if Xp is finite-dimensional, dom

(
ϕ∗p
)

is open, and x ∈ int dom (ϕp).
Similar conditions hold for ϕd.

Remark 3.7 ((A10)). Assumption (A10) is very mild and holds when the operator T (or T ∗) is for instance
compact.
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Remark 3.8 ((A8), (A9)). Assumptions (A8), (A9) and (A10) are required only for the pointwise weak
convergence of the iterates, namely in Section 4.3. (A8) and (A9) have been previously assumed by other
authors to prove weak convergence of the iterates for the Bregman Forward-Backward algorithm on a real
reflexive Banach space; see [39, 9]. In particular, (A9) is a weak sequential continuity assumption on the
gradients of the entropies, while (A8) can be obtained for instance from norm-to-norm uniform continuity
on bounded sets of ∇ϕp, ∇ϕd, ∇f , and ∇h∗. A typical example where these assumptions hold is when Xp
is the ℓq space2, q ∈]1,+∞[, and ϕp = ∥·∥qℓq /q, in which case ∇ϕp is the duality mapping on ℓq. The latter
is known in this case to be weakly continuous [8] and norm-to-norm uniformly continuous on every bounded
subset of ℓq [17]. However, if the duality mapping is replaced with the normalized duality mapping, i.e.,
ϕp = ∥·∥2ℓq /2, then (A9) fails unless q = 2 (i.e., Hilbertian setting) while (A8) still holds for ϕp; see [54].

On the other hand, (A8) is satisfied when Xp × Xd is finite dimensional. Indeed, in finite dimension not
only do strong and weak convergence coincide but also ∇ϕp, ∇ϕd, ∇f , and ∇h∗ are all continuous on the
interior of their domains by [48, Corollary 9.20] since ϕp, f ∈ Γ0 (Xp) and ϕd, h∗ ∈ Γ0 (Xd). Again, (A9)
is more subtle even in finite dimension since Legenderness of the entropy entails that if an interior sequence
converges to a point on the boundary of the domain of the entropy, the sequence of gradients will diverge.

We finish this section by providing an infinite-dimensional example where all asumptions hereabove are
verified.

Example 3.9. We give an example of an infinite-dimensional Banach space Xp and an entropy ϕp for which
assumptions (A1), (A8) and (A9) both hold. ConsiderH an infinite-dimensional Hilbert space andV a finite-
dimensional Banach space, with respective norms ∥·∥H and ∥·∥V , and define Xp = H×V to be the Banach

space with norm ∥(h, v)∥Xp
=
√

∥h∥2H + ∥v∥2V . Let Cp = Xp, we can pick the entropy ϕp (x) = 1
2 ∥x∥

2
Xp

whose gradient is given, for x = (h, v), by ∇ϕp (x) = h+JVv where JV is the normalized duality mapping
for V . Then, if we assume that V is a smooth and rotund space as in [3, Lemma 6.2], Xp will be a smooth and
rotund space and we will have that ϕp is Legendre, i.e., (A1) will be satisfied. Since V is finite-dimensional
and Xp is open, (A9) is satisfied for ∇ϕp. Indeed, the limit point x∞ cannot lie on the boundary since the
boundary is empty while V being finite-dimensional guarantees the continuity of JV .

3.2 Main estimations

The following results constitute the main estimations that will be used in the convergence analysis of Algo-
rithm 1.

Lemma 3.10. Recall the notation of (2.3). Assume that (H) and (A1)-(A3) hold, then we have the following
energy estimation. For every w def

= (x, µ) ∈ (Cp × Cd) ∩ (dom(g)× dom(l∗)), for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) +

[
1

Λk+1
D (w,wk+1)−M (w,wk+1)

]
+ ⟨wk+1 − w,∆k⟩ + εd (wk+1, wk)

≤
[
1

Λk
D (w,wk)−M (w,wk)

]
. (3.7)

If, moreover, (A11)(I) and (A11)(II) hold, we have (using the notation of (3.3)) for every w def
= (x, µ) ∈

2We focus on the primal space Xp but the same reasoning applies to Xd.
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(Cp × Cd) ∩ (dom(g)× dom(l∗)), for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) +

[
1

Λk+1
D (w,wk+1)−M (w,wk+1)

]
+ ⟨wk+1 − w,∆k⟩ + εd (wk+1, wk)

≤
[
1

Λk
D (w,wk)−M (w,wk)

]
−m(f,h∗)D

′ (w,wk)−m(g,l∗)D
′ (w,wk+1) . (3.8)

Proof. We will prove claim (3.8) since (3.7) is a special case of it when m(f,h∗) = m(g,l∗) = 0. For all
k ∈ N, the following holds by the definitions of xk+1 and µk+1 in Algorithm 1,

1

λk
(∇ϕp (xk)−∇ϕp (xk+1))−∇f (xk)− δpk − T ∗µ̃k ∈ ∂g (xk+1)

1

νk
(∇ϕd (µk)−∇ϕd (µk+1))−∇h∗ (µk)− δdk + T x̃k ∈ ∂l∗ (µk+1) .

(3.9)

Observe that by assumptions (H) and (A11)(I), we have Cp ∩ dom(g) = dom(ϕp)∩ dom(g) ⊂ dom(ψp)∩
dom(g). Morover, using also that dom(∂g) ⊂ dom(g), we have ∀k ∈ N, xk ∈ int dom(ϕp) ∩ dom(∂g) =
int dom(ϕp)∩ dom(∂g)∩Cp ∩ dom(g) ⊂ int dom(ψp)∩ dom(∂g)∩Cp ∩ dom(g). A similar reasoning is
also valid replacing (Cp, g, ϕp, ψp) with their dual counterparts (Cd, l∗, ϕd, ψd) and invoking (A11)(II). We
are then in position to apply the relative strong convexity inequality of Definition 2.4, which holds at any
(x, µ) ∈ (Cp × Cd) ∩ (dom(g)× dom(l∗)) and (xk+1, µk+1), hence giving

g (x) ≥ g (xk+1) + ⟨u, x− xk+1⟩ +mgDψp (x, xk+1)

l∗ (µ) ≥ l (µk+1) + ⟨v, µ− µk+1⟩ +ml∗Dψd
(µ, µk+1)

(3.10)

for any u ∈ ∂g (xk+1) and v ∈ ∂l∗ (µk+1). Combining (3.9) and (3.10) and applying the three-point identity
for Bregman divergences [16, Lemma 3.1], we have

Dp (x, xk) ≥ λk

(
g(xk+1)− g(x) + ⟨∇f(xk) + δpk, xk+1 − x⟩+ ⟨T (xk+1 − x) , µ̃k⟩

)
+mgλkDψp (x, xk+1) +Dp (x, xk+1) +Dp (xk+1, xk) ;

Dd (µ, µk) ≥ νk

(
l∗(µk+1)− l∗(µ) + ⟨∇h∗(µk) + δdk, µk+1 − µ⟩ − ⟨T x̃k, µk+1 − µ⟩

)
+ml∗νkDψd

(µ, µk+1) +Dd (µ, µk+1) +Dd (µk+1, µk) .

(3.11)

Moreover, from the relative smoothness assumed in (A1) and the consequent generalized descent lemma
(2.2), we have, for each k ∈ N,

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ LpDp (xk+1, xk)

h∗(µk+1) ≤ h∗(µk) + ⟨∇h∗(µk), µk+1 − µk⟩+ LdDd (µk+1, µk) .
(3.12)

To apply the relative strong convexity inequality to f and h∗, we again check the required qualification
conditions of Definition 2.4. First, from (H) and (A11)(I), Cp ∩ dom(g) ⊂ Cp = dom(f) ∩ dom(ϕp) ⊂
dom(f) ∩ dom(ψp). In addition, ∀k ∈ N, xk ∈ int dom(ϕp) ⊂ int dom(ψp). Since f is differentiable
on int dom(ϕp), we have int dom(ϕp) ⊂ dom(∂f), i.e, xk ∈ int dom(ψp) ∩ dom(∂f). We have also
argued above that xk ∈ int dom(ϕp)∩dom(∂g) ⊂ Cp ∩dom(g), and thus xk ∈ int dom(ψp)∩dom(∂f)∩
Cp ∩ dom(g) as required to apply the relative strong convexity inequality of f at any x ∈ Cp ∩ dom(g) and
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xk+1. The same reasoning remains valid replacing (Cp, f, g, ϕp, ψp) with (Cd, h∗, l∗, ϕd, ψd) and invoking
(A11)(II). We then have for any (x, µ) ∈ (Cp × Cd) ∩ (dom(g)× dom(l∗)), for each k ∈ N,

f(x) ≥ f(xk) + ⟨∇f(xk), x− xk⟩+mfDψp (x, xk)

h∗(µ) ≥ h∗(µk) + ⟨∇h∗(µk), µ− µk⟩+mh∗Dψd
(µ, xk) .

(3.13)

Summing (3.12) and (3.13), we obtain, for each (x, µ) ∈ Cp × Cd, for each k ∈ N,

f(xk+1) ≤ f(x) + ⟨∇f(xk), xk+1 − x⟩+ LpDp (xk+1, xk)−mfDψp (x, xk)

h∗(µk+1) ≤ h∗(µ) + ⟨∇h∗(µk), µk+1 − µ⟩+ LdDd (µk+1, µk)−mh∗Dψd
(µ, µk) .

Summing the latter with (3.11), we obtain

λk
[
f(xk+1) + g(xk+1)− f(x)− g(x) + ⟨T (xk+1 − x) , µ̃k⟩+

〈
xk+1 − x, δpk

〉]
+Dp (x, xk+1)

+(1− Lpλk)Dp (xk+1, xk) ≤ Dp (x, xk)−mfλkDψp (x, xk)−mgλkDψp (x, xk+1) ;

νk

[
h∗(µk+1) + l∗(µk+1)− h∗(µ)− l∗(µ)− ⟨T x̃k, µk+1 − µ⟩+

〈
µk+1 − µ, δdk

〉]
+Dd (µ, µk+1)

+(1− Ldνk)Dd (µk+1, µk) ≤ Dd (µ, µk)−mh∗νkDψd
(µ, µk)−ml∗νkDψd

(µ, µk+1) .

Recall the notations of (2.3), (3.3), and that

⟨w1 − w2, ∆k⟩
def
= ⟨x1 − x2, δ

p
k⟩+ ⟨µ1 − µ2, δ

d
k⟩,

then, for each (x, µ) ∈ Cp × Cd, for each k ∈ N,

L (xk+1, µ)− L (x, µk+1) + ⟨T (xk+1 − x) , µ̃k⟩ − ⟨T x̃k, µk+1 − µ⟩+ ⟨wk+1 − w,∆k⟩

+
1

Λk
D (w,wk+1)−

1

Λk
D (w,wk) +

(
1

Λk
− L

)
D (wk+1, wk)

≤ ⟨Txk+1, µ⟩ − ⟨Tx, µk+1⟩ −m(g,l∗)D
′ (w,wk+1)−m(f,h∗)D

′ (w,wk) .

Rearranging the terms, we arrive at

L (xk+1, µ)− L (x, µk+1) +
1

Λk
D (w,wk+1)−

1

Λk
D (w,wk) +

(
1

Λk
− L

)
D (wk+1, wk) + ⟨wk+1 − w,∆k⟩

≤ ⟨Txk+1, µ− µ̃k⟩+ ⟨T (x̃k − x), µk+1⟩+ ⟨Tx, µ̃k⟩ − ⟨T x̃k, µ⟩ −m(g,l∗)D
′ (w,wk+1)−m(f,h∗)D

′ (w,wk)

= ⟨T (xk+1 − x), µ− µ̃k⟩+ ⟨T (x̃k − x), µk+1 − µ⟩ −m(g,l∗)D
′ (w,wk+1)−m(f,h∗)D

′ (w,wk) .

Now we use that x̃k = 2xk+1 − xk and µ̃k = µk, to obtain

L (xk+1, µ)− L (x, µk+1) +
1

Λk
D (w,wk+1)−

1

Λk
D (w,wk) +

(
1

Λk
− L

)
D (wk+1, wk) + ⟨wk+1 − w,∆k⟩

≤ ⟨T (xk+1 − x), µ− µk⟩+ ⟨T (xk+1 − x), µk+1 − µ⟩+ ⟨T (xk+1 − xk), µk+1 − µ⟩ −m(g,l∗)D
′ (w,wk+1)

−m(f,h∗)D
′ (w,wk)

=
(
⟨T (xk+1 − xk), µk+1 − µk⟩+ ⟨T (x− xk+1), µ− µk+1⟩ − ⟨T (x− xk), µ− µk⟩

)
−m(g,l∗)D

′ (w,wk+1)

−m(f,h∗)D
′ (w,wk) .

14



Equivalently, recalling that M(w1, w2)
def
= ⟨T (x1 − x2), µ1 − µ2⟩, we get

L (xk+1, µ)− L (x, µk+1) + ⟨wk+1 − w,∆k⟩ +
[
1

Λk
D (w,wk+1)−M (w,wk+1)

]
−
[
1

Λk
D (w,wk)−M (w,wk)

]
+

[(
1

Λk
− L

)
D (wk+1, wk)−M (wk+1, wk)

]
≤ −m(g,l∗)D

′ (w,wk+1)−m(f,h∗)D
′ (w,wk) . (3.14)

Recall that, by (A2), (λk)k∈N and (νk)k∈N are nondecreasing sequences, and thus

1

Λk+1
D (w,wk+1) ≤

1

Λk
D (w,wk+1) . (3.15)

Finally, combining (3.14) with (3.15) and (A3) applied at the points wk+1 and wk, we get (3.8).

Lemma 3.11. Assume (H) and (A1)-(A3) hold and, for each k ∈ N, denote by ŵk+1 the exact update of
the algorithm, i.e.,

ŵk+1 =

(
x̂k+1

µ̂k+1

)
=

(
(∇ϕp + λk∂g)

−1 (∇ϕp (xk)− λk (∇f (xk))− λkT
∗µk)

(∇ϕd + νk∂l
∗)−1 (∇ϕd (µk)− νk (∇h∗ (µk)) + νkT (2x̂k+1 − xk))

)
. (3.16)

Then, the following holds, for each k ∈ N,

⟨∆k, ŵk+1 − wk+1⟩ ≥
1

Λk
(D (ŵk+1, wk+1) +D (wk+1, ŵk+1))− 2M (ŵk+1, wk+1) ≥ 0. (3.17)

Proof. By design of the algorithm, the following monotone inclusions hold, for each k ∈ N,

∇ϕp (xk)− λk (∇f (xk)− T ∗µk)−∇ϕp (x̂k+1) ∈ λk∂g (x̂k+1)

∇ϕp (xk)− λk
(
∇f (xk) + δpk − T ∗µk

)
−∇ϕp (xk+1) ∈ λk∂g (xk+1) .

(3.18)

and similarly for the dual

∇ϕd (µk)− νk (∇h∗ (µk) + T (2x̂k+1 − xk))−∇ϕd (µ̂k+1) ∈ νk∂l
∗ (µ̂k+1)

∇ϕd (µk)− νk

(
∇h∗ (µk) + δdk + T (2xk+1 − xk)

)
−∇ϕd (µk+1) ∈ νk∂l

∗ (µk+1) .
(3.19)

By monotonicity of the operators ∂l∗ and ∂g combined with (3.19) and (3.18), we then have, for each k ∈ N,〈
x̂k+1 − xk+1, δ

p
kλk −∇ϕp (x̂k+1) +∇ϕp (xk+1)

〉
≥ 0〈

µ̂k+1 − µk+1, δ
d
kνk −∇ϕd (µ̂k+1) +∇ϕd (µk+1) + 2νkT (x̂k+1 − xk+1)

〉
≥ 0.

(3.20)

We can rewrite the above using Definition 1.1 to have, for each k ∈ N,〈
x̂k+1 − xk+1, δ

p
k

〉
≥ 1

λk
(Dp (x̂k+1, xk+1) +Dp (xk+1, x̂k+1))〈

µ̂k+1 − µk+1, δ
d
k

〉
≥ 1

νk
(Dd (µ̂k+1, µk+1) +Dd (µk+1, µ̂k+1))− 2 ⟨T (x̂k+1 − xk+1) , µ̂k+1 − µk+1⟩ .

(3.21)
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Adding the above inequalities together gives, for each k ∈ N,

⟨∆k, ŵk+1 − wk+1⟩ ≥
1

Λk
(D (ŵk+1, wk+1) +D (wk+1, ŵk+1))− 2M (ŵk+1, wk+1) . (3.22)

Using (A3) and (3.4), and the fact that M is symmetric wrt its arguments, for each k ∈ N,

1

Λk
(D (ŵk+1, wk+1) +D (wk+1, ŵk+1))− 2M (ŵk+1, wk+1) ≥ 0.

Lemma 3.12. Assume (H), (A1)-(A3), and (A5)(III) all hold. One can choose a > 0 so that, for each
k ∈ N,

mp

λk
−

∥T∥2p→d∗

a
> 0 and

md

νk
− a > 0

and the following holds, for each k ∈ N,

⟨∆k, ŵk+1 − wk+1⟩ ≤

(
mp

λk
−

∥T∥2p→d∗

a

)−1 ∥∥δpk∥∥2X ∗
p
+

(
md

νk
− a

)−1 ∥∥∥δdk∥∥∥2X ∗
d

.

Proof. It follows from the strong convexity of ϕp and ϕd given by (A5)(III) that, for each k ∈ N,

1

Λk
(D (wk+1, ŵk+1) +D (ŵk+1, wk+1)) =

1

Λk
⟨∇ϕ (wk+1)−∇ϕ (ŵk+1) , wk+1 − ŵk+1⟩

≥ mp

λk
∥x̂k+1 − xk+1∥2Xp

+
md

νk
∥µ̂k+1 − µk+1∥2Xd

.
(3.23)

Substituting this result into Lemma 3.11 (3.17) and applying Young’s inequality with a > 0 we get, for each
k ∈ N,

⟨∆k, ŵk+1 − wk+1⟩

≥ mp

λk
∥x̂k+1 − xk+1∥2Xp

+
md

νk
∥µ̂k+1 − µk+1∥2Xd

− 2M (ŵk+1, wk+1)

=
mp

λk
∥x̂k+1 − xk+1∥2Xp

+
md

νk
∥µ̂k+1 − µk+1∥2Xd

− 2 (⟨T (x̂k+1 − xk+1) , µ̂k+1 − µk+1⟩)

≥ mp

λk
∥x̂k+1 − xk+1∥2Xp

+
md

νk
∥µ̂k+1 − µk+1∥2Xd

−
∥T∥2p→d∗

a
∥x̂k+1 − xk+1∥2Xp

− a ∥µ̂k+1 − µk+1∥2Xd

=

(
mp

λk
−

∥T∥2p→d∗

a

)
∥x̂k+1 − xk+1∥2Xp

+

(
md

νk
− a

)
∥µ̂k+1 − µk+1∥2Xd

.

(3.24)

Then, since the step size sequences (λk)k∈N and (νk)k∈N are bounded and nondecreasing by (A2), and
furthemore by (A5)(III) are chosen small enough to satisfy

ν∞λ∞ <
mpmd

∥T∥2p→d∗
,
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one can choose a > 0 so that

mp

λ∞
−

∥T∥2p→d∗

a
> 0 and

md

ν∞
− a > 0

and, by extension under (A2), for each k ∈ N,

mp

λk
−

∥T∥2p→d∗

a
> 0 and

md

νk
− a > 0.

Finally, we apply Young’s inequality twice to the following to find, for each k ∈ N,

⟨∆k, ŵk+1 − wk+1⟩ =
〈
δpk, x̂k+1 − xk+1

〉
+
〈
δdk, µ̂k+1 − µk+1

〉
≤ 1

2

(
mp

λk
−

∥T∥2p→d∗

a

)−1 ∥∥δpk∥∥2X ∗
p
+

1

2

(
mp

λk
−

∥T∥2p→d∗

a

)
∥x̂k+1 − xk+1∥2Xp

+
1

2

(
md

νk
− a

)−1 ∥∥∥δdk∥∥∥2X ∗
d

+
1

2

(
md

νk
− a

)
∥µ̂k+1 − µk+1∥2Xd

≤ 1

2

(
mp

λk
−

∥T∥2p→d∗

a

)−1 ∥∥δpk∥∥2X ∗
p
+

1

2

(
md

νk
− a

)−1 ∥∥∥δdk∥∥∥2X ∗
d

+
1

2
⟨∆k, ŵk+1 − wk+1⟩

and the desired claim follows.

Remark 3.13. In Lemma 3.12, one can instead choose to use ∥T ∗∥2d→p∗ to have, for each k ∈ N,

⟨∆k, ŵk+1 − wk+1⟩ ≤
(
mp

λk
− 1

a

)∥∥δpk∥∥2X ∗
p
+

(
md

νk
− a ∥T ∗∥2d→p∗

)∥∥∥δdk∥∥∥2X ∗
d

if there is asymmtery in the size of mp and md.
In the event that only ϕp is strongly convex with respect to ∥·∥2Xp

but the analog does not hold for ϕd, we
can make the following argument. Take (3.21) from Lemma 3.11 and use strong convexity, to get〈

x̂k+1 − xk+1, δ
p
k

〉
≥ 1

λk
(Dp (x̂k+1, xk+1) +Dp (xk+1, x̂k+1)) ≥

mp

λk
∥x̂k+1 − xk+1∥2Xp

and so, by Cauchy-Schwarz,

∥x̂k+1 − xk+1∥Xp
≤ λk
mp

∥∥δpk∥∥X ∗
p
.

Then, using again Cauchy-Schwarz and the previous inequality,〈
δpk, x̂k+1 − xk+1

〉
≤
∥∥δpk∥∥X ∗

p
∥x̂k+1 − xk+1∥Xp

≤ λk
mp

∥∥δpk∥∥2X ∗
p

without the restriction on λ∞ and ν∞ imposed in Lemma 3.12 because we no longer to need control the term
2M (ŵk+1, wk+1). This term, 2M (ŵk+1, wk+1), is a result of the way we have defined µ̂k+1 to depend on
x̂k+1, which is necessary to keep ŵk+1 deterministic conditioned on the filtration Sk. Thus, if only one of
the entropies can be chosen to be strongly convex, one is inclined to formulate the problem in such a way
that the primal problem has the strongly convex entropy, and to deal with the dual problem using (A5)(I) or
(A5)(II) for the dual.
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Lemma 3.14. Under (H) and (A1)-(A5), the following sequences satisfy, for any fixed w ∈ Cp × Cd,

(E [⟨∆k, w − wk+1⟩ | Sk])k∈N ∈ ℓ1+ (S) and (E [⟨∆k, w − wk+1⟩])k∈N ∈ ℓ1+.

Proof. The assumption (A5) has three cases with the first, (A5)(I), corresponding to the deterministic set-
ting, i.e., the lemma holds trivially. For both of the following two cases we note that, by Lemma 3.11, for
each k ∈ N, for any fixed w ∈ Cp × Cd,

E [⟨∆k, w − wk+1⟩ | Sk] = E [⟨∆k, w − ŵk+1⟩ + ⟨∆k, ŵk+1 − wk+1⟩ | Sk]

= E [⟨∆k, ŵk+1 − wk+1⟩ | Sk] ≥ 0
(3.25)

since, due to (A4), ∆k is unbiased conditioned on the filtration Sk. By the law of total expectation applied
to the above, it follows that, for each k ∈ N, for any fixed w ∈ Cp × Cd,

E [⟨∆k, w − wk+1⟩] = E [⟨∆k, ŵk+1 − wk+1⟩] ≥ 0

and thus the following sequences satisfy, for any fixed w ∈ Cp × Cd,

(E [⟨∆k, w − wk+1⟩ | Sk])k∈N ∈ ℓ+ (S) and (E [⟨∆k, w − wk+1⟩])k∈N ∈ ℓ+.

Now assume that (A5)(II) holds, recall that, for each k ∈ N,

⟨∆k, ŵk+1 − wk+1⟩
def
=
〈
δpk, x̂k+1 − xk+1

〉
+
〈
δdk, µ̂k+1 − µk+1

〉
.

By (A5)(II), the sets Up and Ud are bounded and thus have finite diameters, diamUp and diamUd
respectively.

Furthermore, by (A1) and the definition of the updates in the algorithm, the exact update ŵk+1 will remain
in Up × Ud for all k ∈ N. Then, for each k ∈ N,

E
[〈
δpk, x̂k+1 − xk+1

〉
| Sk

]
≤ E

[∥∥δpk∥∥X ∗
p
∥x̂k+1 − xk+1∥Xp

| Sk

]
≤ diamUpE

[∥∥δpk∥∥X ∗
p
| Sk

]
;

E
[〈
δdk, µ̂k+1 − µk+1

〉
| Sk

]
≤ E

[∥∥∥δdk∥∥∥X ∗
d

∥µ̂k+1 − µk+1∥Xd
| Sk

]
≤ diamUd

E
[∥∥∥δdk∥∥∥X ∗

d

| Sk

]
.

Since
(
E
[∥∥δpk∥∥X ∗

p
| Sk

])
k∈N

∈ ℓ1+ (S) and
(
E
[∥∥δdk∥∥X ∗

d
| Sk

])
k∈N

∈ ℓ1+ (S) by (A5)(II), and noting
(3.25), it holds that, for any fixed w ∈ Cp × Cd,

(E [⟨∆k, w − wk+1⟩ | Sk])k∈N ∈ ℓ1+ (S) .

Using the same argument with the law of total expectation together with the fact that
(
E
[∥∥δpk∥∥X ∗

p

])
k∈N

∈ ℓ1+

and
(
E
[∥∥δdk∥∥X ∗

d

])
k∈N

∈ ℓ1+ by (A5)(II), it then follows that, for any fixed w ∈ Cp × Cd,

(E [⟨∆k, w − wk+1⟩])k∈N ∈ ℓ1+.

Finally, in the case of (A5)(III), we assume that the entropies ϕp and ϕd are strongly convex with respect
to ∥·∥2Xp

and ∥·∥2Xd
respectively. Using Lemma 3.12 and taking expectation conditioned on Sk, we have, for

each k ∈ N,

E [⟨∆k, ŵk+1 − wk+1⟩ | Sk] ≤

(
mp

λk
−

∥T∥2p→d∗

a

)−1

E
[∥∥δpk∥∥2X ∗

p
| Sk

]
+

(
md

νk
− a

)−1

E
[∥∥∥δdk∥∥∥2X ∗

d

| Sk

]

≤

(
mp

λ∞
−

∥T∥2p→d∗

a

)−1

E
[∥∥δpk∥∥2X ∗

p
| Sk

]
+

(
md

ν∞
− a

)−1

E
[∥∥∥δdk∥∥∥2X ∗

d

| Sk

]
.
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Thus by the summability assumption of (A5)(III), we have(
E
[∥∥δpk∥∥2X ∗

p
| Sk

])
k∈N

∈ ℓ1+ (S) and
(
E
[∥∥∥δdk∥∥∥2X ∗

d

| Sk

])
k∈N

∈ ℓ1+ (S)

and so, for any fixed w ∈ Cp × Cd,

(E [⟨∆k, w − wk+1⟩ | Sk])k∈N ∈ ℓ1+ (S) .

Similarly, taking Lemma 3.12 with total expectation and the summability assumption of (A5)(III) yields, for
any fixed w ∈ Cp × Cd,

(E [⟨∆k, w − wk+1⟩])k∈N ∈ ℓ1+.

4 Convergence Analysis

4.1 Ergodic Convergence

Define, for each k ∈ N, the ergodic iterates x̄k
def
=

1

k

k∑
i=1

xi and µ̄k
def
=

1

k

k∑
i=1

µi. The following theorem

characterizes the convergence of the algorithm for the Lagrangian optimality gap evaluated at the ergodic
iterates; later results on pointwise convergence will also imply ergodic convergence.3

Theorem 4.1. Let (H) and (A1)-(A4) hold. Then we have the following convergence rate to a noise-
dominated regime: for each k ∈ N, for every (x, µ) ∈ (Cp × Cd) ∩ (dom(g)× dom(l∗)),

E [L (x̄k, µ)− L (x, µ̄k)] ≤
1
Λ0
D (w,w0)−M (w,w0)

k
+

∑k−1
i=0 E [⟨∆i, w − wi+1⟩]

k
. (4.1)

In particular, if also (A5) holds, every almost sure weak sequential cluster point of (w̄k)k∈N is optimal in
mean; if w̄kj ⇀ w∞ almost surely, then E(w∞) is a saddle point for the Lagrangian.

Proof. Let w def
= (x, µ) ∈ (Cp × Cd) ∩ (dom(g) × dom(l∗)). Beginning with Lemma 3.10, taking the the

total expectation of (3.7) and summing up from 0 to k − 1, discarding positive terms on the left hand side,
we have

k−1∑
i=0

E [L (xi+1, µ)− L (x, µi+1)] ≤
1

Λ0
D (w,w0)−M (w,w0) +

k−1∑
i=0

E [⟨∆i, w − wi+1⟩] . (4.2)

Notice that
k−1∑
i=0

E [⟨∆i, w − wi+1⟩] is nonnegative by (A4) and Lemma 3.11. Using Jensen’s inequality with

the convex-concave function L, we have (4.1).

3By “ergodic convergence”, we mean convergence of the Lagrangian optimality gap evaluated at the ergodic iterates; not any
ergodic averaging of the Lagrangian values themselves.
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Now, assuming also (A5), let (x̄kj , µ̄kj )⇀ (x∞, µ∞) almost surely. First note that, by Lemma 3.14,

∞∑
i=0

E [⟨∆i, w − wi+1⟩] < +∞.

Then, for every (x, µ) ∈ (Cp × Cd) ∩ (dom(g)× dom(l∗)),

L (E (x∞) , µ)− L (x,E (µ∞)) ≤ E [L (x∞, µ)− L (x, µ∞)]

≤ E
[
lim inf
j→∞

[
L
(
x̄kj , µ

)
− L

(
x, µ̄kj

)]]
≤ lim inf

j→∞
E
[
L
(
x̄kj , µ

)
− L

(
x, µ̄kj

)]
≤ 0,

(4.3)

where we used Jensen’s inequality, weak lower semicontinuity of L, Fatou’s Lemma and (4.1) with (A5) and
Lemma 3.14. Inequality (4.3) trivially holds outside (Cp ×Cd)∩ (dom(g)× dom(l∗)), and so holds for any
(x, µ) ∈ Xp ×Xd, whence we get that (E (x∞) ,E (µ∞)) is a saddle point for L.

Remark 4.2. The term k−1
∑k−1

i=0 E [⟨∆i, w − wi+1⟩] in Theorem 4.1 is an averaging of the noise which
dictates the radius of the noise-dominated region in some sense. For example, if we assume that there exists
a constant c ≥ 0 such that E [⟨∆i, w − wi+1⟩] ≤ c for all i ∈ N and for all w ∈ Xp ×Xd, then we have∑k−1

i=0 E [⟨∆i, w − wi+1⟩]
k

≤ c

for all k ∈ N, i.e., the radius of the noise-dominated region in Theorem 4.1 is at most c.

Remark 4.3. Consider the algorithm in the deterministic case, then choose (x, µ) = (x⋆, µ⋆) for some saddle
point (x⋆, µ⋆) in (4.1). In this case, the constant in the rate of convergence, 1

Λ0
D (w⋆, w0) −M (w⋆, w0),

is given in terms of the Bregman divergence, in contrast to methods like [13] which have constants in terms
of the Euclidean norm. With this change in the geometry, the dependence of the constant on the dimension
of the problem can be greatly reduced, even from linear to logarithmic dependence for some problems and
appropriately chosen entropies.

4.2 Asymptotic Regularity

Theorem 4.4. Let (H), (A1), (A2), (A3)(II), (A4), (A5), and (A6) hold. Then the primal-dual sequence
(xk, µk)k∈N is almost surely asymptotically regular, meaning that xk+1 − xk → 0 and µk+1 − µk → 0
almost surely.

Proof. Use again (3.7) in Lemma 3.10 with w equal to a saddle point w⋆ ∈ S and take the total expectation
to get, for each k ∈ N,

E [L (xk+1, µ
⋆)− L (x⋆, µk+1)] + E

[
1

Λk+1
D (w⋆, wk+1)−M (w⋆, wk+1)

]
+ εE [d (wk+1, wk)] ≤ E

[
1

Λk
D (w⋆, wk)−M (w⋆, wk)

]
+ E [⟨∆k, w

⋆ − wk+1⟩] . (4.4)
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By the definition of saddle point in (1.1), it holds, for each k ∈ N,

L (xk, µ
⋆)− L (x⋆, µk) ≥ 0

and so, from Lemma 2.7 with (A4), (A5), Lemma 3.14, and (A3)(II),

E [d (wk+1, wk)] ∈ ℓ1+.

By Lemma 2.8, d (wk+1, wk) → 0 almost surely. In view of (A6), we get that, almost surely,

wk+1 − wk → 0, (4.5)

i.e., the primal-dual sequence (wk)k∈N is almost surely asymptotically regular.

4.3 Pointwise Convergence

The main result of this section is related to the pointwise weak convergence of the primal-dual sequence
(xk, µk)k∈N to a saddle point. These results require the stronger assumptions (A8)-(A10), although they are
verified in many situations (see the discussion in Remark 3.8 and example thereafter). We will also impose
the following conditions, which are only necessary for this particular section in the stochastic case and can
be dropped for the deterministic case or the other sections.

(PW1) Xp and Xd are separable.
(PW2) The Bregman divergence D satisfies the following property. Let Ω̃ be a full-measure subset of Ω

(Ω̃ ∈ F with P(Ω̃) = 1). Let w⋆ ∈ S and (sn)n∈N ⊂ S such that sn → w⋆. If, for every n ∈ N and
for every ω ∈ Ω̃,

lim
k→∞

Λ−1
k D (sn, wk (ω))−M (sn, wk (ω)) = rsn (ω) ∈ [0,+∞[,

then there exists a [0,+∞[-valued random variable rw⋆ such that, for any ω ∈ Ω̃,

lim
k→∞

Λ−1
k D (w⋆, wk (ω))−M (w⋆, wk (ω)) = rw⋆ (ω) .

Proposition 4.5. Let (H), (A1), (A2), (A3)(I) or (II), and (A4)-(A8) hold. Then ((xk, µk))k∈N is almost
surely bounded and, recalling the notation of (2.1) and (1.2), W

[
(wk)k∈N

]
⊂ S (P-a.s.).

Proof. Evaluating Lemma 3.10 at a saddle point w = w⋆ ∈ S and taking expectation conditioned on the
filtration Sk, we get, for each k ∈ N,

E [L (xk+1, µ
⋆)− L (x⋆, µk+1) | Sk] + E

[
1

Λk+1
D (w⋆, wk+1)−M (w⋆, wk+1) | Sk

]
+ εE [d (wk+1, wk) | Sk] ≤

[
1

Λk
D (w⋆, wk)−M (w⋆, wk)

]
+ E [⟨∆k, w

⋆ − wk+1⟩ | Sk] .

Then, by (A4), (A5), Lemma 3.14, and Lemma 2.6,
(
Λ−1
k D (w⋆, wk)−M (w⋆, wk)

)
k∈N is almost surely

convergent to some r ∈ [0,+∞[. In particular, from (A3) and (3.4), both (D (w⋆, wk))k∈N and (d (w⋆, wk))k∈N
are almost surely bounded and the coercivity condition (A7) entails that the sequence (wk)k∈N is almost
surely bounded in int dom (ϕ). Since Xp and Xd are reflexive, W

[
(wk)k∈N

]
̸= ∅ almost surely. Let

w∞ = (x∞, µ∞) be an almost sure weak sequential cluster point of (wk)k∈N, i.e., there is a subsequence
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(wki)i∈N such that wki ⇀ w∞ almost surely. The updates of Algorithm 1 are equivalent to the following
monotone inclusions,

∇ϕp(xki
)−∇ϕp(xki+1

)

λk
+ (∇f(xki+1)−∇f(xki)− δpki

) + T ∗(µki+1 − µki)

∇ϕd(µki
)−∇ϕd(µki+1

)

νk
+ (∇h∗(µki+1

)−∇h∗(µki
)− δdki

) + T (xki+1
− xki

)


∈
(
∂g +∇f 0

0 ∂l∗ +∇h∗
)(

xki+1

µki+1

)
+

(
0 T ∗

−T 0

)(
xki+1

µki+1

)
. (4.6)

Since (wki)i∈N lies in int Cp × int Cd, we have NCp(xki+1
) = 0 and NCd(µki+1

) = 0. This together with
[55, Theorem 2.4.2(viii)] implies(

∂g +∇f 0
0 ∂l∗ +∇h∗

)(
xki+1

µki+1

)
+

(
0 T ∗

−T 0

)(
xki+1

µki+1

)
⊂(

∂(g + f + ιCp) 0
0 ∂(l∗ + h∗ + ιCd

)

)(
xki+1

µki+1

)
+

(
0 T ∗

−T 0

)(
xki+1

µki+1

)
. (4.7)

The first operator on the right hand side of (4.7) is maximal monotone thanks to (H) and [55, Theo-
rem 3.1.11]. The second operator is a skew-symmetric linear operator which is then maximal monotone
with full domain by [52, Section 17]. By [52, Theorem 24.1(a)], we deduce that the operator in the right
hand side of (4.7) is maximal monotone. Hence its graph is sequentially closed in the weak-strong topology
by [7, Lemma 1.2]. Recall that, by (A4), (A5), and Remark 3.4,

(
δpk
)
k∈N and

(
δdk
)
k∈N converge strongly to

zero almost surely. From Theorem 4.4 and the fact that wki ⇀ w∞, we have also that ((xki+1, µki+1))i∈N
converges weakly to (x∞, µ∞) almost surely. In addition, by (H), T is linear (and bounded) which, combined
with Theorem 4.4, yields

T (xki+1
− xki) → 0 and T ∗(µki+1

− µki) → 0

almost surely. From (A8) combined with Theorem 4.4, we deduce that, almost surely,

∇ϕp(xki+1
)−∇ϕp(xki) → 0 and ∇f(xki+1

)−∇f(xki) → 0

∇ϕd(µki+1
)−∇ϕd(µki) → 0 and ∇h∗(µki+1

)−∇h∗(µki) → 0.

Now since both (λk)k∈N and (νk)k∈N are bounded away fro zero by (A2), we have shown that, almost surely,
the left hand side of (4.6) converge strongly. Hence, by weak-strong sequential closedness of the graph of
the operator in (4.7) we have shown above, we get(

0
0

)
∈
(
∂(g + f + ιCp) T ∗

−T ∂(l∗ + h∗ + ιCd)

)(
x∞
µ∞

)
,

holds almost surely, whence it follows that each weak sequential cluster point of (wk)k∈N is a saddle point
almost surely.

The significance of the following proposition is in the order of the quantifiers; it guarantees that there
exists a full-measure set Ω̃ for which the conclusion holds for every solution w⋆.

Proposition 4.6. Let (H), (A1), (A2), (A3)(I) or (II), and (A4)-(A8) hold as well as (PW1) and (PW2).
Then, there exists Ω̃ ∈ F such that P

(
Ω̃
)
= 1 and, for every w⋆ ∈ S and for every ω ∈ Ω̃, the sequence(

Λ−1
k D (w⋆, wk (ω))−M (w⋆, wk (ω))

)
k∈N

converges with limit in [0,+∞[.
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Proof. By (PW1), there exists a countable set S such that S = S. Once again, as in the proof of Proposition
4.5, for every w⋆ ∈ S there exist Ωw⋆ ∈ F such that P (Ωw⋆) = 1 and, for every ω ∈ Ωw⋆ , it holds

lim
k→∞

Λ−1
k D (w⋆, wk (ω))−M (w⋆, wk (ω)) = r⋆ (ω) ∈ [0,+∞[.

Let Ω̃ =
⋂
s∈S

Ωs and notice that P
(
Ω̃
)
= 1 since, by countability of S, we have

P
(
Ω̃
)
= 1− P

(
Ω̃c
)
= 1− P

(⋃
s∈S

Ωcs

)
≥ 1−

∑
s∈S

P (Ωcs) = 1.

Fix a particular w⋆ ∈ S; since S = S, there exists a sequence (sn)n∈N in S such that sn → w⋆. At the same
time, for each n ∈ N, there exists rn, a [0,+∞[-valued random variable such that, for each ω ∈ Ω̃,

lim
k→∞

Λ−1
k D (sn, wk (ω))−M (sn, wk (ω)) = rn (ω) ∈ [0,+∞[.

Applying now (PW2), we find that, for any ω ∈ Ω̃,

lim
k→∞

Λ−1
k D (w⋆, wk (ω))−M (w⋆, wk (ω)) = rw⋆ (ω) ∈ [0,∞[.

Theorem 4.7. Let (H), (A1), (A2), and (A4)-(A10) hold as well as (PW1) and (PW2). Suppose also that
one of the following holds:

(i) S is a singleton.
(ii) (A3)(I), S ⊂ int Cp × int Cd and ϕp and ϕd are Legendre.
(iii) (A3)(II), and d(w1, w2) = 0 ⇒ w1 = w2.

Then, there exists w̄, a S-valued random variable, such that (wk)k∈N ⇀ w̄ (P-a.s.).

Proof. We use a standard reasoning inspired by Opial’s lemma (see [40]). We recall the notation of (2.1) for
the set of weak cluster points of a sequence. By Proposition 4.5, there exists Ω′ ∈ F with P (Ω′) = 1 such
that, for any ω ∈ Ω′, the following holds

W [(wk (ω))] ⊂ S

and the sequence (wk (ω))k∈N is bounded, and thus W [(wk (ω))] ̸= ∅ since the spaces are reflexive. Fur-
thermore, by Proposition 4.6, there exists Ω′′ ∈ F with P (Ω′′) = 1 such that, for any ω ∈ Ω′′, for any
w⋆ ∈ S, it holds

lim
k→∞

Λ−1
k D (w⋆, wk (ω))−M (w⋆, wk (ω)) = rw⋆ (ω) ∈ [0,+∞[.

Let Ω̃ = Ω′ ∩ Ω′′, for any ω ∈ Ω̃ we let w1 (ω) ∈ W
[
(wk (ω))k∈N

]
and w2 (ω) ∈ W

[
(wk (ω))k∈N

]
be two weak sequential cluster points of (wk (ω))k∈N, i.e., there exists two subsequences (wki (ω))i∈N and(
wkj (ω)

)
j∈N such that wki (ω)⇀ w1 (ω) and wkj (ω)⇀ w2 (ω) almost surely. Since W

[
(wk (ω))k∈N

]
⊂

S, w1 (ω) and w2 (ω) are saddle points.Thus, there exist rw1 (ω) , rw2 (ω) ∈ [0,+∞[ such that,

lim
k→∞

(
Λ−1
k D(w1 (ω) , wk (ω))−M(w1 (ω) , wk (ω))

)
= rw1 (ω)
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and

lim
k→∞

(
Λ−1
k D(w2 (ω) , wk (ω))−M(w2 (ω) , wk (ω))

)
= rw2 (ω) .

Using the three point identity, we have, for each i ∈ N,

Λ−1
ki
D(w1 (ω) , wki (ω))−M(w1 (ω) , wki (ω))− Λ−1

ki
D(w2 (ω) , wki (ω)) +M(w2 (ω) , wki (ω))

= Λ−1
ki

(
D(w1 (ω) , wki (ω))−D(w2 (ω) , wki (ω))

)
−
(
M(w1 (ω) , wki (ω))−M(w2 (ω) , wki (ω))

)
= Λ−1

ki

(
D(w1 (ω) , w2 (ω))−

〈
∇ϕ(wki (ω))−∇ϕ(w2 (ω)), w1 (ω)− w2 (ω)

〉)
−
(
M(w1 (ω) , wki (ω))−M(w2 (ω) , wki (ω))

)
.

(4.8)

Recall that, by (A2), both (λk)k∈N and (νk)k∈N are nondecreasing and bounded above with limits λ∞ and
ν∞, respectively. We denote Λ∞

def
= (λ∞, ν∞). Then, recalling (A9) and (A10) and passing to the limit in

(4.8) we get

rw1 (ω)− rw2 (ω) = Λ−1
∞
(
D(w1 (ω) , w2 (ω))−

〈
∇ϕ(w1 (ω))−∇ϕ(w2 (ω)), w1 (ω)− w2 (ω)

〉)
+M(w2 (ω) , w1 (ω))

= Λ−1
∞
(
D(w1 (ω) , w2 (ω))−D(w1 (ω) , w2 (ω))−D(w2 (ω) , w1 (ω))

)
+M(w2 (ω) , w1 (ω))

= −Λ−1
∞ D(w2 (ω) , w1 (ω)) +M(w2 (ω) , w1 (ω)).

Repeating this argument, replacing wki (ω) by wkj (ω) above, we furthermore have

rw1 (ω)− rw2 (ω) = Λ−1
∞ D(w1 (ω) , w2 (ω))−M(w1 (ω) , w2 (ω)),

which shows that[
Λ−1
∞ D(w1 (ω) , w2 (ω))−M(w1 (ω) , w2 (ω))

]
+
[
Λ−1
∞ D(w2 (ω) , w1 (ω))−M(w2 (ω) , w1 (ω))

]
= 0.

By (A3) and (3.4), we arrive at

L
[
D
(
w1 (ω) , w2 (ω)

)
+D

(
w2 (ω) , w1 (ω)

)]
+ ε

[
d
(
w1 (ω) , w2 (ω)

)
+ d

(
w2 (ω) , w1 (ω)

)]
= 0,

or equivalently, in view of (A3),

D
(
w1 (ω) , w2 (ω)

)
+D

(
w2 (ω) , w1 (ω)

)
= 0 and

ε
[
d
(
w1 (ω) , w2 (ω)

)
+ d

(
w2 (ω) , w1 (ω)

)]
= 0.

(4.9)

To complete the proof, it remains to show that w1 (ω) , w2 (ω) for all ω ∈ Ω̃ since P
(
Ω̃
)
= 1.

(i) Thanks to Proposition 4.5, we have W [(wk (ω))] ⊂ S = {w̄(ω)}.
(ii) In this case, we have S ⊂ int dom(ϕp)× int dom(ϕp) thanks to (A1). Thus, in view of Proposition

4.5, wi(ω) ∈ W
[
(wk (ω))k∈N

]
⊂ int dom(ϕp)× int dom(ϕp) for i = 1, 2. Moreover, (4.9) gives

D
(
w1 (ω) , w2 (ω)

)
+D

(
w2 (ω) , w1 (ω)

)
= ⟨∇ϕ(w1(ω))−∇ϕ(w2(ω)), w1(ω)− w2(ω)⟩ = 0.

Unless w1(ω) = w2(ω), this is in contradiction with strict monotonicity of ∇ϕ on int dom(ϕp) ×
int dom(ϕp) since ϕp and ϕd are Legendre.
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(ii) Now ε > 0 and (4.9) entails
d
(
w1 (ω) , w2 (ω)

)
= 0,

whence we conclude w1 (ω) = w2 (ω) by assumption on d.

Remark 4.8. The assumptions and results in Theorem 4.7 can be restricted in a modular way, e.g., if only
the set of primal solutions is a singleton (and not also the set of dual solutions) then we will retain weak
convergence of the primal iterates to the solution to the primal problem.

4.4 Strong Convergence under Relative Strong Convexity

In this part we assume that either f , g, or both are relatively strongly convex (see Definition 2.4) with respect
to ψp with constant mf , mg, or mf +mg, respectively, as in (A11). For brevity, we analyze only the primal
case but all of the analogous convergence results will hold for the dual case by making the corresponding
assumptions on h∗, l∗, and ψd, as in (A11). In addition, if the assumptions made here on the primal functions
and entropies hold for the corresponding dual functions and entropies, we will have convergence results for
the whole primal-dual sequence (wk)k∈N.

Central to our arguments are the concepts of total convexity and sequential consistency which provide an
elegant framework relating convergence in terms of the Bregman divergence and convergence in terms of the
ambient norm of the space. We will assume that ψp is sequentially consistent and totally convex, which we
now go on to define. The following definitions come from [11] although earlier notions of total convexity
and its modulus exist.

Definition 4.9. Define, for all x ∈ int dom (ψp) and t ∈ [0,∞[,

Θψp (x, t)
def
= inf

{
Dψp

(
x′, x

)
:
∥∥x− x′

∥∥
Xp

= t
}
.

The function Θ is called the modulus of total convexity and it is clearly nondecreasing in t (see [11, Page
18]). We call a function ψp totally convex at a point x ∈ int dom (ψp) iff Θψp (x, t) > 0 for any t > 0. We
say the function ψp is totally convex on a subset X ⊆ int dom (ψp) iff it is totally convex for each x ∈ X .

Total convexity is a sort of generalization of strict convexity to functions defined on Banach spaces. In-
deed, for finite-dimensional spaces, strict convexity and total convexity are equivalent for functions with full
domain [11, Proposition 1.2.6]. Examples of totally convex functions include the Shannon-Boltzmann en-
tropy, the Hellinger entropy, the Fermi-Dirac entropy, the energy/euclidean entropy, and any strongly convex
function as well.

Definition 4.10. A function ψp is called sequentially consistent on a subset X ⊆ int dom (ψp) iff for any
bounded subset V ⊆ X , for any t > 0, we have

inf
x∈V

Θψp (x, t) > 0.

Lemma 4.11. Let (x⋆, µ⋆) ∈ S be a saddle point. Assume (H), (A1)-(A5), and (A11)(I). ThenDψp (x
⋆, xk) →

0 almost surely. Similarly, if (A11)(II) holds, then Dψd
(µ⋆, µk) → 0 almost surely.
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Proof. Under (A11)(I), evaluating (3.8) in Lemma 3.10 at a saddle point w = w⋆ ∈ S we have, for each
k ∈ N,

1

Λk
D (w⋆, wk)−

1

Λk+1
D (w⋆, wk+1)−M (w⋆, wk) +M (w⋆, wk+1) + ⟨∆k, w

⋆ − wk+1⟩

≥ mgDψp (x
⋆, xk+1) +mfDψp (x

⋆, xk) .

We now break the proof into two cases based on whether mg > 0 or mf > 0, starting with mf > 0. Taking
the expectation conditioned on the filtration, we have, for each k ∈ N,

mfDψp (x
⋆, xk) ≤

1

Λk
D (w⋆, wk)−

1

Λk+1
E [D (w⋆, wk+1) | Sk]−M (w⋆, wk)

+ E [M (w⋆, wk+1) | Sk] + E [⟨∆k, w
⋆ − wk+1⟩ | Sk] . (4.10)

Applying Lemma 2.6 to (4.10) along with the assumption that mf > 0, (A4), and (A5) with Lemma 3.14,
we find that

(
Dψp (x

⋆, xk)
)
k∈N ∈ ℓ1+ (S) and, in particular, Dψp (x

⋆, xk) → 0 almost surely.
Now, assuming mg > 0 gives, for each k ∈ N,

mgDψp (x
⋆, xk+1) ≤

1

Λk
D (w⋆, wk)−

1

Λk+1
D (w⋆, wk+1)−M (w⋆, wk) +M (w⋆, wk+1) + ⟨∆k, w

⋆ − wk+1⟩ .

Taking the expectation then leads to, for each k ∈ N,

mgE
[
Dψp (x

⋆, xk+1)
]
≤ 1

Λk
E [D (w⋆, wk)]−

1

Λk+1
E [D (w⋆, wk+1)]− E [M (w⋆, wk)] + E [M (w⋆, wk+1)]

+E [⟨∆k, w
⋆ − wk+1⟩] .

Then, by Remark 2.7 with the assumptionmg > 0, (A5) and Lemma 3.14, we have that
(
E
[
Dψp (x

⋆, xk)
])
k∈N ∈

ℓ1+ and so, by Lemma 2.8, we have that Dψp (x
⋆, xk) → 0 almost surely.

Theorem 4.12. Assume (H), (A1)-(A5), and (A11)(I) hold, that ψp is sequentially consistent on Up, and
assume x⋆ is the unique solution to the primal problem (i.e., SP = {x⋆}). Then, if the sublevel sets of
Dψp (x

⋆, ·) are bounded, the sequence (xk)k∈N converges strongly to the solution x⋆ almost surely. Fur-
thermore, if (A11)(II) holds, µ⋆ is the unique solution to the dual problem, ψd is sequentially consistent on
Ud, and the sublevel sets of Dψd

(µ⋆, ·) are bounded, then almost surely, the sequence (wk)k∈N converges
strongly to the saddle point w⋆.

Proof. Under these assumptions, Lemma 4.11 ensures Dψp (x
⋆, xk) → 0 almost surely. The sublevel sets

of Dψp (x
⋆, ·) are bounded and thus the sequence (xk)k∈N is bounded. Since (xk)k∈N also remains in Up

by (A1), there exists Up ⊆ Up a bounded set such that, for each k ∈ N, xk ∈ Up. Since ψp is sequentially
consistent on Up, we have, for any t > 0,

inf
x∈Up

Θψp (x, t) > 0.

Assume now that (xk)k∈N does not converge strongly to x⋆. Then there exists a subsequence
(
xkj
)
j∈N and

ϵ > 0 such that for all j ∈ N it holds, ∥∥xkj − x⋆
∥∥
Xp
> ϵ.
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Since
(
xkj
)
j∈N is a subsequence of (xk)k∈N,

(
Dψp

(
x⋆, xkj

))
j∈N is a subsequence of

(
Dψp (x

⋆, xk)
)
k∈N

and so its limit is 0. Since ψp is sequentially consistent and
∥∥xkj − x⋆

∥∥ > ϵ, the following is true: for any
j ∈ N,

Dψp

(
x⋆, xkj

)
≥ Θψp

(
xkj ,

∥∥xkj − x⋆
∥∥
Xp

)
≥ Θψp

(
xkj , ϵ

)
≥ inf

x∈Up

Θψp (x, ϵ) > 0, (4.11)

which contradicts the fact that lim
j→∞

Dψp

(
x⋆, xkj

)
= 0 since the positive lower bound inf

x∈Up

Θψp (x, ϵ) does

not depend on j. Thus such a subsequence
(
xkj
)
j∈N cannot exist and the desired claim follows.

Repeating this argument for the dual gives convergence of (µk)k∈N to the solution of the dual problem
µ⋆ and thus, if (A11) holds for the primal and the dual, we have that (wk)k∈N converges to the saddle point
w⋆.

Remark 4.13. The assumption that the sublevel sets of the the Bregman divergence be bounded, used in The-
orem 4.12, holds for a wide class of entropies which includes the Shannon-Boltzmann entropy, the Hellinger
entropy, the Fermi-Dirac entropy, the fractional power entropy, and energy/euclidean entropy (see [29, Re-
mark 4]).

Remark 4.14. In the statement of Theorem 4.12, uniqueness of the solution x⋆ is assumed only for clarity of
presentation. Indeed, without the assumption the same argument used in the proof works for every solution
x⋆; and this implies that the solution to the primal problem under our considerations must be unique, as
the sequence xk converges to any solution taken. We do not have a more direct proof for uniqueness of the
solution in the general setting of Theorem 4.12, but we point at Proposition A.2 where we show a direct proof
of uniqueness under the assumption that there exists a saddle point w⋆ = (x⋆, µ⋆) with x⋆ ∈ Up.

5 Applications and Numerical Experiments

We examine two applications that satisfy our assumptions for Theorem 4.1. The following results will be
useful throughout the applications section, particularly when it comes to satisfying (A3). In the rest of the
section, ∥·∥q, q ∈ [1,+∞], will stand for the ℓq norm on Rn. Bqr is the ℓq ball of radius r > 0.

We begin with a famous result, Pinsker’s inequality, which shows that the Kullback-Leibler divergence is
strongly convex on the simplex wrt the ℓ1 norm.

Lemma 5.1 (Pinsker’s Inequality [43]). Let x, y ∈ Σn
def
=
{
u ∈ Rn : u ≥ 0, uT1 = 1

}
and let K be the

Shannon-Boltzmann entropy: K (x) =
n∑
i=1

xi log (xi) on Rn+ with the convention that 0 log 0 = 0. Then it

holds
1

2
∥x− y∥21 ≤ DK (x, y) .

Lemma 5.2. Let T : Rn → Rm, Cp = Rn+, Cd = Rn, g (x) = ι{1}
(
xT1

)
and l ∈ Γ0(Rm). Choose

ϕp (x) =
n∑
i=1

xi log (xi) on Rn+ with 0 log 0 = 0, and ϕd (µ) = 1
2 ∥µ∥

2
2. Let γ > 0. Then (A3) and (A6) are

satisfied with Ũp = Σn, Up = riΣn, Ud = Ũd = dom(∂l∗),

λ∞ <
1

Lp + γ ∥T∥22
and ν∞ <

1

Ld + γ−1
,
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ε = 1
2 and

d (w1, w2) =

(
1

λ∞
− Lp − γ ∥T∥22

)
∥x1 − x2∥21 +

(
1

ν∞
− Ld −

1

γ

)
∥µ1 − µ2∥22 .

In the above, ri denotes the relative interior.

Proof. The expressions of Ũp, Up, Ũd and Ud are immediate. By definition (see (2.3)), for any w ∈ Ũp × Ũd
and w′ ∈ Up × Ud, we have(

1

Λ∞
− L

)
D
(
w,w′)−M

(
w,w′) = ( 1

λ∞
− Lp

)
Dp

(
x, x′

)
+

(
1

ν∞
− Ld

)
1

2

∥∥µ− µ′
∥∥2
2

−
〈
T
(
x− x′

)
, µ− µ′

〉
.

Using Lemma 5.1, it holds for any x ∈ Ũp and x′ ∈ Up,

Dp

(
x, x′

)
≥ 1

2

∥∥x− x′
∥∥2
1
.

By Young’s inequality, for any γ > 0, we also have

−
〈
T
(
x− x′

)
, µ− µ′

〉
≥ −γ

2

∥∥T (x− x′
)∥∥2

2
− 1

2γ

∥∥µ− µ′
∥∥2
2
≥ −γ

2
∥T∥22

∥∥(x− x′
)∥∥2

2
− 1

2γ

∥∥µ− µ′
∥∥2
2

≥ −γ
2
∥T∥22

∥∥(x− x′
)∥∥2

1
− 1

2γ

∥∥µ− µ′
∥∥2
2
.

Combining the two, we find, for any w ∈ Ũp × Ũd and w′ ∈ Up × Ud

(
1

Λ∞
− L

)
D
(
w,w′)−M

(
w,w′) ≥ 1

2

[(
1

λ∞
− Lp − γ ∥T∥22

)∥∥x− x′
∥∥2
1

+

(
1

ν∞
− Ld −

1

γ

)∥∥µ− µ′
∥∥2
2

]

which gives (3.1). Checking (A6) is immediate.

5.1 Linear Inverse Problems on the Simplex

In [15], the problem of least squares regression on the simplex was considered as an application of the
Chambolle-Pock algorithm. A natural extension for Algorithm 1 is to replace the euclidean norm with the
Kullback-Leibler divergence. The Kullback-Leibler divergence is not Lipschitz-smooth and so the Chambolle-
Pock algorithm of [13] and [15] cannot be applied, although [15] does allow one to use an entropy in com-
puting the D-proximal mapping associated to g.

Consider the problem,

min
x∈Rn

+

xT1=1

DK (Ax, b) + β ∥Bx∥1 (5.1)
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where A ∈ Rm×n
+ is a matrix which does not contain any rows which are identically 0, b ∈ Rm++, K is the

Shannon-Boltzmann entropy with the convention that 0 log 0 = 0,

K (x) =

n∑
i=1

xi log (xi) , with dom(K) = Rn+,

and B : Rn → Rn−1 is the linear operator given by

Bx =

 x2 − x1
...

xn − xn−1

 .

It is known that the term ∥Bx∥1 in (5.1) is intended to promote piecewise-constant solutions [49]. Rewriting
(5.1), the associated saddle point problem is given by,

min
x∈Rn

+

max
µ∈Rn−1

DK (Ax, b) + ι{1}
(
xT1

)
+ ⟨Bx, µ⟩ − ιB∞

β
(µ) .

Problem 5.1 can be put in a form solvable using the primal-dual algorithm of [13]. But, in addition to working
over higher dimensional spaces, this algorithm does not exploit the geometry underlying the problem hence
requiring computing (euclidean) prox mappings which are computationally more demanding.

We can apply Algorithm 1 with the following choices,

f (x) = DK (Ax, b) , g (x) = ι{1}
(
xT1

)
, T = B, h∗ ≡ 0, l∗ (µ) = ιB∞

β
(µ) ,

Cp = Rn+, and Cd = Rn−1.

We choose ϕp and ϕd (with the same convention 0 log 0 = 0) to be

ϕp (x) =
n∑
i=1

xi log (xi) and ϕd (µ) =
1

2
∥µ∥22

which induces the divergences Dp and Dd

Dp

(
x, x′

)
=

n∑
i=1

xi log

(
xi
x′i

)
− xi + x′i and Dd

(
µ, µ′

)
=

1

2

∥∥µ− µ′
∥∥2
2
.

This gives us the following D-prox operator for our problem,

prox
Dp

λkg
(x)

def
= argmin

u∈Cp
{λkg (u) +Dp (u, x)} = argmin

u∈Rn
+

uT1=1

{Dp (u, x)} =

 exp (xi)
n∑
j=1

exp (xj)


n

i=1

.

The main hypothesis (H) is clearly satisfied in this problem. In order to satisfy (A1), we must find a constant
Lp > 0 such that Lpϕp (x) − f (x) is convex for all x ∈ int (domϕp) = Rn++. This is precisely what is
shown in [29, Lemma 8], which we include here for clarity.
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Lemma 5.3. Let ϕp (x) =
n∑
i=1

xi log (xi), f (x) = DK (Ax, b), and A ∈ Rm×n
+ such that none of the rows

of A are completely 0. Then, for any Lp such that

Lp ≥ max
1≤j≤m

(
n∑
i=1

Ai,j

)
,

Lpϕp − f is convex on Rn++.

Proof. See [29, Lemma 8]

It remains to choose step sizes (λk)k∈N and (νk)k∈N such that (A2) and (A3) are satisfied, for which we
refer to Lemma 5.2.

Remark 5.4. Notice that the constant γ > 0 in Lemma 5.2 is arbitrary. For the experiments, we took
γ = ∥B∥−1

2 to have symmetric step sizes,

λk =
1

Lp + ∥B∥2
and νk =

1

Ld + ∥B∥2

since Ld = 0 in this problem.
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Figure 1: (Left) Lagrangian optimality gap, computed for both the pointwise iterates in orange and the ergodic
iterates in blue, for Algorithm 1 applied deterministically to the linear inverse problem on the simplex in
dimension n = 250. (Right) The average Lagrangian optimality gap for the ergodic iterates of Algorithm 1
applied stochastically for various batch sizes, showing convergence to a noise dominated region as predicted
by Theorem 4.1. The colored lines are the average Lagrangian values for 20 runs of the algorithm, with
individual runs displayed in light gray. The O(1/k) theoretical rate is the same in both plots, as given in
Theorem 4.1.

We now apply Algorithm 1 to solve (5.1) using the step size and entropy choices discussed above. We
take n = 250 and m = 250, generate A with ai,j ∈ [0.01, 1.01] uniformly i.i.d., and generate b with entries
uniformly i.i.d. in ]0, 1]. We initialize with x0 =

(
1
n , . . . ,

1
n

)
and µ0 = 0 with the constant step sizes

λk = 1
Lp+∥B∥2

and νk = 1
∥B∥2

. We also consider DK (Ax, b) =
m∑
i=1

(Ax)i log
(
(Ax)i
bi

)
as a finite-sum
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for which we can sample fi (x) = (Ax)i log
(
(Ax)i
bi

)
in batches, uniformly, when computing the gradient.

Theorem 4.1 ensures convergence of the Lagrangian optimality gap in the deterministic setting for the ergodic
iterates, and convergence in expectation to a noise-dominated region for stochastic sampling if the error is
bounded in expectation as discussed in Remark 4.2. In Lemma A.1 in the appendix, we prove that this is
indeed the case.

On the left of Figure 1, the Lagrangian optimality gap is presented for both the ergodic and pointwise
iterates in the deterministic case. We show the same gaps for the stochastic version of the algorithm with
batch sampling in Figure 1 on the right. To plot these gaps, we first run the deterministic version of the
algorithm for a high number of iterations to find an (approximate) saddle point (x⋆, µ⋆) ∈ S and then rerun
the algorithm for 80% of the number of inital iterations, computing the gap at each iteration. For the stochastic
version, we run the algorithm 20 times for each batch size and then plot the average of the gap for the ergodic
iterates over these 20 runs in color, with individual runs represented in light gray. Clearly as the batch size
increases, the radius of the noise-dominated region shrinks.

5.2 Variational problems with the entropic Wasserstein distance

Consider the optimal transport problem between two discrete measures, ρ and θ, defined on two metric spaces
X and Y . Let C ∈ Rn×m be the ground cost on X × Y . The cost C is typically application-dependent, and
reflects some prior knowledge on the data to be processed. We regularize the optimal transport problem by
subtracting in the objective the entropy of the transport plan π,

E (π) = −
n∑
i=1

m∑
j=1

πi,j log (πi,j) .

The idea of regularizing the optimal transport problem by including the entropy of the transport plan π is not
new. It was popularized by [21] and then explored, for example, in [22] for computing entropic Wasserstein
barycenters, in [41] for approximating entropic Wasserstein gradient flows, in [23] for variational Wasserstein
problems, in [24], etc. For γ > 0, the entropic regularization of the Kantorovich formulation of optimal
transport can be written as the convex optimization problem

Wγ (ρ, θ)
def
= inf

π∈Π(ρ,θ)

⟨C, π⟩ + γ
n∑
i=1

m∑
j=1

πi,j log (πi,j) = γ
n∑
i=1

m∑
j=1

πi,j log

(
πi,j
ξi,j

) , (5.2)

where Π(ρ, θ)
def
=
{
π ∈ Rn×m+ : π1 = ρ, πT1 = θ

}
is the so-called transportation polytope and ξi,j

def
=

exp(
−Ci,j

γ ) is the Gibbs Kernel. When X = Y , γ = 0 and C = dp, where d is a distance on X , then
W

1/p
0 is the well-known p-Wasserstein distance.
We consider solving the following variational problem over discrete measures, i.e., vectors in the simplex

Σn
def
=
{
x : x ≥ 0, xT1 = 1

}
,

min
ρ∈Σn

Wγ(Fρ, θ) + J ◦B(ρ), (5.3)

where J ∈ Γ0(Rp), F : Σn → Σm and B : Rn → Rp are both linear operators. Seen as a matrix, F is
typically column-stochastic while ρ ∈ Σn is a discrete measure over the metric space X and θ ∈ Σm is the
fixed observed discrete measure over the metric space Y .

Problem (5.3) is a natural way to solve inverse problems on discrete measures where one assumes that

θ ≈ Fρ0,
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where ρ0 is an unknown discrete measure over Y to recover from the observed θ. When F = Id and γ = 0,
(5.3) is closely related to computing the Wasserstein gradient flow (aka JKO flow [31]) of J ◦ B. The JKO
flow was first studied in [31] as it relates to the Fokker-Planck equation before being generalized (cf. [2],
[50]). Entropic regularization, i.e., with γ > 0, was studied in [41] to compute Wasserstein gradient flows
over spaces of probability distributions with the topology induced by the Wasserstein metric.

Applying Fenchel-Rockafellar duality to (5.2) (see [42, Proposition 2.4] for the unregularized case and
[22, Section 5.1] for the entropic case), it is straightforward to see that problem (5.3) reads also

min
ρ∈Σn

sup
τ∈Rm,η∈Rm

⟨τ, Fρ⟩ + ⟨η, θ⟩ − γ

m∑
j=1

m∑
i=1

exp

(
τi + ηj − Ci,j

γ

)
+ J ◦B(ρ). (5.4)

Taking the supremum over η, one can easily show that (see also [27, Proposition 2.1]),

min
ρ∈Σn

sup
τ∈Rm

⟨τ, Fρ⟩ − γ
m∑
j=1

θj log

(
m∑
i=1

exp

(
τi − Ci,j

γ

))
+ J ◦B(ρ). (5.5)

Remark 5.5. Observe in (5.5) that the smooth term in τ (excluding the inner product ⟨τ, Fρ⟩) is actually a
log-sum-exp smooth approximation of the max function, which would appear naturally when marginalizing
with respect to η in the case γ = 0.

Now, dualizing on J , we finally get that (5.3) is equivalent to

min
ρ∈Rn

+

sup
τ∈Rm,ζ∈Rp

ι{1}(ρ
T1) + ⟨(τ, ζ) , (Fρ,Bρ)⟩ − γ

m∑
j=1

θj log

(
m∑
i=1

exp

(
τi − Ci,j

γ

))
− J∗(ζ). (5.6)

The problem in (5.6) is a saddle point problem which can be solved with Algorithm 1 by taking

Cp = Rn+, Cd = Rm+p, Tρ = (Fρ,Bρ) , f (ρ) = 0, g (ρ) = ι{1}
(
ρT1

)
,

l∗ (µ) = l∗ (ζ) = J∗ (ζ) , and h∗ (µ) = h∗ (τ) = γ
m∑
j=1

θj log

(
m∑
i=1

exp

(
τi − Ci,j

γ

))
.

The natural choice for the entropies is, again,

ϕp (x) =
n∑
i=1

xi log (xi) and ϕd (µ) =
1

2
∥µ∥22 .

Lemma 5.6. The function h∗ (µ) is Ld Lipschitz-smooth for Ld ≥ γ−1
m∑
j=1

θj = γ−1.

Proof. The log-sum-exp function (with temperature constant γ),

LSEγ (x)
def
= γ log

(
n∑
i=1

exp

(
xi
γ

))
,

is C2 and convex on Rn (see [26, Lemma 4], [48, Example 2.16, page 48]) and thus so is h∗ (τ, ζ). The
gradient, ∇LSEγ (x), is given, component-wise, for each k ∈ {1, . . . , n} by

(σγ (x))
(k) =

exp (xk/γ)
n∑
i=1

exp (xi/γ)

.
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The function σγ (x) is called the softmax function with temperature constant γ and is Lipschitz-continuous
in the euclidean norm with Lipschitz constant γ−1 (see [26, Proposition 4]). Thus, to see that the function
h∗ is Lipschitz-smooth, denote the jth column of C as C·,j and notice

h∗ (µ) = h∗ (τ) =

m∑
j=1

θjLSEγ (τ − C·,j) =⇒ ∇h∗ (µ) = ∇h∗ (τ) =
m∑
j=1

θjσγ (τ − C·,j) .

With this we write,

∥∥∇h∗ (µ)−∇h∗
(
µ′
)∥∥

2
=

∥∥∥∥∥∥
m∑
j=1

θj
(
σγ (τ − C·,j)− σγ

(
τ ′ − C·,j

))∥∥∥∥∥∥
2

≤

 m∑
j=1

θj

∥∥σγ (τ − C·,j)− σγ
(
τ ′ − C·,j

)∥∥
2

≤ γ−1

 m∑
j=1

θj

∥∥τ − τ ′
∥∥
2

and the desired claim follows.

It is clear that (H) holds in this setting. It remains to find suitable step sizes (λk)k∈N and (νk)k∈N to satisfy
(A2) and (A3). Since the entropies here are exactly the same as in the linear inverse problem on the simplex,
we refer again to Lemma 5.2. With these step sizes, we consider a one-dimensional instance of the problem
with n = 108, Ci,j = 1

2 ∥i− j∥22, F a convolution operator with kernel exp
(
− 1

1−t2

)
for t ∈]−, 1, 1[ and

0 otherwise, J ◦ B the total variation [49], and θ ≈ Fρ0 our observation of Fρ0 is corrupted by Dirichlet
distributed noise. We take x0 =

(
1
n , . . . ,

1
n

)
and µ0 = 0. The results are displayed in Figure 2.
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Figure 2: (Left) Ergodic and pointwise convergence profiles for Algorithm 1 applied to the Wasserstein
inverse problem with entropic regularization parameter γ = 1, total variation regularization parameterβ = 1,
and n = 108. (Right) The ground truth measure ρ0, the recovered measure x, the corrupted observation θ,
and the image Fx of the recovered measure x.
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Remark 5.7. A chief advantage of (5.6), in contrast to optimizing with respect to the transport plan π, is the
significant difference in computational complexity, since the former is operating over n +m + p variables
only rather than nm. Indeed, one can rewrite problem (5.3) as

min
ρ∈Σn

πT1=θ
π1=Fρ

π∈Rn×m
+

DK (π, ξ) + J ◦B (ρ) = min
ρ∈Rn

π∈Rn×m

g (ρ, π) + f ◦ L (ρ, π)

where g (ρ, π) def
= ιRn

+
(ρ) + ιRn×m

+
(π) +DK (π, ξ), L is a linear operator defined as

L (ρ, π)
def
=


Bρ
ρT1

−Fρ+ π1
πT1


and f (s, t, r, u) def

= J (s) + ι{1}×{0}×{θ} (t, r, u). This formulation is solvable using the Chambolle-Pock
algorithm of [13] but, in addition to working with much more variables, over higher dimensional spaces, does
not exploit the geometryof the simplex, and requires computing prox mappings which are computationally
more demanding. The prox operator associated to DK (π, ξ) + ιRn×m

+
(π) will require the Lambert W

function which is a special function (see [25] for more). Even starting from the semidualized form (5.6) will
require either sorting or incrteasing the number of dual variables if euclidean splitting methods like in [13]
are applied.

Remark 5.8. Although we considered here only a simple Wasserstein inverse problem involving a single
observed measure, Algorithm 1 and our problem framework readily extend to more complicated settings such
as computing the Wasserstein barycenter of indirectly observed measures. Wasserstein barycenter problems
were first introduced in [1] without entropic regularization of the Wasserstein distance. Later, the use of
entropic regularization of the Wasserstein distance to speed up computation of barycenters was put forth
in [22], however the barycenter itself was not regularized; such developments would come later, e.g., [12],
[5], etc, and even then the problems considered did not include the possibility of observing the image of the
measure θ under a linear operator F rather than observing the measure θ itself.

Let q ∈ N and consider q reference measures θi ∈ Rni with ni ∈ N for each 1 ≤ i ≤ q, each having been
observed through some linear operator F i : Rn → Rni applied to an unknown discrete measure ρi ∈ Σn,
i.e., θi ≈ F iρi. Let α ∈ Σq. Then we can write the regularized Wasserstein barycenter problem as

min
ρ∈Σn

q∑
k=1

αqWγk

(
F kρ, θk

)
+

q′∑
r=1

Jr ◦Br (ρ)

which is equivalent to the following,

min
ρ∈Σn

sup
τ1∈Rn1 ,...,τq∈Rnq

ζ1∈Rm1 ,...,ζq
′∈Rmq′

q∑
k=1

⟨αkτk, Fkρ⟩ − αkγk

nk∑
j=1

θkj log

(
nk∑
i=1

exp

(
τki − Cki,j

γk

))

+

q′∑
r=1

[⟨ζr, Brρ⟩ − (Jr)∗ (ζr)] .
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This formulation of the problem can be solved with with Algorithm 1 by taking

Cp = Rn+, Cd = Rn1 × · · · × Rnq × Rm1 × · · · × Rmq′ , f (ρ) = 0, g (ρ) = ι
{

n∑
i=1

ρi=1}
(ρ) ,

l∗ (µ) = l∗
(
ζ1, . . . , ζq′

)
=

q′∑
l=1

J∗
l (ζl) , and

h∗ (µ) = h∗
(
τ1, . . . , τ q

)
=

q∑
k=1

αkγk

nk∑
j=1

θkj log

(
nk∑
i=1

exp

(
τki − Cki,j

γk

))
,

with the same entropy choices as we took for (5.6).

Remark 5.9. Consider the same setup as in the previous remark with
(
θ1, . . . , θq

)
and let β ∈ R+. Another

interesting formulation of the regularized Wasserstein barycenter problem that can be solved using Algorithm
1 is the following

min
ρ∈Σn

min
ρ1,...,ρq∈Σn

q∑
i=1

(
Wγi

(
θi, F iρi

)
+ J ◦A

(
ρi
))

+ β

q∑
i=1

αiWγi (ρi, ρ) .

This problem is simultaneously solving the Wasserstein inverse problem for each observed measure θi while
also finding a barycenter ρ among the proposed solutions ρi of the Wasserstein inverse problems.
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A Appendix

Lemma A.1. For each k ∈ N, for a fixed batch size 0 < q < m, let Bk ⊂ {1, . . . ,m} be the batch of q
indices sampled at iteration k and define Bc

k
def
= {1, . . . ,m} \ Bk. Consider the error term induced by the

batch sampling:

δpk = −∇

∑
i∈Bc

k

(Ax)i log

(
(Ax)i
bi

) .

If the entries of A are positive then
(
E
[〈
δpk, x− xk+1

〉])
k∈N is bounded for all x ∈ Σn.

Proof. By Cauchy-Schwarz we have

E
[〈
δpk, x− xk+1

〉]
≤ E

[∥∥δpk∥∥ ∥x− xk+1∥
]
≤ diamΣnE

[∥∥δpk∥∥]
and so it suffices to bound E

[∥∥δpk∥∥] for all k ∈ N. Rather than bound the expectation itself, we will provide
a coarse bound which holds deterministically for an arbitrary batch. For any batch B ⊂ {1, . . . ,m} of size
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0 < q < m, define Ã ∈ R(m−q)×n
++ to be the matrix composed of rows which were not sampled in the batch

B and similarly for b̃ ∈ Rm−q
++ ,

Ã
def
=
[
Ai,·
]
i∈Bc and b̃

def
= (bi)i∈Bc .

Using component wise log and division we have, for all k ∈ N,∥∥∥∥∥∇
(∑
i∈Bc

(Axk)i log

(
(Axk)i
bi

))∥∥∥∥∥ =

∥∥∥∥∥ÃT log

(
Ãxk

b̃

)∥∥∥∥∥ ≤
∥∥∥Ã∥∥∥ ∥∥∥∥∥log

(
Ãxk

b̃

)∥∥∥∥∥
≤
∥∥∥Ã∥∥∥ (∥∥∥log (Ãxk)∥∥∥ +

∥∥∥log (b̃)∥∥∥)
As A and b are fixed from the problem data,

∥∥∥Ã∥∥∥ and
∥∥∥log (b̃)∥∥∥ are bounded. All that remains is to bound∥∥∥log (Ãxk)∥∥∥, for which we first recall that xk ∈ Σn ∩ Rn++ for all k ∈ N by design of the algorithm and

the choice of ϕp. Let a = min
i,j

Ai,j > 0 and a = max
i,j

Ai,j , then for each i ∈ {1, . . . ,m− q}

log
(〈
Ãi,·, xk

〉)
≤ log

(∥∥∥Ãi,·∥∥∥
∞
∥xk∥1

)
= log

(∥∥∥Ãi,·∥∥∥
∞

)
≤ log (a)

as well as

log
(〈
Ãi,·, xk

〉)
≥ log

(
min
j
Ãi,j

)
≥ log (a)

so that the components of log
(
Ãx
)

are contained in a ball of radius max {|log (a)| , |log (a)|}, which is

finite since the entries of A are positive and A is fixed. Thus
∥∥∥log (Ãx)∥∥∥ is bounded and the proof is

complete.

Proposition A.2. Assume (H), (A1), and (A11) hold and thatψp is totally convex and sequentially consistent
on Up. Moreover, suppose that SP∩Up ̸= ∅; meaning that there exists at least one solution x⋆ of (P) in Up.
Then, there exists a unique solution to the primal problem (i.e., SP = {x⋆}).

Proof. First notice that, from (A11), dom (ϕp) ⊆ dom (ψp) and so Up ⊆ int dom (ϕp) ⊆ int dom (ψp).
As ψp is sequentially consistent on Up, we have that, for any bounded subset V ⊆ Up and for any t > 0,

inf
x∈V

Θψp (x, t) > 0.

Suppose for instance that (A11) holds specifically with f relatively strongly convex with respect to ψp. Then,
by Definition 2.4, for any x, y ∈ int dom (ψp),

mfDψp (x, y) ≤ Df (x, y) .

Then, for any bounded subset V ⊆ Up and for any t > 0,

0 < mf inf
x∈V

Θψp (x, t) ≤ inf
x∈V

Θf (x, t) ,
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and so f is sequentially consistent on Up. Recall from [10, Proposition page 50-51] that sequential consis-
tency of f on the set Up implies uniform convexity of f on any bounded subset V ⊆ Up. Denote by x⋆ a
point in SP ∩ Up. As x⋆ ∈ Up, that is an open set, there is a ball Bτ (x⋆), for τ > 0, which is bounded
and contained in Up. In particular, f is uniformly convex on Bτ (x⋆) and so is the objective function in (P).
Suppose by contradiction that there exists another solution x̄ ∈ SP with x̄ ̸= x⋆. By convexity, the segment
connecting x⋆ and x̄ is contained in SP. Then, the intersection of this segment with Bτ (x⋆) has more than
one element and is contained both in SP∩Bτ (x⋆). This is a contradiction with the uniform convexity of the
objective function in (P) on Bτ (x⋆).
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