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such a duality based on the quantum action of the model, it should be questioned whether
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weak coupling regime 0 < b < 1. In this article we assert that the answer is no, and we
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that in this region one needs to introduce a background charge Q∞ = b+ 1/b− 2 which
differs from the Liouville background charge by the shift of −2. We propose that in this
regime the model has non-trivial massless renormalization group flows between two different
conformal field theories. This is in contrast to the weak coupling regime which is a theory of
a single massive particle. Evidence for our proposal comes from higher order beta functions.
We show how our proposal correctly reproduces the freezing transitions in the multi-fractal
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1 Introduction

The sinh-Gordon model is the simplest relativistic model in 1 + 1 dimensions that is
integrable. It can be defined by the action

S =
∫
d2x

( 1
8π∂µφ∂µφ+ 2µ cosh(

√
2bφ)

)
, (1.1)

with b is a real parameter and φ a real scalar field. The current understanding is that the
spectrum consists of a single massive particle, with an S-matrix that is factorizable in terms
of the two particle S-matrix [1], eq. (2.1) below. Based on this, a great deal is known about
the model. As a partial list of references, let us mention the following. The form factors
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have been computed [2, 3], which can be used to calculate correlation functions. Even finite
temperature 1-point correlations are computable [4]. The thermodynamic Bethe ansatz
(TBA) has also been investigated [5]; we will say more about this later.

In spite of this vast amount of known results concerning the sinh-Gordon model, one
important aspect has essentially remained unanswered. Remarkably, the S-matrix satisfies
the strong/weak coupling duality in that it is invariant under b→ 1/b. The most common
viewpoint is that one first defines the theory for 0 < b < 1 where one can trust perturbation
theory around b = 0, and then one defines the theory for 1 < b < ∞ using the duality.
Since the form factors and TBA are invariant under b → 1/b, from this perspective the
theory for b > 1 is the same as the dual theory at 0 < b < 1. However an important
question arises. Since there is no indication of a b→ 1/b duality based on the action (1.1)
itself, the analytic continuation b→ 1/b may actually not be valid. Relatively recently this
issue was studied in much detail using a truncated Hilbert space approach [7] and indeed
indications were found that this approach breaks down as b approaches the self-dual point
b = 1. It was suggested there that for b > 1 the theory may actually be massless, however
definite properties of such a theory remained unspecified and are still unknown. A similar
breakdown of analyticity is known to occur in freezing phenomena, such as in disordered
systems [8, 9], and was recently shown to be present in Coulomb gas systems [10] which
bear analogies with the sinh-Gordon model. The freezing transition in the sinh-Gordon,
in connection with disordered fermions, was also considered in [11, 12]. We will say more
about this connection later.

The purpose of the present article is to make a definite proposal for the behavior of
the sinh-Gordon model for b > 1 that is not a simple analytic continuation b → 1/b of
the 0 < b < 1 regime. Our specific proposal is easily described. For 0 < b < 1 the theory
can be defined as a perturbation of a free massless boson in the ultraviolet (UV), and the
standard properties based on a single massive particle with the known S-matrix all apply.
However at b = 1 and above, a background charge Q∞ is spontaneously generated. This
background charge is not the same as one would obtain if one views the sinh-Gordon theory
as a perturbation of the Liouville conformal field theory (CFT), but is rather given by

Q∞ = b+ 1/b− 2 (1.2)

which is a shift of the Liouville value by −2. Furthermore, the b > 1 regime is a massless
phase, but is not conformally invariant. Rather the theory can be described by a massless
renormalization group (RG) flow between two conformal field theories.

In section 3 we propose our main result (1.2) based on some rather simple criteria.
However these simple arguments by themselves are not enough to understand the true
nature of the theory beyond the self-dual point. Ultimately the properties of this theory
should be tied to properties of the RG, since the non-zero background charge Q∞ affects
anomalous dimensions, etc. To this aim we study the RG for the sinh-Gordon model based
on the beta functions proposed in [13] and understood in more detail in [14]. These beta
functions are well suited to our purposes since they are ultimately based on the action (1.1)
of the sinh-Gordon theory itself. More importantly, the physics of interest here concerns
massless flows between conformal field theories, and it was shown in [14] that these proposed
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beta functions predict RG flows that agree precisely with exact results for massless flows in
the so-called “imaginary” sine Gordon model [15, 16]. We will review this below. These beta
functions also correctly predicted cyclic RG flows. This gives us some confidence in at least
attempting to use these beta functions to explore the physics we are trying to understand.
As we will show in section 4.1 there is a clear difference between the RG flows for b < 1
verses b > 1 since these beta functions do not have the symmetry b→ 1/b. Furthermore, we
can argue based on these beta functions that b > 1 is a massless phase and provide support
for our proposed Q∞.

The beta functions in [13] are based on anisotropic current-current perturbations of
a Wess-Zumino-Witten model at a level k, and the map to sine and sinh Gordon theory
was made in [14], which only involves level k = 1. It needs to be mentioned that the
beta functions in [13] are still conjectural. It was argued in [17] that there are corrections
at 4-loops. One of us has also pointed out that there could be 1/k corrections to these
beta functions for a different class of “flavor” anisotropic models [18]. Similar kinds of
“all-orders” beta functions were considered in [19–22] using rather different gravitational
methods. There it was also argued that there are higher 1/k corrections. On the other hand,
as already stated above, the renormalization scheme used in [13] to obtain an all-orders
beta function has already been shown to provide exact results for the kind of physics being
explored here. In light of these statements, in this paper we will simply assume the beta
functions in [13, 14] to be correct enough to capture the physics we are trying to understand
and leave aside the issue of possible corrections and whether they affect our conclusions.
Our analysis of these beta functions at this stage should be viewed as supportive, but not
indisputable, evidence for our main proposal described above. In any case, irrespective of
the present work, it is not at all understood how these proposed 1/k corrections can be
reconciled with the correct exact predictions on massless flows in [14–16].

In section 5 we apply our proposal to the freezing transition of a Dirac fermion in
2 + 1 dimensions in a random U(1) gauge field, namely a magnetic field. We first map the
problem to the sinh-Gordon theory. Then using our proposed Q∞, we compute in detail the
multi-fractal exponents and their transitions, which can all be traced to the transition at
b = 1 of the sinh-Gordon model. Our results agree with known results based on Derrida’s
random energy model or other random fermion models [8, 9, 11, 12, 23]. This provides
rather strong evidence for our proposals concerning the transition in the sinh-Gordon model
at the self-dual point.

By studying a simple semi-classical evaluation of one-point functions in the sinh-
Gordon model, one can understand how the premises of a transition can be found in
such an approximation, and how it is related to the well-known counter-ion Manning’s
condensation [24] in polyelectrolyte solutions. This semi-classical computation actually
points towards a freezing transition in the spectrum of possible exponential operators, as a
function of their weights for fixed value of the sinh-Gordon parameter b. We relegated these
results to an appendix since the calculation is semi-classical and detailed properties are
beyond its scope. However we found it instructive to include this analysis since it provides
a simple intuitive picture for the transition.

– 3 –



J
H
E
P
0
5
(
2
0
2
2
)
0
2
2

2 Sinh-Gordon conventions

Since there are several conventions in the literature, and factors of 1/4π and
√

2 are
important here, we clearly define our conventions. In the standard understanding, almost
certainly valid in the weak coupling regime 0 < b < 1, the spectrum consists of a single
particle of mass mphys with two particle S-matrix

S(θ) = sinh θ − i sin πγ
sinh θ + i sin πγ , γ ≡ b2/(1 + b2). (2.1)

Here θ is the difference of the usual rapidity parameterization of energy/momentum:
(E, p) = mphys (cosh θ, sinh θ). This S-matrix is invariant under the duality b→ 1/b which
corresponds to γ → 1− γ.

The free gaussian field when µ = 0 can be decomposed as φ(z, z) = ϕ(z) + ϕ(z), where
z = x+ iy and z = x− iy. With the 1/8π in the action, the above fields have the canonical
two point functions, 〈ϕ(z)ϕ(w)〉 = − log(z−w), and similarly for ϕ, and its Virasoro central
charge is c = 1. It is most natural to view the cosh potential as a perturbation of the free
gaussian field. Let [[∗]] denote the total scaling dimension of ∗ in mass units (for fields this
is the sum of left and right conformal dimensions ∆ + ∆). One has

[[cosh(
√

2bφ)]] = −2b2, (2.2)

which is always relevant for real b. Thus µ = [mass]2+2b2 for some mass parameter. One
can take the latter as the physical mass of the single sinh-Gordon particle, such that

mphys = F (b) µ1/(2+2b2). (2.3)

The non-trivial function F (b) was computed by Al. Zamolodchikov by comparing conformal
perturbation theory with the thermodynamic Bethe ansatz (TBA) since the latter is
expressed in terms of mphys [25]. We will not need the explicit form of F (b) which is
somewhat complicated but only its value in the limit b→ 1.

We can now clearly address the issue we are proposing to resolve in this paper that
was referred to in the Introduction. The S-matrix (2.1) is invariant under the strong/weak
duality b → 1/b. The self-dual point is b = 1. This, combined with the Z2 symmetry
b → −b naively suggests one need only solve the theory the region 0 ≤ b ≤ 1, and then
analytically continue the result to all b on the real line. First of all, there is no guarantee
this analytic continuation is valid since it is not a symmetry of the lagrangian whatsoever.
Moreover there is concrete evidence that some phenomenon is going on at b = 1 which as
yet is not understood. One indication is that from the exact form of F (b), one finds

lim
b→1

mphys = lim
b→1

4
√
π

Γ
(

1
4

)2

(
πµ

Γ(1− b2)

)1/4
= 0, (2.4)

which formally implies mphys = 0 at b = 1. For b > 1 it would appear mphys is complex. If
the physical mass is zero at b = 1, then the S-matrix (2.1) does not make much sense since
rapidity is not defined if mphys = 0. More recently the sinh-Gordon model was studied
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starting from the action in a truncated Hilbert space approach and clear deviations from
the TBA predictions were observed as b→ 1 [7]. On the other hand, for b not too large but
still in the region 0 ≤ b ≤ 1, results based on a truncated space of the free gaussian field
work very well. Based on this one could conclude that the theory defined by the lagrangian
for b > 1 has different properties than one would expect from an analytic continuation of
0 ≤ b < 1. Another piece of evidence for this transition comes from the analysis of random
fermions done in [11, 12]. There, the existence of a freezing transition in the sinh-Gordon
was conjectured in connection with glassy behavior of random Dirac fermions. Their analysis
was based on using one-loop RG equations, in the form of the so-called KPP equations,
and their traveling wave solutions. Up to now these works, though very interesting, have
not provided a concrete indication of the properties of the theory for b > 1.

3 Sinh-Gordon theory with a background charge

3.1 Generalities

In this section we consider the sinh-Gordon model with a background charge Q∞ at infinity.
Formally one can deform the action as follows:

S = SshG +Q∞ φ∞. (3.1)

Alternatively one can couple the field φ to the curvature R, adding a term proportional to
Q∞Rφ to the lagrangian. Either way, in the unperturbed µ = 0 conformal field theory, the
effect is to modify the conformal stress tensor

T (z) = −1
2∂zϕ∂zϕ+ Q∞√

2
∂2
zϕ, (3.2)

and similarly for T (z). The Virasoro central charge is now

c = 1 + 6Q2
∞. (3.3)

The main effect of non-zero Q∞ is to change the scaling dimensions of operators in the free
boson CFT:

[[e
√

2aφ]] = 2a(Q∞ − a). (3.4)

The two exponentials in the cosh now have different scaling dimensions, thus one should
write

2µ cosh(
√

2bφ)→ µ+e
√

2bφ + µ−e
−
√

2bφ. (3.5)

Although the dimensions of e±
√

2bφ differ, their sum adds up to −4b2 for any Q∞.
For a weight “a” in e

√
2aφ, let us define its dual ã:

ã ≡ Q∞ − a, (3.6)

and similarly for the sinh-Gordon coupling b̃ ≡ Q∞ − b. Note that for zero Q∞, ã = −a,
including of course b̃ = −b. Thus with no background charge, the duality b → b̃ simply
corresponds to the Z2 symmetry of the action b→ −b.
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For the CFT with non-zero Q∞, one has the duality that the dimension of e
√

2aφ is
invariant under a→ ã. Coulomb gas techniques indicate the equivalence

e
√

2aφ ' e
√

2(Q∞−a)φ, (3.7)

in the CFT correlation functions. In the TBA this equivalence can be expressed in terms of
so-called reflection amplitudes R(a)

e
√

2aφ = R(a) e
√

2(Q∞−a)φ (3.8)

which are known for the Liouville case [27]. This reflection symmetry is known to be valid
in the Liouville theory but only conjectural in the sinh-Gordon theory (see the appendix
for a discussion of this point).

For any background charge Q∞, the effective central charge ceff of the TBA is the same
if the particle is considered massive. The TBA equations based on the S-matrix (2.1) do
not depend explicitly on Q∞. However the effective UV central charge is ceff = cvir − 12d0
where cvir is the Virasoro central charge and d0 is the ground state energy. Now d(a) =
2a(Q∞ − a) which has a maximum at a = Q∞/2 which corresponds to d0 = Q2

∞/2. Thus
ceff = 1 + 6Q2

∞ − 12(Q2
∞/2) = 1, independently of Q∞.

In principle, the sinh-Gordon model can be considered with any Q∞. In this paper we
will only consider two choices, the Liouville case and the choice described in the subsequent
subsection. Let us consider the first.

3.2 Liouville case

This is the most natural choice besides the perturbation of the Q∞ = 0 free massless boson.
Many works indicate that the sinh-Gordon model may be viewed as a perturbation of the
Liouville theory, in particular [26–28]. In this choice,

Q∞ = b+ 1/b, =⇒ [[e
√

2bφ]] = 2. (3.9)

Namely the positive exponential is an exactly marginal operator, [[µ+]] = 2, and the
additional e−

√
2bφ is viewed as a relevant perturbation of the Liouville CFT. Although

this may seem like an unnecessary complication, surprisingly it has been shown that
the conformal perturbation theory of this model with non-zero Q∞ can reproduce the
perturbation theory with Q∞ = 0 when 0 < b < 1 [7].

For Q∞ = b+ 1/b, the duality (3.6) is b→ b̃ = 1/b. This indicates that this Liouville
formulation of the sinh-Gordon model is unable to address the problem posed in this paper
since this dual is the usual one that maps the region 0 ≤ b ≤ 1 to 1 ≤ b ≤ ∞. Thus it has
nothing to say about any novel behavior for b > 1.

3.3 Freezing transition at the self-dual point

Our aim is to find a different choice of background charge Q∞ that can define the sinh-
Gordon model for b > 1, which is expected to have different properties. As discussed above,
the model with |b| ≤ 1 appears to be well-defined as a perturbation of the free massless
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boson with zero Q∞, or as a perturbed Liouville theory. Taking the simpler option, we
assume there is no background charge in this region, i.e.

Q∞ = 0, for 0 < b < 1. (3.10)

At b = 1 we introduce a non-zero Q∞. It would be very interesting to understand what
precise mechanism spontaneously generates this non-zero Q∞, however we leave aside that
question in this work.

The conditions we impose on Q∞ for |b| > 1 are quite natural and are the following:

• Based on the symmetry of the S-matrix, we require Q∞ to be self-dual, as for
the Liouville case. This implies we can expand Q∞ as a series in b + 1/b: Q∞ =∑∞
n=0 αn (b+ 1/b)n. Since there are not enough constraints to fix all αn, we assume

only α0 and α1 are non-zero, as in the Liouville theory.

• For continuity with |b| < 1, we require the background charge Q∞ = 0 at b = 1:
Q∞ = α0 + α1(b+ 1/b) = 0 at b = 1, so that α0 = −2α1. This in turn implies that at
the self-dual point b = 1, in the UV one has c = 1, as for 0 < b < 1. Thus in the UV,
the central charge c is continuous and only changes at the self-dual point b = 1.

• To fix α1 we need a condition at b =∞. We require that under the duality b→ b̃ =
Q∞ − b, the dual coupling constant b̃ remains in the non-zero Q∞ region |b̃| ≥ 1. For
a fixed b, this amounts to b̃ ≤ −1, which implies α1 ≤ b/(b− 1). Requiring the above
for all b, in particular b =∞, leads to the minimal choice α1 = 1. Although at this
stage this appears somewhat ad hoc, as we will see it leads to correct predictions for
the random energy model.

In summary, we thus propose

Q∞ = b+ 1/b− 2, for b > 1, (3.11)

and zero otherwise. This is just a shift of the Liouville background charge by the integer −2.
Note that as b→∞, Q∞ is the same as for the Liouville case. Notice also the dichotomy:
for Q∞ = 0 and the Liouville choice Q∞ = b+ 1/b, b̃ = −b and 1/b respectively, whereas
for the above choice b̃ = −2 + 1/b, which equals −b for b = 1.

With this choice of Q∞ one has

[[e
√

2bφ]] = 2− 4b, [[e−
√

2bφ]] = 4b− 2− 4b2. (3.12)

Thus the dimensions of the parameters µ± are

[[µ+]] = 4b, [[µ−]] = 4(b2 − b+ 1). (3.13)

For b ≥ 1, both operators e±
√

2bφ are then relevant, even though they have different
dimension. The ultra-violet limit is controlled by the highest dimension operator, namely
the least relevant. This is the operator e+

√
2bφ. We thus propose that in this frozen phase
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b > 1 one effectively has [[cosh(
√

2bφ)]] ∼ 2− 4b. The term “frozen” is borrowed from the
theory of disordered systems; see below.

In summary, we have proposed that

[[e
√

2bφ]] =

−2b2, for 0 < b < 1,
2− 4b, for b > 1.

(3.14)

Furthermore, as we explained, we identify the above dimensions (3.14) as the effective scaling
dimension of cosh(

√
2bφ). This transition is induced by the generation of a background

charge for b > 1. We conjecture that the sinh-Gordon model, which is well defined for
0 < b < 1 with Q∞ = 0, is actually ill-defined for b > 1 without background charge but
well-defined with the background charge Q∞ = b+ 1/b− 2 as in eq. (3.11).

4 Massless renormalization group flows in the sine- and sinh-Gordon
models

In the present context by “massless flows” we mean the following. Suppose an RG flow
originates as a perturbation of an UV fixed point CFT by a relevant operator of dimension
ΓUV < 2 and flows to a different non-trivial fixed point in the infrared (IR), necessarily
arriving there via an irrelevant operator of dimension ΓIR > 2. Generally in the flow to the
IR, massive particles decouple, thus if the IR theory is non-trivial some massless particles
must survive the flow. In the deep IR, the theory is approximated by the interactions of
these massless degrees of freedom.

4.1 Higher order beta functions

The sinh-Gordon model can be viewed as a current-current perturbation of an SU(2) WZW
model at level 1 with action,

S = Swzw + 1
2π

∫
d2x

(
g1
[
J+J

− + J−J
+]+ g2J3J3

)
, (4.1)

with J± = 1√
2e
±i
√

2ϕ and J3 = i√
2∂zϕ, where ϕ(z) is the z-dependent part of a free massless

scalar field φ(z, z) = ϕ(z) + ϕ(z). The advantage of doing this is that current algebra
Ward identities allow an easier approach to calculating higher order corrections to the beta
functions since both couplings g1,2 are marginal. The bosonized form of the action is now

S = 1
4π

∫
d2x

(1
2(∂φ)2 + g1 cosh(

√
2bφ)

)
. (4.2)

The coupling b is a function of g2 presented below, and can be real or imaginary corresponding
to either sinh or sine Gordon phases [14]. For reasons that will become clear, let us postpone
this identification for now since such an identification depends on Q∞, and first describe
the general properties of the flows based solely on the beta functions for g1, g2.

In our original treatment [14], g1 was taken to be real. For several reasons in this
section we present our conclusions for g1 imaginary. One reason is that for our purposes we
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are interested in massless RG flows, and this case provides a point of comparison with the
known exact results [15, 16]. The second is that for the map to sinh-Gordon for disordered
systems, equation (5.9) below, g1 is indeed imaginary. Thirdly, under the continuation
g1 → ig1, the poles in the beta functions in [14] no longer exist and one does not have to
deal with continuing the flow through these poles. Fortunately as we will comment on
at the end of this section, for the sinh-Gordon flows we are interested in the distinction
between real and imaginary g1 does not matter as far as the endpoints of the flows are
concerned, even though the details of the RG trajectories do differ.

For the reasons just described above, we extend the results in [14] to g1 → ig1,
corresponding to imaginary µ in (1.1). Taking g1 → ig1, the beta functions in [13] become
the reasonably simple functions

dg1
d log a ≡ βg1 = g1(g2 + g2

1/4)
(1 + g2

1/16)(1 + g2/4) , (4.3a)

dg2
d log a ≡ βg2 = −g

2
1(1− g2/4)2

(1 + g2
1/16)2 , (4.3b)

where a is a cut-off scale. With these conventions, the flow to the IR corresponds to a→∞.
Flows with g1 < 0 are just a mirror image of those with g1 > 0 since the beta functions are
invariant under g1 → −g1, thus we will only discuss the case g1 > 0.

The above beta functions have a remarkable strong/weak coupling duality. For both
βg1,g2 (recall that beta functions transform as vector fields):

β(16/g1, 16/g2) = −β(g1, g2). (4.4)

Also, again rather remarkably, there exists an RG invariant which allows us to map out
basic features of the flows without explicitly solving the coupled differential equations based
on the beta functions. Such an invariant I satisfies ∑g βg ∂gI = 0. One may check that
the following I is an invariant [14]

I(g1, g2) = g2
1 + g2

2
(g2 − 4)2(g2

1 + 16) . (4.5)

This invariant satisfies the strong-weak coupling duality of the beta functions (4.4),

I(16/g1, 16/g2) = I(g1, g2). (4.6)

The line g1 = 0 is a line of fixed points where both beta functions are zero. By
computing the slope of the beta function near g1 = 0, one can determine the dimension Γ0
of the perturbation cosh(

√
2bφ) there with the general formula

β(g) = (2− Γ(gc))(g − gc) + · · · , (4.7)

near a critical point gc. Since βg1 = [4g2/(4 + g2)] g1 near g1 = 0, equating the slope with
2− Γ0(g2) yields

Γ0(g2) ≡ Γ(g1 = 0) = 2
(4− g2

4 + g2

)
. (4.8)
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Thus, the g2 axis (at g1 =0) is divided into several regions, where the perturbations are
classified as relevant (Γ0 < 2) or irrelevant (Γ0 > 2). We thus identify three distinction
regions at g1 = 0:

– Relevant: −∞ < g2 < −4;
– Irrelevant: −4 < g2 < 0;
– Relevant: 0 < g2 <∞.

For the relevant regions the flows originate at g1 = 0 and flow toward increasing g1. For
the irrelevant region, the flows terminate at g1 = 0 arriving from positive g1.

As we will see, based on the invariant I, many of the flows that originate at g1 = 0 end
up at g1 =∞. Not all however, depending on whether g1 is real or imaginary, see below.
But in the case of interest, namely the sinh-Gordon model, flows indeed start at g1 = 0 in
the UV and flow to g1 =∞ in the IR. Whereas the dimensions of the perturbations around
g1 = 0 are unambiguous as a function of g2 since g1 is an obvious line of fixed points (see
Γ0(g2) in (4.8)), the scaling dimension of the perturbation at g1 =∞ is less obvious. We
propose the following identification. Based on the duality of the beta functions (4.4), flows
at g1 = 0 can be mapped into flows at g1 =∞, where formally if the beta functions are zero
at g1 = 0 they are also zero at g1 =∞ if one uses (16/g1, 16/g2) as coordinates. However
the minus sign in (4.4) implies the UV and IR are exchanged, since they are related by
a→ 1/a. We propose that along the flow the dimension of the perturbation is given by the
same functional form as Γ0(g2) for g2 as a function of the RG scale. To be more precise, we
are assuming that the dimension of the perturbation Γ(t), where t = log a is the RG time,
satisfies Γ(t) = Γ0(g2(t)). Thus at t = 0, Γ = Γ0(g2(0)) = Γ0(gUV

2 ) = ΓUV. On the other
hand at t =∞,

Γ = Γ0(g2(∞)) ≡ ΓIR. (4.9)

The flow of g2(t) thus implies a relation between ΓUV and ΓIR.
For instance if a flow originates at g1 = 0 from a relevant perturbation with

ΓUV = Γ0(gUV
2 ), and gUV

2 flows to gIR
2 , then in the IR at g1 =∞ we identify the dimension

as ΓIR where

ΓIR = Γ0(gIR
2 ) = 2

(
4− gIR

2
4 + gIR

2

)
, at g1 =∞. (4.10)

Let us make several remarks supporting our rather natural proposal (4.9) since it will
be essential in the following:

• The equation (4.9) correctly predicts the exact relation between ΓUV and ΓIR for mass-
less flows that both begin and end at g1 = 0. These are the flows in [15, 16], see below.

• At g1 =∞, the coupling g2 stops flowing, i.e. remains constant, as it does at g1 = 0,
which implies the dimensions ΓUV and ΓIR are constant there. One can see this as
follows. One can eliminate g1 and write the beta function in terms of g2 and I only:

βg2 = 16
(
g2

2 − 16I(g2 − 4)2) (1− I(g2 − 4)2)
(g2 + 4)2 (4.11)

– 10 –
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Now one has

I0 ≡ I(g1 = 0, g2) = g2
2

16(g2 − 4)2 , I∞ ≡ I(g1 =∞, g2) = 1
(g2 − 4)2 . (4.12)

One sees that for both I = I0 and I = I∞, the beta function βg2 = 0, thus g2 is a
constant in RG time both at g1 = 0 and g1 =∞. Alternatively, βg2 vanishes either
for 16I(g2 − 4)2 = g2

2 or for I(g2 − 4)2 = 1. The former corresponds to g1 = 0, the
latter to g1 =∞.

• Since under the duality g2 → 16/g2 the IR and UV limits are exchanged due to (4.4),
one should expect that Γ0(16/g2) = −Γ0(g2), which is satisfied.

• When g2 = 4, g2 does not flow at all since βg2 = 0 for all g1. Thus it must be that
ΓUV = ΓIR = Γ0(4) = 0. As we will see below, this corresponds to the b = 0 point
of the sinh-Gordon theory which is just a free massive boson.

Notice that at g1 → ∞ in the IR, the theory might either be the trivial massive theory,
with all degrees of freedom frozen, or a non trivial theory, potentially a conformally
invariant theory.

4.2 Identification of sinh and sine Gordon phases

It remains to identify where the above model with g1, g2 corresponds to the sinh-Gordon
model. This identification clearly depends on whether we assume the presence of a back-
ground charge or not, and this fact will be important later. If we view the cosh potential as
a perturbation of the free gaussian field with no background charge, then Γ0 = −2b2:

b2 = (g2 − 4)
(g2 + 4) . (4.13)

Again — at the price of repeating ourselves — this identification relies on a specifically
chosen relation between the scaling dimension and the parameter b (which here assumes the
absence of background charge). If this dimension is positive we view the potential as being
in a sine-Gordon regime g1 cos(

√
2βφ) with β = ib. There are now four distinct regions:

– Relevant: −∞ < g2 < −4, sinh-Gordon with 1 < b2 <∞;
– Irrelevant: −4 < g2 < 0, sine-Gordon with 1 < β2 <∞;
– Relevant: 0 < g2 < 4, sine-Gordon with 0 < β2 < 1;
– Relevant: 4 < g2 <∞, sinh-Gordon with 0 < b2 < 1.

The above regions are the same as those already identified in [14]. Note already that the
regions b < 1 and b > 1 are clearly distinguished.

For g1 = 0 in the UV, the duality g2 → 16/g2 corresponds to b → ib, i.e. maps from
the sinh-Gordon to sine-Gordon regimes. On the other hand, the usual hypothetical sinh-
Gordon duality b→ 1/b corresponds to g2 → −g2. However the latter is not a symmetry
of the beta functions and indicates that the RG properties of 0 < b < 1 verses b > 1 are
indeed different. This is one of the main points of this paper which we will subsequently
explore in more detail.
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Figure 1. Massless flow in the imaginary sine-Gordon model from gUV
2 = 1 to gIR

2 = −2. This
corresponds to a flow from βUV =

√
3/5 to βIR =

√
3. What is shown is a contour plot of the RG

invariant I.

4.3 Massless flows in the “imaginary” sine-Gordon model

Following the terminology in [15, 16] we refer to the sinh-Gordon action (1.1) with µ ∝ g1
imaginary as the “imaginary” sine-Gordon model. In this case there are flows that both
begin and end at g1 = 0, indicating a massless flow between two different CFT’s, both at
c = 1, which differ in their radius of compactification β. Here since the flows both start
and end at g1 = 0, there is no ambiguity in determining anomalous dimensions in the
UV nor the IR. This situation was already explained in [14] based on the beta functions
above, however we review it here since it represents a prototype of the kinds of flows we
will propose in the sinh-Gordon case.

In the sine-Gordon regime with small couplings g1 and g2, I ∝ (g2
1 + g2

2), thus the RG
flows are approximately circles. This implies that flows can both begin and end on the g2
axis, which is a massless flow as defined above. Such flows are straightforward to analyze to
all orders. For g1 = 0, I = I0 defined in (4.12). Since I is preserved along the flow, one
must have

gUV
2

gUV
2 − 4

= − gIR
2

gIR
2 − 4

=⇒ gIR
2 = 2gUV

2
gUV

2 − 2
. (4.14)

In terms of β,

β2
IR = β2

UV
2β2

UV − 1 , (4.15)

which implies the dimensions of the perturbation in the UV verses IR are related as follows

ΓIR = ΓUV
ΓUV − 1 . (4.16)

For irrelevance in the IR, ΓIR > 2, requires 0 < g2 < 4/3 or equivalently 1/2 < β2 < 1,
consistent with [15, 16]. A contour plot of such a flow is shown in figure 1. The existence of
the flows and the relation (4.16) have been conjectured long ago in [15, 16]. The fact that
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Figure 2. A massive flow in the imaginary sine-Gordon model from gUV
2 = 5 to gIR

2 = 24/5. This
corresponds to a flow from bUV = 1/3 to bIR = 1/

√
11. What is shown is a contour plot of the RG

invariant I where the x, y axes corresponds to g1, g2.

we recover them and the correct relation (4.16) provides further support for the effectiveness
of the beta functions (4.3a) in understanding this kind of physics.

4.4 RG flows in the sinh-Gordon model: b < 1 verses b > 1

Here we consider flows in the different regimes 0 < b < 1 and 1 < b <∞ for the sinh-Gordon
with imaginary µ. As explained at the end of this section, the case of real µ is not very
different. Recall these regimes correspond to g2 > 4 and g2 < −4 at g1 = 0, respectively. For
such large coupling g2, constant I is not at all approximated by a circle as in the sine-Gordon
case. All flows originating at g1 = 0 end up at g1 = ∞. As we now explain, there are
two cases which have rather different behavior, and correspond precisely to 0 < b < 1
verses b > 1. We need to relate g2 in the UV and IR. Since I is preserved along the flow,
one must have I0(gUV

2 ) = I∞(gIR
2 ). A fortunate and promising result that has not been

pre-programmed into the above beta functions is that the two cases correspond precisely to
weak verses strong coupling:

• For 0 < b < 1. The flows originating at (g1, g2) = (0, gUV
2 > 4) end up at (∞, gIR

2 ))
where

gUV
2

4(gUV
2 − 4)

= 1
(gIR

2 − 4)
=⇒ gIR

2 = 8(gUV
2 − 2)
gUV

2
. (4.17)

Expressing this in terms of the scaling dimensions:

ΓIR = ΓUV
1− ΓUV

. (4.18)

Identifying the parameter b using the relation Γ = −2b2 yields b2IR = b2UV/(1 + 2b2UV).
Both bUV and bIR then remain in the weak coupling region 0 < b < 1. This should
be a massive flow since ΓIR still signifies a relevant perturbation, although with an
imaginary coupling µ. One instance of it is shown in figure 2.
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! (g1 = 1, gIR2 = 16/gUV
2 )

Figure 3. Sketch of the massless flow in the imaginary sinh-Gordon model from gUV
2 < −4 to

gIR
2 = 16/gUV

2 . The value g∗
1 is given in the text: g∗

1 = 8
√

4− 2g2/|g2|.

• For 1 < b <∞. The flows originating at (g1, g2) = (0, gUV
2 < −4) end up at (∞, gIR

2 ))
where there is just a change of sign in (4.17):

gUV
2

4(gUV
2 − 4)

= − 1
(gIR

2 − 4)
=⇒ gIR

2 = 16
gUV

2
. (4.19)

Expressing this in terms of the dimensions Γ:

ΓIR = −ΓUV. (4.20)

Now in this case, ΓIR > 2, i.e. irrelevant, and this is thus a massless flow. This
flow in the sinh-Gordon region is rather analogous to the massless flows in the sine-
Gordon model described above, since in the IR they both end up in the irrelevant
regime where −4 < gIR

2 < 0. The details of the flow are however more intricate
compared to the previous case. Rather the flows start at (g1, g2) = (0, gUV

2 ) and first
flow to g2 = −∞. This occurs at g1 = g∗1 such that I(0, g2) = I(g∗1,±∞), that is
g∗1 = 8

√
4− 2g2/|g2|. Using the cylindrical topology proposed in [14] which identifies

g2 with −g2 at |g2| =∞, the flow then continues from g2 =∞ to g1 =∞ but with a
different g2 = gIR

2 , which is actually the dual of g2. This implies the flow

(g1, g2) = (0, g2) UV→IR−→ (∞, 16/g2). (4.21)

The self-dual point bUV = 1 flows to a marginally irrelevant perturbation in the IR,
i.e. ΓIR = 2+, which seems desirable if it is indeed a massless flow. Such flows are
sketched in figure 3 and were verified numerically.

We now explain why the above RG flows cannot be properly interpreted if we stick to
the relation Γ = −2b2, and argue that they acquire a natural interpretation if we introduce
the background charge Q∞ = b+ 1/b− 2. This is one of the main points of this paper.
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Let us present supporting arguments for the introduction of a background charge. If
we continue to identify the scaling dimension Γ0 with −2b2 then the above relation (4.20)
implies the peculiarity of bIR = ibUV, i.e. becoming imaginary. The flow to imaginary b
seems unsatisfactory since it takes us out of the proper sinh-Gordon regime manifold and
into the sine-Gordon one. This would correspond, roughly speaking, from a flow from a
non-compact model to a compact one. We suggest that this problem arose since we identified
the coupling b with the dimension Γ0 = −2b2 which assumed there was no background
charge. Introduction of the background charge Q∞ in (1.2) can resolve this issue.

The perturbative calculations that led to the above beta functions (4.3a) did not
incorporate a background charge. However the flows do predict dimensions of operators
ΓUV,IR regardless of the free gaussian identification Γ = −2b2. Incorporating a background
charge should just modify this identification, while preserving the flows in (g1, g2). We can
indeed modify this identification, but still must preserve the relation ΓIR = −ΓUV, since
the latter is predicted by the beta functions regardless of the identification relating Γ and b.

We require that both the UV and IR are in the same regime of “b”. Let us identify Γ0
with the dimension proposed in section 3

Γ0 = 2− 4b (4.22)

which was based on a background charge Q∞ = b+ 1/b− 2 in the region b > 1.
The identification (4.22) modifies the relation between gUV

2 and bUV, as 4bUV =
2− Γ0(gUV

2 ), which then reads bUV = gUV
2 /(4 + gUV

2 ). For gUV
2 < −4, we still have bUV in

the strong coupling regime bUV > 1.
Then ΓIR = −ΓUV in (4.20) implies the simple relation

bIR = 1− bUV. (4.23)

This has the desired property that the whole region bUV > 1 is mapped to bIR < 0 which
excludes the usual sinh-Gordon region 0 < b < 1. Importantly, note that bUV = 1 is mapped
to bIR = 0, where ΓIR = 2, thus the bUV = 1 theory is marginally irrelevant in the IR,
consistent with a massless flow.

One can also argue that the background charge must be Q∞ = α1(b+ 1/b− 2) with
α1 = 1 as follows. We identify Γ = 2b(Q∞ − b) based on above considerations. The RG
flows predict ΓIR = −ΓUV, which is a complicated relation between bIR and bUV for generic
value of α1. One can check that unless α1 = 1, for bUV > 1, bIR is generally complex. Only
for α1 = 1 does one have the simple relation bIR = 1− bUV.

4.5 Remarks on real verses imaginary µ

Let use make a few remarks concerning the g1 real case originally considered in [14]. First of
all, the massless flows for the imaginary sine-Gordon theory no longer exist, since for small
g1,2 the RG trajectories based on the RG invariant I are no longer approximately circles,
but rather hyperbolas. However the flows that begin at g1 = 0 and end up at g1 =∞ have
the same endpoints, and the relations between ΓUV and ΓIR presented above remain the
same. This can be seen from the fact that equations (4.12) are the same. However the
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detailed trajectories are different. One can easily see with contour plots of I for real verses
imaginary g1 that the topologies of the flows in figures 2 and 3 are essentially interchanged.

5 Application to the freezing transition in disordered systems

We now make contact with disordered systems and explain the relation between the above
sinh-Gordon model, with imaginary coupling, and Dirac fermions in random gauge field.
See also [11, 12]. This was actually our motivation when we started looking at this problem
fifteen years ago, and left it aside for a short while.

5.1 Dirac fermions in a random U(1) gauge field

We consider two-component Dirac fermions in a random gauge field Aµ in two spatial
dimensions (x, y) plus time. Defining complex spatial coordinates z = (x + iy)/

√
2 and

z = (x− iy)/
√

2, the model is defined by the random hermitian hamiltonian

H =
(

0 −i∂z +Az
−i∂z +Az 0

)
. (5.1)

The probability distribution will be specified below.
The Green functions, Fourier transformed in time to energy E , are given by functional

integrals with respect to the action

S = i

∫
d2x

2π Ψ† (H − E) Ψ. (5.2)

Introducing component fields as follows, Ψ =
(
ψ+
ψ+

)
and Ψ† =

(
ψ−, ψ−

)
, one finds

S(Ψ, A) =
∫
d2x

2π
[
ψ−(∂z − iAz)ψ+ + ψ−(∂z − iAz)ψ+ + iE (ψ−ψ+ + ψ−ψ+)

]
. (5.3)

Disorder averaged correlation functions 〈O〉 are then defined as functional integrals
over A:

〈O〉 =
∫
DAP [A] 〈O〉A (5.4)

where the probability distribution for A is taken to be gaussian:

P [A] = exp
(
−1
g

∫
d2x

2π AzAz

)
. (5.5)

The coupling constant g is a measure of the strength of the disorder. In (5.4), 〈O〉A is the
correlation function in a given realization of the disorder:

〈O〉A = 1
Z(A, E)

∫
DΨ e−S(Ψ,A)O (5.6)

where Z(A, E) is the partition function.
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5.2 Map to the sinh-Gordon model

It is convenient to parameterize the gauge field in terms of a scalar field η as follows:1

Aµ = 1
2εµν∂νη, =⇒ P [η] = exp

(
− 1

4g

∫
d2x

4π (∂µη)2
)
. (5.7)

The coupling of the fermions to the gauge field can then be removed by the chiral gauge
transformation:

ψ
′
+ = eη/2 ψ+, ψ

′
− = e−η/2 ψ−, ψ′− = eη/2 ψ−, ψ′+ = e−η/2 ψ+ , (5.8)

and the action becomes

S =
∫
d2x

2π
[
ψ
′
−∂zψ

′
+ + ψ′−∂zψ

′
+ + iE

(
eη ψ

′
−ψ
′
+ + e−η ψ′−ψ

′
+

)]
. (5.9)

To make further progress, we first consider E to be very small, and later restore it as
a perturbation. When E = 0, the jacobian which arises in passing from Ψ to Ψ′ in the
functional integral precisely cancels the 1/Z factor in (5.6). This is easily seen by bosonizing
the fermions Ψ with a single boson φ so that the action (5.3) becomes (when E = 0):

S =
∫
d2x

4π

(1
2 (∂φ)2 + i∂η∂φ

)
. (5.10)

The functional integrals over Ψ and Ψ′ are then simply related by the shift φ→ φ′ − iη.
When E = 0 the functional integrals over Ψ′ can be done and do not introduce any new

η dependence. To restore the E perturbation, we make a mean field approximation and
replace the Ψ′ fermion bilinears by their one-point functions in a finite geometry of size L.
Since the fermions have dimension 1/2, we have:

〈ψ′−ψ′+〉 ∼ 〈ψ′−ψ
′
+〉 ∼ 1/L . (5.11)

One is finally left with the functional integral over η. Rescaling η =
√

2g φ, one finds the
sinh-Gordon action

S[φ] =
∫
d2x

( 1
8π (∂φ)2 + 2µ cosh

(√
2 b φ

))
, (5.12)

where
b = √g, µ = i

E
2πL . (5.13)

The density of states operator is the one that couples to E , which we chose to normalize as
follows:

ρ ≡ 1
L

cosh
(√

2 b φ
)
. (5.14)

By definition one has 〈ρ〉 =
∫
Dφe−S[φ] ρ.

1In R2, any gauge potential can be decomposed as Aµ = ∂µϑ + 1
2 εµν∂νη. But the pure gauge part

Aµ = ∂µϑ can be gauged away in (5.3) and only the component Aµ = 1
2 εµν∂νη matters.
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5.3 Multi-fractal density of states exponents

We first review some general standard definitions of exponents characterizing the density of
states. Let ρ(x) denote the density of states field operator. The physical density of states is
its vacuum expectation value, i.e. the 1-point function denoted as 〈ρ〉, and depends on the
realization of the disorder. Let 〈ρ〉 denote the disorder averaged quantity. For a system of
size L, one defines the fundamental exponent Γ1 as

〈ρ〉 ∼ L−Γ1 . (5.15)

In other words, the exponent Γ1 is just the anomalous dimension of the operator ρ in the
disorder averaged theory.

Also of interest are multi-fractal exponents Γq defined as follows: Γq is defined as the
anomalous dimension of the q-th moment of ρ:

Γq = [[ 〈ρ〉q ]] , (5.16)

where we use the same notation as above, where [[X]] denotes the scaling dimension of X
in inverse length units.

Because it is related to the multi-fractal spectrum of the density 〈ρ(x)〉, or of the
associated measure 〈ρ(x)〉 dx, a related quantity that is often studied is the normalized ratio

P (q) =
∫
d2x 〈ρ(x)〉q(∫
d2x 〈ρ(x)〉

)q . (5.17)

Simple scaling leads to
P (q) ∼ L−τ(q) (5.18)

where
τ(q) = Γq − qΓ1 + 2(q − 1). (5.19)

Legendre transform of τ(q) gives access to the spectrum of multi-fractal dimensions of the
density 〈ρ(x)〉.

5.4 Multi-fractal spectrum

Returning to our model of interest, using the mapping to the sinh-Gordon model and (5.14),
we have

Γ1(g) = 1 + γ(g) , (5.20)

where the “1” comes from the 1/L in (5.14), and γ(g) the scaling dimension of cosh(
√

2g φ),

γ(g) = [[cosh(
√

2g φ)]] . (5.21)

For higher q, since the leading term in ρq is cosh(q
√

2g φ)/Lq, one has

Γq(g) = q + [[cosh(q
√

2g φ)]] . (5.22)
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Since in the above equation the cosh-operator is related to ρ by g → q2g, this immediately
leads to the fundamental equation

Γq(g) = Γ1(q2g) + q − 1. (5.23)

The latter implies
τ(q) = Γ1(q2g)− qΓ1(g) + 3(q − 1). (5.24)

Given (5.20), one sees that everything boils down to the dimension of the cosh(
√

2 bφ)
operator in the sinh-Gordon theory. According to our proposal for the freezing transition in
sinh-Gordon, we have Γ1(g) = 1− 2g for g < 1 and Γ1(g) = 3− 4√g for g > 1.

Transitions in the variable q are thereby related to transitions in b = √g. Using our
proposal for a freezing transition in the sinh-Gordon model (3.14), the two transition points
are then b = g = 1 and q2g = q2b2 = 1. There are thus 4 distinct regimes. In terms of g
and q, they are:

g < 1, q < 1/√g : τ(q) = 2(q − 1)(1− qg) (5.25a)
g < 1, q > 1/√g : τ(q) = 2q(1−√g)2 (5.25b)
g > 1, q < 1/√g : τ(q) = −2(1− q√g)2 (5.25c)
g > 1, q > 1/√g : τ(q) = 0. (5.25d)

This agrees with known results [11, 12, 23].

6 Summary and discussion

We have presented a specific proposal for the behavior of the sinh-Gordon model above
the self-dual point b > 1 that is quite different from the analytic continuation b→ 1/b of
the well-understood properties of the massive theory for 0 < b < 1. The main properties
of this theory is that unlike the 0 < b < 1 region it has a non-zero background charge
Q∞ given in (1.2). The theory is massless but not conformally invariant, but rather is a
relevant perturbation in the UV that flows to another CFT in the IR, arriving there via
an irrelevant operator. We provided two supporting arguments. The first was based on
the beta functions in [13, 14], which are ultimately based on perturbation theory for the
sinh-Gordon action, and do not show a b→ 1/b symmetry, and clearly predict different RG
flows for b < 1 verses b > 1. The second is that our proposal correctly reproduces known
exact results for a Dirac fermion in a random magnetic field, in particular all the transitions
in the multi-fractal exponents.

If our proposal is indeed correct, it remains to determine the S-matrices for the massless
flow when b > 1 along the lines formulated in [29]. This is beyond the original scope of this
paper, however there are some natural guesses. Letting L and R signify left verses right
movers as in [29], it is likely that the LL and RR S-matrices are SLL = SRR = SshG where
SshG is the function of rapidity in (2.1). This would guarantee that in the IR, c = 1. It
remains to specify left-right scattering SLR which controls the UV. It is natural to consider
SLR = SshG here also, however there are clearly other possibilities to be explored, such
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as the very simplest possibility SLR(θ) = − tanh
(
θ
2 −

iπ
4

)
. Clearly more work needs to be

done in this direction.
There are some natural questions that would be worthwhile to investigate to provide

further support for our proposal. We can think of these:

• We should say that the validity of the beta functions we used in section 4.1 and our
interpretation of scaling dimensions at g1 =∞, namely based on (4.9), could benefit
from closer scrutiny, even though we showed how these beta functions can reproduce
known exact results on massless flows in the sine-Gordon model [15, 16]. We refer to
the Introduction for further remarks about this.

• Konik et al. [7] essentially showed that for the sinh-Gordon theory, perturbation
theory of the Liouville theory and the free gaussian field agree in the weak coupling
region b < 1. Can this analysis be extended to b > 1 with the different background
charge proposed here?

• Can the semi-classical analysis in the appendix be extended to higher order in
perturbation theory? It’s unlikely this can fully confirm our exact proposal to all
orders, but a few low orders could provide convincing evidence.

• Our suggestion in the last paragraph for the exact S-matrix clearly needs more
investigation. A clear way to proceed is with the Thermodynamic Bethe Ansatz.

• It would be interesting to investigate the problem by completely different means, for
instance from a lattice formulation of the sinh-Gordon model, or using continuous
network tensor techniques adapted to field theory [30, 31]. Or, perhaps a rigorous
probabilistic construction as in [32] is possible.

There are other possible applications of the freezing transition that our work may shed
some light on. An obvious one is to more complicated disordered systems such as the
quantum Hall transition. We also mention that it has been applied to extreme values of the
Riemann zeta function [33, 34].
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A Semi-classical freezing and the Manning condensation

Let us imagine computing semi-classically the one-point function of an exponential operator
in the sinh-Gordon theory. Restoring ~ so that the action becomes S → ~−1S, the one-point
function of the operator exp(

√
2a~−1φ), a > 0, located at the position x0, is represented by

the functional integral ∫
Dφe−~

−1
(
S−
√

2aφ(x0)
)
. (A.1)

In the semi-classical limit ~ → 0, the integral is dominated by the saddle point field
configuration φcl, solutions of

− 1
4π∆xφcl(x) + 2µ̂ sinh(

√
2bφcl(x)) =

√
2a δ(2)(x− x0) , (A.2)

where ∆x is the Laplacian in 2D and δ(2)(x− x0) the Dirac measure at x0 and µ̂ =
√

2bµ.
Equation (A.2) can be solved exactly using tau function techniques [35], but we do not
need this explicit solution for the simple argument we now present. To take care of the
δ-function source, we should have φcl(x) ' −

√
2a log |x − x0|2 as |x| → x0. Thus we set

φcl(x) = −
√

2a log |x− x0|2 + ϕ(x), with ϕ(x) sub-leading near x0. We take ϕ decreasing
as a power law, so that

φcl(x) = −
√

2a log |x− x0|2 + c0 + c1 |x− x0|σ + · · · , (A.3)

with c0, c1 two constants and σ > 0 (so that ϕ is sub-leading as x approaches x0) and where
the dots refer to higher sub-leading terms near x0. The exponent σ is found by matching
the leading terms in ∆xφcl and in sinh(

√
2bφcl). This yields

|x− x0|σ−2 ∼ e−2ab log |x−x0|2 = |x− x0|−4ab =⇒ σ = 2(1− 2ab) . (A.4)

Since we should have σ > 0, this is possible only for a < ac = 1/2b. For a > ac, the operator
exp(
√

2a~−1φ) is actually screened such that its effective weight aeff at large scale is ac.
This semi-classical computation indicates the possibility of a freezing transition. For any

fixed sinh-Gordon parameter b, the exponential operators exp(
√

2aφ) are well-defined for a <
ac only, for some critical value ac, but they get frozen for a > ac to the critical exponential
operator exp(

√
2ac φ) with critical weight ac. In view of the symmetry relation (3.8), valid

in Liouville theory, it is tempting to propose that ac = Q∞/2. This is compatible with the
semi-classical limit ac ' 1/2b for b→ 0.

This phenomena is known in the physics of polyelectrolyte solutions as the Manning
condensation [24]. Imagine considering a positively charged polymer, say a DNA, immersed
in a polyelectrolyte made of positive and negative charged ions, and ask what is the
electrostatic potential for this system. If we imagine the polymer to be straight along the
z-axis, then (A.2) is the Poisson-Boltzmann equation for this electrostatic problem in the
2D transverse directions. If the charge density of the polymer is too high, larger than a
critical value ac, it is screened by oppositely charged ions which occupy a cylindrical volume
around the polymer of diameter rc, so that the system formed by the polymer and these
counter-ions behaves at a distance higher than rc like a polymer of critical charge density
ac. This is the Manning’s screening effect.
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