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ON THE PRIMES IN FLOOR FUNCTION SETS

RONG MA & JIE WU

Abstract. Let [t] be the integral part of the real number t and let 1 P be the characteristic function of the primes. Denote by π S (x) the number of primes in the floor function set S(x) := {[ x n ] : 1 n x} and by S 1P (x) the number of primes in the sequence {[ x n ]} n 1 . Very recently, Heyman proves

π S (x) = 4 √ x log x + O √ x (log x) 2 , S 1P (x) = C 1P x + O(x 1/2 )
for x → ∞, where C 1P := p 1 p(p+1) . In this short note, we propose better results

π S (x) = √ x 2 dt log t + √ x 2 dt log(x/t) + O √
x e -c(log x) 3/5 (log log x) -1/5 , and S 1P (x) = C 1P x + O ε (x 9/19+ε ) for x → ∞, where c > 0 is a positive constant and ε is an arbitrarily small positive number.

Introduction

As usual, denote by π(x) the number of primes p x. It is well-known that (a) The prime number theorem states as follows

(1.1) π(x) = x log x + O x (log x) 2 (x → ∞).
(b) A strong form of this theorem is the following

(1.2) π(x) = Li(x) + O(x exp(-c(log x) 3/5 (log 2 x) -1/5 ))
for x → ∞, where c is a positive constant, log 2 denotes the iterated logarithm function and

Li(x) := x 2 dt log t • (c)
The Riemann hypothesis is equivalent to the asymptotic formula

(1.3) π(x) = Li(x) + O ε (x 1/2+ε ) (x → ∞),
where ε is an arbitrarily small positive number. Let [t] be the integral part of the real number t. Recently, Bordellès, Dai, Heyman, Pan and Shparlinski [START_REF] Bordellès | On a sum involving the Euler function[END_REF] proposed to investigate the asymptotic behaviour of summative function

(1.4) S f (x) := n x f x n
under some simple hypothesis on the growth of f , and this problem has received attention of many authors [START_REF] Wu ; Dai | Note on a paper by Bordellès[END_REF][START_REF] Zhai | On a sum Involving the Euler Function[END_REF][START_REF] Bordellès | On certain sums of number theory[END_REF][START_REF] Liu | A variant of the prime number theorem[END_REF][START_REF] Liu | On some sums involving the integral part function[END_REF]. If we use Λ(n) to denote the von Mangoldt function, then [8, Theorem 1.2(i)] or [START_REF] Zhai | On a sum Involving the Euler Function[END_REF]Theorem 1] give us immediately

(1.5) S Λ (x) = C Λ x + O ε (x 1/2+ε ),
for any ε > 0 and x → ∞, where

C Λ := n 1 Λ(n)
n(n+1) . However Ma and Wu [START_REF] Ma | On a sum involving the von Mangoldt function[END_REF] applied the Vaughan identity and the technique of one-dimensional exponential sums to break the ). This result seems rather interesting if we compare it with the assertion (c) above. The exponent 35 71 has been improved to 97 203 by Bordellès [START_REF] Bordellès | On certain sums of number theory[END_REF] and 9 19 by Liu-Wu-Yang [START_REF] Liu | A variant of the prime number theorem[END_REF], respectively, with the help of more sophistic technique of exponential sums.

Let P be the set of all primes and let P ower be the set of all prime powers. Denote by 1 P and 1 Power their characteristic functions, respectively. Very recently Heyman [START_REF] Heyman | Primes in floor function sets[END_REF] proposed to study the number of primes in the floor function set S(x)

:= {[ x n ] : 1 n x}: (1.6) π S (x) := p x ∃ n∈N such that [x/n]=p
1 and the number of primes or prime powers in the sequence

{[ x n ]} n 1 : (1.7) S 1 P (x) := n x 1 P x n , S 1 Power (x) := n x 1 Power x n .
The principal result of Heyman [4, Theorem 1] is the following asymptotic formula

(1.8) π S (x) = 4 √ x log x + O √ x (log x) 2
as x → ∞. This is the prime number theorem in weak form for the set S(x), i.e. analogue of (1.1) for this set. This result is rather interesting, since S(x) is a very spare subset of [1, x] ∩ N. In fact Heyman [3, Theorems 1 and 2] has been proved that

(1.9) |S(x)| = 2 √ x + O(1)
for x → ∞. Probably this is the first example of a such spare subset of [1, x] ∩ N for which the prime number theorem holds.

It seems natural and interesting to establish analogue of (1.2), i.e. the prime number theorem in strong form for the set S(x). The first aim of this short note is to prove a such result.

Theorem 1. (i) For x → ∞, we have (1.10) π S (x) = Li S (x) + O( √ x exp(-c ′ (log x) 3/5 (log 2 x) -1/5 )),
where c ′ > 0 is a positive constant and

(1.11) Li S (x) := √ x 2 dt log t + √ x 2 dt log(x/t) • (ii)
There is a real sequence {a n } n 1 with a 1 = 4 such that for any positive integer N 1 we have

(1.12) π S (x) = √ x N n=1 a n (log x) n + O N √ x (log x) N +1 as x → ∞.
Theorems 5 and 7 of [START_REF] Heyman | Primes in floor function sets[END_REF] can be stated as follows: 

S 1 P (x) = C 1 P x + O(x 1/2 ), (1.13) S 1 Power (x) = C 1 Power x + O(x 1/2 ), ( 1 
S 1 P (x) C 1 P x -Ax 1/2 / log x holds for x 2.
The second aim of this note is to propose better results by breaking the 1 2 -barrier in the error term.

Theorem 2. For any ε > 0, we have

S 1 P (x) = C 1 P x + O ε (x 9/19+ε ), (1.16) S 1 Power (x) = C 1 Power x + O ε (x 9/19+ε ), (1.17)
as x → ∞, where the implied constants depend on ε.

We note that very recently Yu and Wu [START_REF] Yu | Distribution of elements of a floor function set in arithmetical progression[END_REF] generalised Heyman's (1.9) by showing (1.18) S(x; q, a) := m∈S(x) m≡a(mod q)

1 = 2 √ x q + O((x/q) 1/3 log x)
uniformly for x 3, 1 q x 1/4 /(log x) 3/2 and 1 a q, where the implied constant is absolute. This confirms a recent numeric test of Heyman.

Proof of Theorem 1

We begin by following the argument of [START_REF] Heyman | Primes in floor function sets[END_REF]. Firstly we note that

S(x) = p ∈ P : ∃ n ∈ [1, x] such that x n = p .
Further, if x n = p ∈ P, then x/(p + 1) < n x/p. Thus we can write

(2.1) π S (x) = p x 1 x p - x p + 1 > 0 = G 1 (x) + G 2 (x),
where 1 = 1 if the statement is true and 0 otherwise, and

G 1 (x) := p √ x 1 x p - x p + 1 > 0 , G 2 (x) := √ x<p x 1 x p - x p + 1 > 0 .
For p √ x -1, we have

x p - x p + 1 > x p(p + 1) -1 > 0.
Thus the prime number theorem (1.2) gives us

(2.2) G 1 (x) = π( √ x) + O(1) = Li( √ x) + O(x exp(-c ′ (log x) 3/5 (log 2 x) -1/5 ))
for x 3, where c ′ > 0 is a positive constant.

Next we treat G 2 (x). Noticing that

0 < x p - x p + 1 = x p(p + 1) < 1
for p > √ x, the quantity x p -x p+1 can only equal to 0 or 1. On the other hand, for p > x 10/19 , then p = [ x n ] for some n x 9/19 . Thus we can write

(2.3) G 2 (x) = x 1/2 <p x 10/19 x p - x p + 1 + O(x 9/19 ) = x 1/2 <p x 10/19 x p - x p + 1 -ψ x p + ψ x p + 1 + O(x 9/19 ) = G 2,1 (x) -G 0 2,2 (x) + G 1 2,2 (x) + O(x 9/19 ), where ψ(t) := t -[t] -1 2 and G 2,1 (x) := x 1/2 <p x 10/19 x p - x p + 1 , G δ 2,2 (x) := x 1/2 <p x 10/19 ψ x p + δ (δ = 0, 1).
With the help of the prime number theorem (1.2), a simple partial integration allows us to derive that

G 2,1 (x) = x 1/2 <p x/2 x p 2 + O(x 9/19 ) = x x/2 √ x dπ(t) t 2 + O(x 9/19 ) = x x/2 √ x dt t 2 log t + O √ x exp(-c ′ (log x) 3/5 (log 2 x) -1/5 ,
where c ′ > 0 is a positive constant. Making the changement of variables t → x/t in the last integral, it follows that

(2.4) G 2,1 (x) = √ x 2 dt log(x/t) + O √ x exp(-c ′ (log x) 3/5 (log 2 x) -1/5 for x → ∞. It remains to bound G δ 2,2 (x) 
. Similar to [START_REF] Liu | A variant of the prime number theorem[END_REF], define

S δ (x; D, D ′ ) := D<d D ′ Λ(d)ψ x d + δ .
According to [5, (4.3)], for any ε > 0 we have

S δ (x; D, 2D) ≪ ε (x 2 D 7 ) 1/12 x ε
uniformly for x 3 and x 6/13 D x 2/3 . The same proof allows us to derive that for any ε > 0 we have

(2.5) S δ (x; D, D ′ ) ≪ ε (x 2 D 7 ) 1/12 x ε
uniformly for x 3, x 6/13 D x 2/3 and D < D ′ 2D. Since we have trivially The second assertion is an immediate consequence of the first one thanks to a simple partial integration.

D<p ν D ′ , ν 2 Λ(p ν )ψ x p ν + δ ≪ p (2D)

Proof of Theorem 2

We begin by following the argument of [START_REF] Liu | On some sums involving the integral part function[END_REF]. Let f = 1 P or 1 Power and let N ∈ [x 1/3 , x 1/2 ) be a parameter which can be chosen later. First we write

(3.1) S f (x) = n x f x n = S † f (x) + S ♯ f (x) with S † f (x) := n N f x n , S ♯ f (x) := N <n x f x n .
We have trivially

(3.2) S † f (x) ≪ N.
In order to bound S ♯ f (x), we put d = [x/n]. Noticing that

x/n -1 < d x/n ⇔ x/(d + 1) < n x/d,
we can derive that

(3.3) S ♯ f (x) = d x/N f (d) x/(d+1)<n x/d 1 = d x/N f (d) x d -ψ x d - x d + 1 + ψ x d + 1 = x d 1 f (d) d(d + 1) + R f 1 (x, N) -R f 0 (x, N) + O(N),
where we have used the following bounds On the other hand, we have for N = x 9/19 . This can be done exactly as (2.7) by using (2.6): 
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 1 .14) where C 1 P := p 1 p(p+1) and C 1 Power := p, ν 1 ν (p ν +1) . Similar to (1.5), these are immediate consequences of [8, Theorem 1.2(i)] or [9, Theorem 1]. Heyman [4, Theorem 6] also proved that there is a positive constant A > 0 such that the inequality (1.15)
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 1 (x, N) = N <d x/N f (d)ψ x d + δ .Combining (3.1), (3.2) and (3.3), it follows thatS f (x) = x d (d) d(d + 1) + O ε |R f 1 (x, N)| + |R f 0 (x, N)| + N .

  δ = R 1 P δ (x, N) + O((x/N) 1/2 ).Thus in order to prove Theorem 2, it suffices to show that (3.4)R 1 P δ (x, N) ≪ ε Nx ε (x 1)

  1/2 ν (log 2D)/ log p log p ≪ D 1/2 , ′ (log x) 3/5 (log 2 x) -1/5 .

	the inequality (2.5) implies that the bound	
	(2.6)	D<p D ′	(log p)ψ	x p + δ	≪ ε (x 2 D 7 ) 1/12 x ε .
	holds uniformly for x 3, x 6/13	D x 2/3 and D < D ′ 2D. Using (2.6), we derive
	that							
	G	δ 2,2 (x) ≪ ε	max x 1/2 <D x 10/19	D<p 2D	ψ	x p + δ
	(2.7)	≪ ε	max x 1/2 <D x 10/19		2D D	1 log t	d	D<p t (log p)ψ	x p + δ
		≪ ε	max x 1/2 <D x 10/19	(x 2 D 7 ) 1/12 x ε
		≪ ε x 9/19+ε .				
	Inserting (2.4) and (2.7) into (2.3), we find that
	(2.8) x exp(-c Now the required result (1.10) follows from (2.1), (2.2) and (2.8). G 2 (x) = √ x 2 dt log(x/t) + O √

  1 P δ (x, N) ≪ ε x ε max 9/19 <D x 10/19 (x 2 D 7 ) 1/12 x ε ≪ ε x 9/19+ε .

		x 9/19 <D x 10/19	D<p 2D	ψ	x p + δ
	≪ ε x ε	max x 9/19 <D x 10/19	2D D	1 log t	d	D<p t (log p)ψ	x p + δ
	≪ ε	max					
	This completes the proof.						
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