Course outline

These slides constitute a 12h introductory course on global optimization. The course starts with basic concepts specific to global optimization and different from those underlying local optimization algorithms. A selection of 6 algorithms is then presented: random search, randomly restarted local searches, simulated annealing, CMA-ES and Bayesian Optimization. This selection is meant to

Optimization = a quantitative formulation of decision

Optimization is a 1 way of mathematically modeling decision.

x vector of decision parameters (variables) : dimensions, investment, tuning of a machine / program, . . . f (x) : decision cost x S : set of possible values for x, search space 1 non unique, incomplete when considering human beings or life

Local versus global optimum

min x∈S⊂R d f (x)
x l ∈ S is a local minimum of f over S if there exists ε > 0 such that for any x ∈ S with x -

x l ≤ ε, f (x) ≥ f (x l ) (it is a strict local minimum if f (x) > f (x l )).
Goal of the class: learn strategies to increase the chances to locate a global optimum.

Examples where global optimization is necessary I

In redundant structures, one of the component (x composant) can take the role of another.

Composite structures

x is the orientation of the fibers within the plies of a composite laminate and the location where the plies are dropped. Many arrangements of the x's have almost equivalent performances, leading to local optima (from [START_REF] Irisarri | Optimal design of laminated composite structures with ply drops using stacking sequence tables[END_REF]).

Examples where global optimization is necessary II

Optical filters

Root mean square distance to a target spectrum (from [START_REF] Bäck | Evolution strategies for mixed-integer optimization of optical multilayer systems[END_REF]) Cross-section of the function w.r.t. 2 layer thicknesses. This function is multimodal, the higher dimensional function probably is. Quiz 1: why f (x 1 , x 2 ), which is multimodal in terms of x 1 when x 2 is fixed, may not be multimodal w.r.t. (x 1 , x 2 )? Examples where global optimization is necessary V Theoretically, global optimization is safer than local optimization for black-box functions.

In practice, global optimization is not always affordable.

Global optimization as a metaphor

Let f be the depth of a canal. To know if the canal is navigable, soundings are made to find the minimal depth

f = min x∈S f (x)
find the location(s) of minimal depth

x ∈ arg min x∈S f (x)
The motor vessel Sparna lists to its port side after taking on water in void spaces after running aground while transiting the Columbia River, 2016. U.S. Coast Guard Photo

Each sounding takes time. What is your search strategy? Don't forget to use auxiliary information, e.g. former groundings.

The exploration-intensification tradeoff

All global optimization algorithms strike a compromise between exploration and intensification.

Intensification: use already calculated points to concentrate the search in high-return areas of the search space. Exploration: try the most unknown parts of the search space.

There is an infinite number of ways to handle this compromise.

Essential global optima

Without restrictions, global optimization is a utopia: only look for essential global optima

x ∈ arg min x∈S f (x) such that ∀ε > 0 , volume[x ∈ S | f (x ) < f (x) + ε] > 0 Le Riche & Sire Global Optimization Dec. 2021
Theoretically solvable problems : deterministic point of view

If f has a known Lipschitz constant L, ∃L such that ∀x, x , |f (x) -f (x )| ≤ L x -x
we can know how far the true solution is from already calculated points which tells us where to search and when to stop : Problems solvable in probability I

x t+1 = arg min x∈S max i=1,...,t f (x i )-L x-x i Quiz 2: knowing (x i , f (x i )) , i = 1, . . . , t
Let there be k distinct local optima x 1 , . . . , x k such that

f := f (x 1 ) := f 1 ≤ . . . ≤ f (x k ) = f k .
Gradient flow: set of points generated as solutions of ẋ = -∇f (x) starting from a given x, i.e., set of iterates of an infinitesimal step gradient descent. Assume that f and S are such that it always converges to a local optimum.

Basin of attraction, attr (f i ): set of points x ∈ S such that a gradient flow converges to f (x) = f i .

Problems solvable in probability II First, simple, algorithms I

We will now review a few basic global optimization algorithms by increasing order of complexity.

Words of caution:

Although there are better optimization algorithms than others, there will never be an algorithm better over all possible problems, cf. No Free Lunch theorem [START_REF] Wolpert | No free lunch theorems for optimization[END_REF]: when an algorithm improves on a subset of problems, it regresses on other subsets.

There is an adequation between the problem and the algorithm. Auxiliary information may be used to select the algorithm (dimension, nature of the search space, budget of calls to f , noise affecting f , regularity of f ).

First, simple, algorithms II

The problem formulation is a degree of freedom to change the problem and make it more amenable to optimization. Examples with shapes and PCA in [START_REF] Gaudrie | Modeling and optimization with gaussian processes in reduced eigenbases[END_REF].

A theoretically solvable problem may not be solvable in practice because of the cost of the search, in particular in high dimension (d 1). In this case, "solving" the problem is finding the best possible solution.

For a better understanding, look for the elements of the algorithms that contribute to the exploration or to the intensification of the search.

Algorithm 1 Random search Require: x LB , x UB , t max t ← 0, f ← +∞ 1: while t < t max do 2: x ← U[x LB , x UB ] {uniform law} 3: calculate f (x ), t ← t + 1 4: if f (x ) < f then 5: x ← x , f ← f (x ) 6: end if 7: end while 8: return x , f Quiz 3: if S = [0, 1] 5 (hypercube in d = 5), and x = (0.2, . . . , 0.2)
what is the expected time until a point is sampled inside the cube of side 0.1 centered at x (i.e., x found with a 0.05 accuracy on each of its components)? What is the standard deviation of this time? 

x init ← U[x LB , x UB ] {uniform law} 3: [x , f (x ), t ] ← LOCAL SEARCH(x init ) {start from x init , x candidate local optimum, f (x ) its obj. func- tion, t number of calls to f done during the local search} 4: t ← t + t 5: if f (x ) < f then 6: x ← x , f ← f (x )
Require: t max , x , f (x) , σ 2 t ← 1, m ← x, C ← σ 2 I 1: while t < t max do 2: x ← N (m, C ) {Gaussian law} 3: Calculate f (x ), t ← t + 1 4: if f (x ) < f (x) then 5: x ← x , f (x) ← f (x ) 6: end if 7:
m ← x {update proposal pdf} 8: end while 9: return x , f (x) Simplified : no adaptation of C , neither the step size σ, nor the shape which remains isotropic (no priviledged search direction).
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Step adaptation is important

Why Step-Size Control? Trivial problem but useful to understand phenomena occuring when d changes.

(1+1)-ES (red & green) f (x) = n � i=1 x 2 i in [-2.2,
X i = x i + σU i where U i ∼ N (0, 1) X -x 2 = σ 2 d i=1 U 2 i
The last term follows a χ 2 d . When d ≥ 5, it is approximated by N (d, 2d).
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Theoretical step size in ES-(1+1) II Change in distance to 0 (random variable):

X -x = σ d i=1 U 2 i d≥5 σN ( √ d, 1/2) i.e.,
D 2 = x 2 -X 2 D 2 = x 2 -x + σU 2 = x 2 -(x + σU) (x + σU) = -2σx U -σ 2 U U d≥5 ≈ -2σx U -σ 2 d ⇒ D 2 ∼N (-σ 2 d, 4σ 2 R 2 )
ES-(1+1) has a test that prevents D 2 from being negative, the Theoretical step size in ES-(1+1) V progress is I 2 = max(0, D 2 ). The mean progress is

E(I 2 ) = E(max(0, D 2 )) = +∞ 0 i 2 p(i 2 )di 2
Change of variable : j = i 2 +σ 2 d 2σR , j ∼ N (0, 1) 

E(I 2 ) = +∞ σd 2R (2σRj -σ 2 d) pdf N (j)dj = 2σR pdf N ( σd 2R ) -σ 2 d 1 -cdf N ( σd 2R ) d R 2 E(I 2 ) = 2 σd R pdf N ( σd 2R ) - σ 2 d 2 R 2 1 -cdf N ( σd 2R ) Le Riche & Sire Global Optimization Dec. 2021 Theoretical step size in ES-(1+1) VI d R 2 E(I 2 ) is a function of σ = σd R . Its maximizer is σ = arg max σ d R 2 E(I 2 ) ≈ 1.22 = σ d R ⇒ σ = 1.22 R d
f (x) = 1 2
x Hx H Hessian strictly positive definite. The previous optimal step size calculation can be extended.

Eigendecomposition of H = PD 2 P , P matrix of eigenvectors as columns, P P = PP = I , D 2 diagonal matrix of eigenvalues.

f (x) = 1 2 x PDDP x = 1 2 y y = f (y ) where y = DP x ⇐⇒ x = PD -1 y Le Riche & Sire Global Optimization Dec. 2021
Theoretical step size in ES-(1+1) VIII f (y ) is a sphere, therefore an optimal2 step distribution in the y -space is Yy ∼ N (0, σ 2 I ) where

σ = 1.22 y d = 1.22 √ x PD 2 P x d = 1.22 √ x Hx d
Translating back into the x-space by multiplying by PD -1 ,

X -x = PD -1 (Y -y ) ∼ N (0, σ 2 PD -2 P ) ≡ N (0, σ 2 H -1 )
Note that the shape of the covariance matrix is given by the inverse Hessian. 

Content

(t) } t=0,1.. is a Markov Chain if ∀t, ∀x (0) , .., x (t-1) : p(x (t) | x (0) , .., x (t-1) ) = p(x (t) | x (t-1) )
Then we have a simpler expression of the joint density of (X (0) , X (1) , .., X (t) ) : p(x (t) , ..,

x (0) ) = p(x 0 ) t t =1 p(x (t ) | x (t -1) )
The idea is that S is also our search space in which we will investigate the argmin of the function f with Markov Chains

Marginal probability

We denote π (t) i the marginal probability that X (t) = i

Then we can define π (t) = (π

(t)
i ) i∈S the vector probability (the sum is 1)

∀j ∈ S, π (t+1) j = P(X (t+1) = j) = s i=1 P(X (t+1) = j | X (t) = i)P(X (t) = i) = s i=1 p ij π (t) i = [π (t) T P] j =⇒ π (t+1) = π (t) T P =⇒ π (t+n) = π (t) T (P) n
A time-homogeneous Markov Chain is then completely defined by : The state space S The starting distribution π (0)

The transition probability matrix P

Irreducibility and Periodicity

A Markov Chain is irreducible if any state j can be reached from any state i in a finite number of steps, ie ∀i, j ∈ S 2 , ∀t, ∃m > 0, P(X (t+m) = j|X (t) = i) > 0 A state i is said to have period k if any return to state i must occur in multiples of k time steps. Formally we have

k = gcd{n > 0|P(X (n) = i | X 0 = i) > 0}
A state i is aperiodic if k = 1 and the Markov Chain is aperiodic if all states are aperiodic. gcd : greatest common divisor A Markov chain is reversible if there exists a distribution π which satisfies the detailed balance conditions: ∀i, j, π i p ij = π j p ji Any distribution satisfying detailed balance is a stationary distribution :

∀i, j, π i p ij = π j p ji ⇒ ∀j i π i p ij = i π j p ji ⇒ ∀j, i π i p ij = π j ⇒ ∀j, [π T P] j = π j Le Riche & Sire Global Optimization Dec. 2021
A Markov chain is reversible if there exists a distribution π which satisfies the detailed balance conditions: ∀i, j, π i p ij = π j p ji Any distribution satisfying detailed balance is a stationary distribution :

∀i, j, π i p ij = π j p ji ⇒ ∀j i π i p ij = i π j p ji ⇒ ∀j, i π i p ij = π j ⇒ ∀j, [π T P] j = π j Le Riche & Sire Global Optimization Dec. 2021

Convergence

If {X (t) } is an irreducible and aperiodic Markov Chain in a finite state space S with stationary distribution π, then : π is the unique stationary distribution ∀i, j ∈ S, P(

X (t) = i | X 0 = j) -→ t→∞ π i As ∀i ∈ S, P(X (t) = i) = j∈S P(X (t) = i | X (0) = j)P(X (0) = j),
We have the following convergence : ∀i ∈ S, P(

X (t) = i) -→ t→∞ π i Le Riche & Sire Global Optimization Dec. 2021

Importance of aperiodicity

Let's show an example where a Markov chain is irreducible with stationary distribution π but is not aperiodic, and doesn't converge. Let's define (X (t) ) t=0,1.. as follows :

S = 1, 2, 3 π (0) = 1 0 0 T p 1,2 = p 3,1 = p 2,3 = 1 Then π = 1 3 1 3 1 3
T is stationary here, the chain is irreducible but all the states have period 3. And we have X (t) = 1 whenever t is a multiple of 3, so P(X (t) = 1) oscillates between 0 and 1, and there X (t) doesn't converge. Quiz 5: We just showed that irreducibility and a stationary distribution does not guarantee convergence. However, is aperiodicity a necessary condition for convergence ?

Proof of convergence when T → 0

Let x ∈ S opt , ∀T , ∀x ∈ S, π(x) > 0 and π(x) π(x ) = exp(-f (x)-f (x ) T ) Then ∀x ∈ S \ S opt , π(x) π(x ) → T →0 0 ∀x ∈ S opt , π(x) π(x ) → T →0 1 
The density mass is concentrated at S opt 

π i = 1 ⇒ s i=1 π i π i = 1 π i ⇒ i∈Sopt π i π i + i∈S\Sopt π i π i = 1 π i ⇒ card(S opt ) + i∈S\Sopt π i π i = 1 π i ⇒ π i → T →0 1 card(Sopt ) π i → T →0 0 if i / ∈ S opt Le Riche & Sire Global Optimization Dec. 2021 49 / 100
Algorithm (General Case)

Algorithm 4 Metropolis Hastings Require: π (a target distribution), h (a proposal distribution)

x 0 with π(x 0 ) > 0 t ← 0 1: Sample a candidate value x from the proposal distribution h(. | x (t) ) 2: Compute the Metropolis Hastings ratio R(x (t) , x) = π(x)h(x (t) |x) π(x (t) )h(x|x (t) )
3: Generate x (t+1) as follows :

x (t+1) = x with probability min(1, R(x (t) , x)) x (t) with probability 1 -min(1, R(x (t) , x)) Remark : Don't need to compute Normalizing constant K in R(x (t) , x) Proof : Discrete states space

We denote here the target distribution p = π And we introduce the matrix H with ∀i, j, H ij the probability of proposing the candidate value j for X (t+1) knowing X (t) = i Let's show that π satisfies the detailed balanced condition Let's show that π satisfies the detailed balanced condition The transition probability matrix is P with p ij = min(1,

π j H ji π i H ij )H ij
We assume π j H ji ≤ π i H ij (without loss of generality) : Proof : Discrete states space

p ij = π j π i H ji p ji = H ji Then π j p ji = π i p ij
We denote here the target distribution p = π And we introduce the matrix H with ∀i, j, H ij the probability of proposing the candidate value j for X (t+1) knowing X (t) = i Let's show that π satisfies the detailed balanced condition The transition probability matrix is P with p ij = min(1,

π j H ji π i H ij )H ij We assume π j H ji ≤ π i H ij (
without loss of generality) :

p ij = π j π i H ji p ji = H ji Then π j p ji = π i p ij Le Riche & Sire Global Optimization Dec. 2021

Principle of Simulated Annealing

Apply Metropolis-Hastings algorithm with π

(x) = 1 K exp(-f (x) T ) for a set of decreasing temperatures Choose a symmetric proposal distribution h(. | x) ie ∀x, x ∈ S, h(x | x ) = h(x | x) Metropolis Hastings ratio is R(x, x ) = exp( f (x)-f (x ) T ) Then : If f (x ) ≤ f (x) : R(x, x ) ≥ 1 ⇒ acceptance Else Large T ⇒ R(x, x ) 1 ⇒ Exploration Small T ⇒ R(x, x ) << 1 ⇒ Intensification Le Riche & Sire Global Optimization Dec. 2021 59 / 100 Algorithm Algorithm 5 Simulated Annealing Require: x, T 0 , L 0 k ← 0 1: while T k 0 do 2: for l = 0 to L k do 3: Sample a solution x from the proposal distribution h(. | x) 4: if f (x) < f (x) then 5:
x ← x (x becomes the current solution) 6: else 7:

x ← x with probability exp( f (x)-f (x) x 1 , . . . , x λ ← i.i.d. calls to N (m, C )

3: Calculate f (x 1 ), . . . , f (x λ ) , t ← t + λ and rank them, f (x 1:λ ) ≤ . . . ≤ f (x λ:λ ) 4:
Update m and C from the µ best, x 1:λ , . . . , x µ:λ 5: end while 6: return best observed point and m

It is an ES-µ + , λ algorithm. Note the order notation i : λ . Metaphor: λ = population size, µ = number of parents, an iteration = a generation g , ES = Evolution Strategy. Do not confuse this C proposal density in S with the covariance matrix of kriging in f -space. Now, let's detail the updates.
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From points to steps

Because large dimensional spaces cannot be sufficiently explored to learn accurate models, it is better to work with steps than with points: learn steps leading to progress (dynamic), and not points that were good (static).

points : x ∼ N (m (g ) , C (g ) ) steps : s := xm (g ) ∼ N (0, C (g ) )

Le Riche & Sire Global Optimization Dec. 2021

Algorithm 7 A simplified CMA-ES Require: t max , m (1) , C (1) , λ, µ, p (1) t ← 0, g ← 1 1: while t < t max do 2:

x 1 , . . . , x λ ← i.i.d. calls to N (m (1) , C (1) ) 3:

Calculate f (x 1 ), . . . , f (x λ ) , t ← t + λ and rank them, f (x 1:λ ) ≤ . . . ≤ f (x λ:λ )

4:

Update m and C (Eqs. ( 1) to ( 4)): m (g +1) = 1 µ µ i=1 x i:λ s = m (g +1) -m (g ) p (g +1) = (1 -c c )p (g ) + c c (2 -c c )µ s C (g +1) = (1 -c 1 )C (g ) + c 1 p (g +1) p (g +1) 5: g ← g + 1 6: end while 7: return best observed point and m (g ) Algorithm 8 Bayesian optimization with EI acquisition (EGO, [START_REF] Jones | Efficient Global Optimization of expensive black-box functions[END_REF]) Require: x LB , x UB , t max 1: make an initial design of experiments X and calculate the associated F , t = length(F ) 2: build a GP from (X , F ) (max. log-likelihood on GP parametersvariance, length scales-) 3: while t < t max do 4:

x t+1 = arg max x EI (x) (with another optimizer, e.g. CMA-ES [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF])

5:

calculate F t+1 = f (x t+1 ), (X , F ) ← (X , F ) ∪ (x t+1 , F t+1 ), t ← t + 1 6: end while 7: return best point in (X , F ), the GP Answers to the quizzes I Quiz 1 : Let's consider min x 1 f (x 1 , x 2 = z) where z is fixed. At the local optima, the necessary optimality condition for is ∂f (x 1 , z)/∂x 1 = 0 but these (x 1 , z) may not be optima in 2 dimensions since ∂f (x 1 , z)/∂x 2 may not be 0. As an example, the function f (x 1 , x 2 ) = ( x -R) 2 + 0.1 x -(-2, 0) 2 has a unique optimum at (-2, 0) . It is multimodal for many x 2 fixed, e.g., x 2 = 0.5 : 

Figure 5 :

 5 Figure 5: Topology of the merit function in case of a fixed five-layer fi with � � � � �:�, � � �:���, d� � ���nm, � � �:���, d� � ���nm

  Restarted local searchRequire: x LB , x UB , t max , a LOCAL SEARCH algorithm t ← 0, f ← +∞ 1: while t < t max do

	Le Riche & Sire Dec. 2021 Algorithm 2 2: Global Optimization

  It is often interesting to additionally save the candidate local optima x .

	7:	end if	
	8: end while	
	9: return x , f	
		Le Riche & Sire	Global Optimization	Dec. 2021

Quiz 4: Let p 1 be the probability to start a local search in the basin of attraction of the optimum x , and r be the number of restarts done. By how much does the probability of locating x increase if a r + 1 restart is done? Why is it a case of diminishing returns? Le Riche & Sire Global Optimization Dec. 2021 Algorithm 3 Isotropic ES-(1+1)

  Look at template function, min x∈R d f (x) where f (x) = x 2 .

	Le Riche & Sire Dec. 2021 Theoretical step size in ES-(1+1) I Global Optimization

0.8] n for n = 10 from

[START_REF] Auger | Derivative free optimization[END_REF] 

optimal w.r.t. σ and position invariant on the contour f =const. See[START_REF] Rudolph | On correlated mutations in evolution strategies[END_REF] Le Riche & Sire Global Optimization Dec. 2021

Discrete states space

Now we consider card(S) < ∞ : S = {1, ..., s} X (t) = j for j ∈ S means the process is in state j at time t Let's define the one-step transition probability from state i at time t to state j at time t + 1 : p 

Transition probability matrix

For a time-homogeneous Markov Chain, we can define a transition probability matrix P = (p ij ) i,j∈1,..,s Each row of the matrix must sum to one : s j=1 p ij = 1

Le Riche & Sire Global Optimization Dec. 2021

Stationary distribution

A stationary distribution π for P is a vector that satisfies the following properties : 0 ≤ π i ≤ 1

i π i = 1 π T P = π T If {X (t) } follows a stationary distribution, then the marginal distributions of X (t) and X (t+1) are identical

Continuous states space

Comparable results hold for a continuous state space

In the continuous case, a time-homogeneous Markov Chain is defined by the transition kernel p(x, x ) = p X (t+1)

The density π is stationary for the Markov Chain with kernel p(x, x ) if : ∀x, x ∈ S, π(x ) = p(x, x )π(x)dx Under analogous conditions, convergence is expressed as follows : ∀x ∈ supp(π), for all measurable A ⊂ S, 

Objective

Idea : General method to construct a Markov Chain that converges to a target distribution π defined here as follows :

where K = S exp(-f (x) T )dx is an unknown normalizing constant and T is a positive "temperature" scalar Why this target distribution ? As T tends to 0, π becomes a Dirac with all the density mass at

Why not sampling directly π ? Constant K very hard or impossible to compute Remark : Markov Chain Monte Carlo (MCMC) can be related to other objectives with other hard to compute target distributions Proof : Continuous states space (1/2) Proof : Continuous states space (2/2)

Proposal distribution

A well-chosen proposal distribution produces candidate values that cover the support of the stationary distribution in a reasonable number of iterations and produces candidate values that are not accepted or rejected too frequently: If the proposal distribution is too diffuse relative to the target distribution, the candidate values will be rejected frequently and thus the chain will require many iterations to adequately explore the space of the target distribution.

If the proposal distribution is too focused (e.g., has too small a variance), then the chain will remain in one small region of the target distribution for many iterations while other regions of the target distribution will not be adequately explored. 

Cooling schedule

Decreasing speed must not be too fast to avoid remaining in a local minimum Logarithm schedule

Guarantee convergence but too slow in practice

Geometric schedule : 

Physical interpretation

Principle of physical annealing : A cristalline solid is heated : molecular structure is weaker and is more susceptible to change Then it's allowed to cool very slowly until it achieves its most regular possible crystal lattice configuration (its minimum lattice energy state) If cooling is abrupt, the solid will be found in a metastable state with non-minimal energy At thermal equilibrium, the probability that a system is in a macroscopic configuration i with energy E i is given by the 

Update of the mean m

New mean = old mean + average of good steps

New mean is also the average of the best new points.

Update of the covariance C I New covariance = empirical covariance of the good steps

It is different from the covariance matrix of good points ( [START_REF] Larrañaga | Estimation of distribution algorithms: A new tool for evolutionary computation[END_REF])

Le 

Path=cumulated steps I

To decrease the cost for estimating C (= λ), i) average the steps and ii) cumulate them through time:

One could then have an estimation of C with a time smoothing, 

Why these coefficients? To allow convergence when everything is stable: If p (g ) ∼ N (0, C ) and s (i:λ) ∼ N (0, C ), then p (g +1) ∼ N (0, C ). 

Path=cumulated steps III

Putting it together:

Quiz 7: Why is it called "rank 1 update"?

Default values [START_REF] Hansen | The CMA evolution strategy: A tutorial[END_REF]: Population size and selection pressure:

The state-of-the-art CMA-ES

The above simplified CMA-ES was given for its ease of explanations.

The following features are missing: Weighting of the parents: s = µ i=1 w i s i:λ Separation of the size and shape of the covariance matrix: C = σ 2 R Simultaneous rank-1 (pp ) and rank-µ ( µ i=1 s i:λ s i:λ ) updates of the covariance Restarts with increasing population sizes [START_REF] Auger | A restart CMA evolution strategy with increasing population size[END_REF] Optimizing with the help of GPs Scientific domain: Bayesian optimization.

The problem: min

where f () is a black-box costly function. No property of f that is helpful for optimization such as Lipschitz, convexity, uni-modality is known.

Principle: replace calls to f () by the predicted density of the GP (Y (x)). Underlying assumption about the regularity of the function through the kernel choice, but it still works if this assumption is not satisfied. We need an acquisition criterion that uses the GP and seeks a compromise between exploration and intensification: the expected improvement . . .

The Expected Improvement

. change of variable, temporarily drop some x's to ease notation:

.
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Bayesian optimization principle

Iteratively,

) , update the GP EI (x) ≥ 0 Quiz 8 Prove that EI (x i ) = 0 when x i is already evaluated and part of the DoE of the GP.

Hence EI (x) tends to be multimodal. Answers to the quizzes II

tightest lower bound : max i=1,...,t

the min of the left-hand-side remains smaller than the min of the right-hand-side,

multiply this inequality by -1 and add it to min i=1,...,t f (x i ) to upperbound the f -distance to the optimum, min i=1,...,t

Answers to the quizzes III Quiz 3: because the point is uniformly sampled, the probability to be in the neighborhood of x is p = volume neighborhood/volume S = 10 -5 /1 = 10 -5 . The number of trials before a point falls in the neighborhood, T , follows a geometric distribution, P(T = k) = (1 -p) k-1 p whose expectation is 1/p = 10 5 and whose standard deviation is √ 1 -10 -5 /10 -5 ≈ 10 5 . Quiz 4: Let p r be the probability of locating the optimum within r restarts, p r = 1 -

r which is positive, so there is a gain in a (r + 1)-th search, but it is a decreasing gain with r .
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Answers to the quizzes IV Quiz 5: We will take the same Markov Chain as the one slide 44 but with a different starting distribution, considering (X (t) ) t=0,1.. defined as follows :

T is stationary here, the chain is irreducible but all the states have period 3. However, as the starting distribution is equal to the stationary distribution, then the marginal distribution of X (t) is the same ∀t and the Markov Chain converges even if all the states of a period equal to 3. Answers to the quizzes V Quiz 6: If T 0, exp( f (x)-f (x)

T

) 0 when f (x) < f (x) and then a candidate point is almost never accepted in this case. Then, the behaviour algorithm is almost only defined by the proposal distribution. For instance :

If the proposal distribution is gaussian, the algorithm is almost similar to normal search If the proposal distribution is uniform, the algorithm is almost similar to random search

The Markov Chain still converges asymptotically to a random variable of density π(x) = 1 K exp(-f (x) T ) but if the starting point is not located in the zone of the "almost dirac" of π, this convergence will be very long. This is precisely the idea behind the slowly decreasing temperature, we want to bring x progressively closer to this unknown zone so that for the last Answers to the quizzes VI temperature T f 0, the starting point of the Markov Chain is in this zone. Quiz 7: It is called "rank 1 update" because the correction to the covariance matrix, p (g +1) p (g +1) , is a matrix of rank 1. Indeed, the rank of a matrix is the dimension of its image space, which is the number of non-zero eigenvalues. A matrix like pp has 1 non-zero eigenvalue, p 2 , because (pp ) p p = p 2 p p , and all d -1 vectors perpendicular to p have a 0 eigenvalue. Quiz 8: x i is one of the points learned by the GP which is interpolating, therefore Y (x i ) = f (x i ). I (x i ) = max(0, min(F ) -Y (x i )) = max(0, min(F ) -f (x i )) = max(0, min(f (x 1 ), . . . , f (x t )) -f (x i )) = 0.
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Answers to the quizzes VII