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Course outline

These slides constitute a 12h introductory course on global
optimization. The course starts with basic concepts specific to global
optimization and different from those underlying local optimization
algorithms. A selection of 6 algorithms is then presented: random
search, randomly restarted local searches, simulated annealing,
CMA-ES and Bayesian Optimization. This selection is meant to
cover the main mechanisms behind global searches.

Pre-requisites are: linear algebra, basic probabilities and local
optimization (gradient methods, necessary optimality conditions).
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Optimization = a quantitative formulation of

decision

Optimization is a1 way of mathematically modeling decision.

min
x∈S

f (x)

x vector of decision parameters (variables) :
dimensions, investment, tuning of a
machine / program, . . .

f (x) : decision cost x

S : set of possible values for x , search space

1non unique, incomplete when considering human beings or life
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Local versus global optimum

min
x∈S⊂Rd

f (x)

x l ∈ S is a local minimum of f over
S if there exists ε > 0 such that
for any x ∈ S with ‖x − x l‖ ≤ ε,
f (x) ≥ f (x l)
(it is a strict local minimum if
f (x) > f (x l)).

Goal of the class: learn strategies to increase the chances to locate a
global optimum.
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Examples where global optimization is necessary I

In redundant structures, one of the component (x composant) can
take the role of another.

Composite structures

x is the orientation of the fibers within
the plies of a composite laminate and
the location where the plies are dropped.
Many arrangements of the x ’s have al-
most equivalent performances, leading to
local optima (from [Irisarri et al., 2014]).
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Examples where global optimization is necessary II

Optical filters

Root mean square distance to a target
spectrum (from [Bäck et al., 1995])
Cross-section of the function w.r.t. 2 layer
thicknesses. This function is multimodal,
the higher dimensional function probably
is.
Quiz 1: why f (x1, x2), which is multi-
modal in terms of x1 when x2 is fixed,
may not be multimodal w.r.t. (x1, x2)?

Figure 5: Topology of the merit function in case of a fixed five-layer filter structure
with 	� � 	� � �:�, 	� � �:���, d� � ���nm, 	� � �:���, d� � ���nm, 	� � �:���,
d� � ���nm and 	� � 	s � �:�. Optical thicknesses of the first and fifth layer are
varied in the range � – ��m.

thickness by the constant

c =
2000

~d~�t
:

Figure 5 displays the topology of the objective function of a five dimen-
sional system. While the layers two, three, and four are fixed (�� = 1:606,
d� = 100nm, �� = 2:255, d� = 100nm, �� = 1:448, d� = 100nm), the thick-
nesses of layer one (�� = �� = 1:0) and layer five (�� = �s = 2:0) are varied
in the range 0 – 1000nm. In contrast to the previous reference problem a dis-
tinct, sharp global minimum can be identified in the plot of this simplified
version of the merit function.

Again, the generalized evolution strategy yields remarkably good res-
ults: Similar to the GA offered in Martin et al. (1994), the GES identifies an
antireflection coating with an average reflectance of 0:2% after 1600 gener-
ations (i.e., the averaged reflection over all wavelengths amounts to 0:2%).
After executing the algorithm for an additional 3400 generations the aver-
age reflectance of the system decreases to 0:163% with 20 layers (the spectral
profile of the filter resulting after these 5000 generations is presented in fig-
ure 6). This value is nearly as good as the 0:15% system (with 29 layers)
generated by the refinement method used by Martin et al. to get a better
performance for the coating found by their genetic algorithm.

The corresponding refractive index profile is shown in figure 7, and
column C of table 2 lists the structure of the system.
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Examples where global optimization is necessary III

Neural networks

Very redundant structures with lots
of symmetries, hence local optima.

Surprisingly, approximate conver-
gence towards local optima works.
An effect of high dimension and
network flexibility?

from techxplore.com/news/

2020-11-neural-network.html, CC0
public domain
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Examples where global optimization is necessary IV

Antennas positioning

Find the optimal location of a given number of antennas to cover
a territory (the Loire Dept)
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Approximation of the Loire surface covered by one antenna for varying locations, S(x1, x2). The

approximation (silver surface) is the mean of a kriging model learned from 20 examples (the red

bullets). The black bullets are test points (not learned), providing some insights into the

imperfections of the approximation.
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Examples where global optimization is necessary V

Design of Experiments

As an archetypal example, find a
point the farthest to a set of pre-
existing points

min
x∈S

(
− min

x i∈DoE
‖x − x i‖

)
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Examples where global optimization is necessary VI

seen as a black-box

Theoretically, global optimization is safer than local op-
timization for black-box functions.

In practice, global optimization is not always affordable.
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Global optimization as a metaphor

Let f be the depth of a canal. To know if the canal is navigable,
soundings are made to

find the minimal depth

f ? = min
x∈S

f (x)

find the location(s) of minimal
depth

x? ∈ arg min
x∈S

f (x) The motor vessel Sparna lists to its port side after tak-
ing on water in void spaces after running aground while
transiting the Columbia River, 2016. U.S. Coast Guard
Photo

Each sounding takes time. What is your search strategy?
Don’t forget to use auxiliary information, e.g. former groundings.
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The exploration-intensification tradeoff

All global optimization algorithms strike a compromise between
exploration and intensification.

Intensification: use already calculated points to concentrate the
search in high-return areas of the search space.

Exploration: try the most unknown parts of the search space.

There is an infinite number of ways to handle this compromise.
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Essential global optima

Without restrictions, global optimization is a utopia: only look for
essential global optima

x? ∈ arg min
x∈S

f (x)

such that ∀ε > 0 , volume[x ′ ∈ S | f (x ′) < f (x) + ε] > 0
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Theoretically solvable problems : deterministic

point of view

If f has a known Lipschitz constant L,

∃L such that ∀x , x ′ , |f (x)− f (x ′)| ≤ L‖x − x ′‖
we can know how far the true solution is from already calculated
points which tells us where to search and when to stop :

x t+1 = arg min
x∈S

max
i=1,...,t

f (x i)−L‖x−x i‖

Quiz 2: knowing (x i , f (x i)) , i =
1, . . . , t and L, what is the accu-
racy with which the problem has been
solved ? In other terms, give an upper-
bound to [mini=1,...,t f (x i)− f (x?)].
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Cf. the DIRECT algo. [Jones et al., 1993]
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Problems solvable in probability I

Let there be k distinct local optima x?1 , . . . , x
?
k such that

f ? := f (x?1 ) := f ?1 ≤ . . . ≤ f (x?k ) = f ?k .

Gradient flow: set of points generated as solutions of ẋ = −∇f (x)
starting from a given x , i.e., set of iterates of an infinitesimal step
gradient descent. Assume that f and S are such that it always
converges to a local optimum.

Basin of attraction, attr (f ?i ): set of
points x ∈ S such that a gradient flow
converges to f (x) = f ?i .
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Problems solvable in probability II

pi , the probability that the gradient flow with random starting point
converges to f ?i , pi = vol [attr (f ?i )] /vol [S].

The difficulty of a problem (assuming the local search is perfect) can
be measured with p1:

p1 = 1: unimodal function.

p1 ≈ 1: easy global problem, most local searches will solve it.

p1 ≥ δ > 0: problem solvable in probability because the
probability of finding f ?1 → 1 as the number of restarts increases.
The probability to have at least one search converge to attr (f ?)
in µ repeats is = 1− (1− p1)µ.

p1 ≈ 0: unstable optimum, non essential. In practice, often
avoided because it is not robust to a small error in x?.
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First, simple, algorithms I

We will now review a few basic global optimization algorithms by
increasing order of complexity.

Words of caution:

Although there are better optimization algorithms than others,
there will never be an algorithm better over all possible
problems, cf. No Free Lunch theorem
[Wolpert and Macready, 1997]: when an algorithm improves on
a subset of problems, it regresses on other subsets.

There is an adequation between the problem and the algorithm.
Auxiliary information may be used to select the algorithm
(dimension, nature of the search space, budget of calls to f ,
noise affecting f , regularity of f ).
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First, simple, algorithms II

The problem formulation is a degree of freedom to change the
problem and make it more amenable to optimization. Examples
with shapes and PCA in [Gaudrie et al., 2020].

A theoretically solvable problem may not be solvable in practice
because of the cost of the search, in particular in high dimension
(d � 1). In this case, “solving” the problem is finding the best
possible solution.

For a better understanding, look for the elements of the
algorithms that contribute to the exploration or to the
intensification of the search.
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Algorithm 1 Random search

Require: xLB, xUB, tmax

t ← 0, f̂ ? ← +∞
1: while t < tmax do
2: x ′ ← U [xLB, xUB] {uniform law}
3: calculate f (x ′), t ← t + 1

4: if f (x ′) < f̂ ? then

5: x̂? ← x ′ , f̂ ? ← f (x ′)
6: end if
7: end while
8: return x̂?, f̂ ?

Quiz 3: if S = [0, 1]5 (hypercube in d = 5), and x? = (0.2, . . . , 0.2)
what is the expected time until a point is sampled inside the cube of
side 0.1 centered at x? (i.e., x? found with a 0.05 accuracy on each
of its components)? What is the standard deviation of this time?
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Algorithm 2 Restarted local search

Require: xLB, xUB, tmax, a LOCAL SEARCH algorithm
t ← 0, f̂ ? ← +∞

1: while t < tmax do
2: x init ← U [xLB, xUB] {uniform law}
3: [x ′, f (x ′), t ′]← LOCAL SEARCH(x init)
{start from x init, x ′ candidate local optimum, f (x ′) its obj. func-
tion, t ′ number of calls to f done during the local search}

4: t ← t + t ′

5: if f (x ′) < f̂ ? then

6: x̂? ← x ′ , f̂ ? ← f (x ′)
7: end if
8: end while
9: return x̂?, f̂ ?

It is often interesting to additionally save the candidate local optima x ′.
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Quiz 4: Let p1 be the probability to start a local search in the basin
of attraction of the optimum x?, and r be the number of restarts
done. By how much does the probability of locating x? increase if a
r + 1 restart is done? Why is it a case of diminishing returns?
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Algorithm 3 Isotropic ES-(1+1)

Require: tmax, x , f (x) , σ2

t ← 1, m← x , C ← σ2I
1: while t < tmax do
2: x ′ ← N (m,C ) {Gaussian law}
3: Calculate f (x ′), t ← t + 1
4: if f (x ′) < f (x) then
5: x ← x ′ , f (x)← f (x ′)
6: end if
7: m← x {update proposal pdf}
8: end while
9: return x , f (x)

Simplified : no adaptation of C , neither the step size σ, nor the
shape which remains isotropic (no priviledged search direction).
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Step adaptation is important
Why Step-Size Control?
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for n = 10

from [Auger and Dumas, 2017]
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Theoretical step size in ES-(1+1) I

Look at template function, minx∈Rd f (x) where f (x) = ‖x‖2.
Trivial problem but useful to understand phenomena occuring when d
changes.

X ′i = xi + σUi where Ui ∼ N (0, 1)

‖X ′ − x‖2 = σ2
d∑

i=1

U2
i

The last term follows a χ2
d .

When d ≥ 5, it is approximated byN (d , 2d).

Le Riche & Sire Global Optimization Dec. 2021 26 / 95



Theoretical step size in ES-(1+1) II

‖X ′ − x‖ = σ

√√√√ d∑
i=1

U2
i

d≥5
 σN (

√
d , 1/2)

i.e., samples concentrate on a sphere cen-
tered on x and of radius σ

√
d . Useful

to choose σ? Sure, set σ
√
d = R , i.e.,

σ = R/
√
d .

But this step size does not account for the acceptance / refusal in
the ES-(1+1) algorithm, and the acceptance rate at given σ
decreases with d ↗.

Le Riche & Sire Global Optimization Dec. 2021 27 / 95



Theoretical step size in ES-(1+1) III
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Theoretical step size in ES-(1+1) IV

Optimal σ

Change in distance to 0 (random variable): D2 = ‖x‖2 − ‖X ′‖2

D2 =‖x‖2 − ‖x + σU‖2

=‖x‖2 − (x + σU)>(x + σU)

=− 2σx>U − σ2U>U
d≥5
≈ − 2σx>U − σ2d

⇒ D2 ∼N (−σ2d , 4σ2R2)

ES-(1+1) has a test that prevents D2 from being negative, the
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Theoretical step size in ES-(1+1) V

progress is I2 = max(0,D2). The mean progress is

E(I2) = E(max(0,D2)) =

∫ +∞

0

i2p(i2)di2

Change of variable : j = i2+σ2d
2σR

, j ∼ N (0, 1)

E(I2) =

∫ +∞

σd
2R

(2σRj − σ2d) pdfN (j)dj

= 2σR pdfN (
σd

2R
)− σ2d

[
1− cdfN (

σd

2R
)

]
d

R2
E(I2) = 2

σd

R
pdfN (

σd

2R
)− σ2d2

R2

[
1− cdfN (

σd

2R
)

]
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Theoretical step size in ES-(1+1) VI
d
R2E(I2) is a function of σ̃ = σd

R
.

Its maximizer is σ̃? = arg maxσ̃
d
R2E(I2) ≈ 1.22 = σ?d

R

⇒ σ? = 1.22
R

d

which is more cautious than the O(1/
√
d) first estimate.
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Theoretical step size in ES-(1+1) VII

Extension to quadratic functions

f (x) =
1

2
x>Hx

H Hessian strictly positive definite. The previous optimal step size
calculation can be extended.
Eigendecomposition of H = PD2P>, P matrix of eigenvectors as
columns, P>P = PP> = I , D2 diagonal matrix of eigenvalues.

f (x) =
1

2
x>PDDP>x =

1

2
y>y = f (y)

where y = DP>x ⇐⇒ x = PD−1y
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Theoretical step size in ES-(1+1) VIII

f (y) is a sphere, therefore an optimal2 step distribution in the
y -space is Y ′ − y ∼ N (0, σ?2I ) where

σ? = 1.22
‖y‖
d

= 1.22

√
x>PD2P>x

d
= 1.22

√
x>Hx

d

Translating back into the x-space by multiplying by PD−1,

X ′ − x = PD−1(Y ′ − y) ∼ N (0, σ?2PD−2P>) ≡ N (0, σ?2H−1)

Note that the shape of the covariance matrix is given by the inverse
Hessian.

2optimal w.r.t. σ and position invariant on the contour f =const. See
[Rudolph, 1992]
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Definition

Let’s consider {X t}t=0,1.. a sequence of random variables in a
state space S
{X t}t=0,1.. is a Markov Chain if
∀t,∀x (0), .., x (t−1) : p(x (t) | x (0), .., x (t−1)) = p(x (t) | x (t−1))
Then we have a simpler expression of the joint density of

(X (0),X (1), ..,X (t)) : p(x (t), .., x (0)) = p(x0)
t∏

t′=1

p(x (t′) | x (t′−1))

The idea is that S is also our search space in which we will
investigate the argmin of the function f with Markov Chains
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Discrete states space

Now we consider card(S) <∞ : S = {1, ..., s}
X t = j for j ∈ S means the process is in state j at time t

Let’s define the one-step transition probability from state i at
time t to state j at time t + 1 : p

(t)
ij = P(X (t+1) = j | X (t) = i)

If ∀t, p(t)
ij = p

(0)
ij = pij : the Markov Chain is called

time-homogeneous

In the following we will consider time homogeneous Markov Chains
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Transition probability matrix

For a time-homogeneous Markov Chain, we can define a transition
probability matrix P = (pij)i ,j∈1,..,s

Each row of the matrix must sum to one :
∑s

j=1 pij = 1
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Marginal probability

We denote π
(t)
i the marginal probability that X (t) = i

Then we can define π(t) = (π
(t+1)
i )i∈S the vector probability

(the sum is 1)

∀j ∈ S, π(t+1)
j = P(X (t) = j) =

∑s
i=1 P(X (t+1) = j | X (t) =

i)P(X (t) = i) =
∑s

i=1 pijπ
(t)
i = [π(t)TP]j

=⇒ π(t+1) = π(t)TP
=⇒ π(t+n) = π(t)T (P)n
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Stationary distribution

A stationary distribution π for P is a vector that satisfies the
following properties :

0 ≤ πi ≤ 1∑
i πi = 1

πTP = πT

If {X (t)} follows a stationary distribution, then the marginal
distributions of X (t) and X (t+1) are identical
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Irreducibility and Periodicity

A Markov Chain is irreducible if any state j can be reached from
any state i in a finite number of steps, ie
∀i , j ∈ S2,∀t,∃m > 0,P(X t+m = j |X t = i) > 0

A state i is said to have period k if any return to state i must
occur in multiples of k time steps. Formally we have
k = gcd{n > 0|P(X (n) = i | X 0 = i) > 0}
A state i is aperiodic if k = 1 and the Markov Chain is aperiodic
if all states are aperiodic.

gcd : greatest common divisor
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Reversibility

A Markov chain is reversible if there exists a distribution π which
satisfies the detailed balance conditions: ∀i , j , πipij = πjpji
Any distribution satisfying detailed balance is a stationary distribution
:

∀i , j , πipij = πjpji ⇒ ∀j
∑
i

πipij =
∑
i

πjpji

⇒ ∀j ,
∑
i

πipij = πj

⇒ ∀j , [πTP]j = πj
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Convergence

If {X (t)} is an irreducible and aperiodic Markov Chain with stationary
distribution π, then :

π is the unique stationary distribution
X (t) converges in distribution to a r.v. X of distribution π
for any function g , 1

n

∑n
t=1 g(X (t))→

a.s
Eπ(g(X ))
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Importance of aperiodicity

Example where {X (t)} is an irreducible but not aperiodic Markov
Chain with stationary distribution π :

S = 1, 2, 3
with π1 = π2 = π3 = 1/3
p1,2 = p3,1 = p2,3 = 1

Then π is stationary, and the chain is irreducible
However, if X0 = 1 (say), then X (t) = 1 whenever t is a multiple of
3, so P(X (t) = 1) oscillates between 0 and 1
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Continuous states space

Similar results hold for a continuous state space

In the continuous case, a time-homogeneous Markov Chain is
defined by the transition kernel p(x , x ′) = pX (t+1)|X (t)(x ′ | x)

The density π is stationary for the Markov Chain with kernel
p(x , x ′) if : ∀x , x ′ ∈ S, π(x ′) =

∫
p(x , x ′)π(x)dx

Convergence remains under similar conditions

Le Riche & Sire Global Optimization Dec. 2021 45 / 95



Content

1 Why global optimization? Basic concepts

2 First, simple, algorithms
Random search
Restarted local searches
Evolution strategy ES-(1+1)

3 Simulated annealing
Markov Chains
Markov Chain Monte Carlo : Metropolis Hastings algorithm
Simulated annealing

4 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

5 Bayesian optimization

6 Bibliography

7 Answers to the quizzes

Le Riche & Sire Global Optimization Dec. 2021 46 / 95



Objective

Idea : General method to construct a Markov Chain that converges
to a target distribution π defined here as follows :

π(x) =
1

K
exp(− f (x)

T
)

where K =
∫
S exp(− f (x)

T
)dx is an unknown normalizing constant and

T is a positive ”temperature” scalar

Why this target distribution ? As T tends to 0, π becomes a
Dirac with all the density mass at Sopt = argmin

x∈S
f (x)

Why not sampling directly π ? Constant K very hard or
impossible to compute

Remark : Markov Chain Monte Carlo (MCMC) can be related to
other objectives with other hard to compute target distributions

Le Riche & Sire Global Optimization Dec. 2021 47 / 95



Proof of convergence when T → 0

Let x? ∈ Sopt ,
∀T ,∀x ∈ S, π(x) > 0 and π(x)

π(x?)
= exp(− f (x)−f (x?)

T
)

Then

∀x ∈ S \ Sopt ,
π(x)

π(x?)
→
T→0

0

∀x ∈ Sopt ,
π(x)

π(x?)
→
T→0

1

The density mass is concentrated at Sopt
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Details with S finite

More precisely, with S = {1, ..., s},
s∑

i=1

πi = 1⇒
s∑

i=1

πi
πi?

=
1

πi?

⇒
∑
i∈Sopt

πi
πi?

+
∑

i∈S\Sopt

πi
πi?

=
1

πi?

⇒ card(Sopt) +
∑

i∈S\Sopt

πi
πi?

=
1

πi?

⇒

{
πi? →

T→0

1
card(Sopt)

πi →
T→0

0 if i /∈ Sopt
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Algorithm (General case)

π is any target distribution here
X (0) = x (0) drawn from starting distribution h with π(x (0)) > 0.
Then given X (t) = x (t), we generate X (t+1) as follows :

1 Sample a candidate value x̃ from a proposal distribution
h(. | x (t))

2 Compute the Metropolis Hastings ratio R(x (t), x̃) = π(x̃)h(x(t)|x̃)

π(x(t))h(x̃ |x(t))

3 Sample a value for X (t+1) as follows :

X (t+1) =

{
x̃ with probability min(1,R(x (t), x̃))
x (t) with probability 1−min(1,R(x (t), x̃))

Remark : Don’t need to compute Normalizing constant K in
R(x (t), x̃)
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Properties

Clearly, a chain constructed via the Metropolis Hasting algorithm
is Markov since X (t+1) is only dependent on X (t)

Whether the chain is irreducible and aperiodic depends on the
choice of proposal distribution; the user must check these
conditions for any implementation.

If this check confirms irreducibility and aperiodicity, then the
chain generated by the Metropolis Hastings algorithm has a
unique limiting stationary distribution, which is the target
distribution π .
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Proof : Discrete states space

We denote here the target distribution p = π And we introduce the
matrix H with ∀i , j ,Hij the probability of proposing the candidate
value j for X (t+1) knowing X (t) = i
Let’s show that π satisfies the detailed balanced condition
Let’s show that π satisfies the detailed balanced condition The
transition probability matrix is P with pij = min(1,

πjHji

πiHij
)Hij We

assume πjHji ≤ πiHij (without loss of generality) :

pij =
πj
πi
Hji

pji = Hji

Then πjpji = πipij
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Proof : Discrete states space

We denote here the target distribution p = π And we introduce the
matrix H with ∀i , j ,Hij the probability of proposing the candidate
value j for X (t+1) knowing X (t) = i
Let’s show that π satisfies the detailed balanced condition
The transition probability matrix is P with pij = min(1,

πjHji

πiHij
)Hij

We assume πjHji ≤ πiHij (without loss of generality) :

pij =
πj
πi
Hji

pji = Hji

Then πjpji = πipij
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Proof : Continuous states space (1/2)

X (t) ∼ π(x)

The transition kernel is p(x , x ′) = min(1, π(x ′)h(x |x ′)
π(x)h(x ′|x)

)h(x ′ | x)

We assume π(x ′)h(x | x ′) ≤ π(x)h(x | x ′) (without loss of generality)
:

p(x , x ′) =
π(x ′)

π(x)
h(x ′ | x)

p(x ′, x) = h(x ′ | x)

Then p(x ′, x)π(x ′) = p(x , x ′)π(x) (reversibility in continuous case)
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Proof : Continuous states space (2/2)

Then ∫
p(x ′, x)π(x ′)dx ′ =

∫
p(x , x ′)π(x)dx ′

= π(x)

∫
p(x , x ′)dx ′

= π(x)
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Proposal distribution

A well-chosen proposal distribution produces candidate values that
cover the support of the stationary distribution in a reasonable
number of iterations and produces candidate values that are not
accepted or rejected too frequently:

If the proposal distribution is too diffuse relative to the target
distribution, the candidate values will be rejected frequently and
thus the chain will require many iterations to adequately explore
the space of the target distribution.

If the proposal distribution is too focused (e.g., has too small a
variance), then the chain will remain in one small region of the
target distribution for many iterations while other regions of the
target distribution will not be adequately explored.
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Gaussian proposal distribution

h(. | x (t)) density of N (x (t), σ2) often used

Irreducibility is true only on the support of π because all x with
π(x) = 0 would be rejected

But ∀t, x (t) ∈ supp(π)

Then, we can consider S = supp(π)

Even if x (0) /∈ supp(π), as the support of h(. | x (t)) is infinite,
P({∃t1,X

(t1) ∈ suppπ}) = 1
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Principle of Simulated Annealing

Apply Metropolis-Hastings algorithm with π(x) = 1
K
exp(− f (x)

T
)

for a set of decreasing temperatures

Choose a symmetric proposal distribution h(. | x) ie
∀x , x ′ ∈ S, h(x | x ′) = h(x ′ | x)

Metropolis Hastings ratio is R(x , x ′) = exp( f (x)−f (x ′)
T

)

Then :

If f (x ′) ≤ f (x) : R(x , x ′) ≥ 1⇒ acceptance
Else

Large T ⇒ R(x , x ′) ' 1⇒ Exploration
Small T ⇒ R(x , x ′) << 1⇒ Intensification
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Algorithm

Initialization x , k = 0,Tk = T0, Lk = L0

While Tk 6' 0, repeat :

1 For l = 0 to Lk do :

Sample a solution x̃ from the proposal distribution h(. | x)
If f (x̃) < f (x) then x = x̃ (x̃ becomes the current solution)
Else, x̃ becomes the current solution with probability
exp( f (x)−f (x̃)

Tk
)

2 k = k + 1

3 Compute (Lk ,Tk)
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Discussion about the parameters

There are several parameter involved :

The length of thermal equilibrum chain Lk
Number of proposed transitions, Number of accepted transitions,
combinations of both

The initial temperature
Large enough so that acceptance rate ' 1

The cooling schedule (see next slide)

The stopping criteria
For instance when current solution no longer changes from one
iteration to the next during a sufficiently large number of
iterations
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Cooling schedule

Decreasing speed must not be too fast to avoid remaining in a local
minimum

Logarithm schedule Tk = T0

1+ln(1+k)

Guarantee convergence but too slow in practice

Geometric schedule : Tk = αkT0

Most typical values of α between 0.8 and 0.99

Exponential schedule : Tk = T0exp(−αk 1
N )

Very fast during the first iterations
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Cooling schedules comparison

Plot with α = 0.85 for the geometric schedule and α = 1, N = 3 for
the exponential schedule
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Physical interpretation

Principle of physical annealing :

A cristalline solid is heated : molecular structure is weaker and is
more susceptible to change

Then it’s allowed to cool very slowly until it achieves its most
regular possible crystal lattice configuration (its minimum lattice
energy state)

If cooling is abrupt, the solid will be found in a metastable state
with non-minimal energy

At thermal equilibrium, the probability that a system is in a
macroscopic configuration i with energy Ei is given by the

Boltzmann distribution πi =
exp

(
− Ei

kBT

)
K

, with K the normalizing
constant and kB the Boltzmann constant
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Performance of simulated annealing

Simulated annealing not very competitive in practice compared to
CMA-ES for instance.
However :

Intuition in the concept of the algorithm is essential to
understand global optimization

Markov Chain Monte Carlo (MCMC) applied more and more in
Industry (Bayesian inference)

Simulated annealing can be combined with other algorithms
(especially for the proposal distribution)
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CMA-ES

CMA-ES = Covariance Matrix Adaptation Evolution-Strategy.

A stochastic global optimization method,

incrementally developed since 1996 by Hansen, Auger and others
[Hansen and Ostermeier, 2001, Hansen, 2016].

Default parameter values provided, contrarily to simulated
annealing and other (stochastic) evolutionary optimization
methods.
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Algorithm 4 CMA-ES structure
Require: tmax, m, C , µ, λ

t ← 0
1: while t < tmax do
2: x1, . . . , xλ ← i.i.d. calls to N (m,C )
3: Calculate f (x1), . . . , f (xλ) , t ← t + λ

and rank them, f (x1:λ) ≤ . . . ≤ f (xλ:λ)
4: Update m and C from the µ best, x1:λ, . . . , xµ:λ

5: end while
6: return best observed point and m

It is an ES-µ+, λ algorithm. Note the order notation i : λ .
Metaphor: λ = population size, µ = number of parents,

an iteration = a generation g , ES = Evolution Strategy.
Do not confuse this C proposal density in S with the covariance
matrix of kriging in f -space.
Now, let’s detail the updates.
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From points to steps

Because large dimensional spaces cannot be sufficiently explored to
learn accurate models, it is better to work with steps than with
points: learn steps leading to progress (dynamic), and not points that
were good (static).

points : x ∼ N (m(g),C (g))

steps : s := x −m(g) ∼ N (0,C (g))
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Update of the mean m

New mean = old mean + average of good steps

m(g+1) = m(g) +
1

µ

µ∑
i=1

s i :λ

= m(g) +
1

µ

µ∑
i=1

(x i :λ −m(g))

⇒ m(g+1) =
1

µ

µ∑
i=1

x i :λ (1)

New mean is also the average of the best new points.
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Update of the covariance C I

New covariance = empirical covariance of the good steps

C (g+1) =
1

µ− 1

µ∑
i=1

s i :λs i :λ
>

=
1

µ− 1

µ∑
i=1

(x i :λ −m(g))(x i :λ −m(g))
>

It is different from the covariance matrix of good points
([Larrañaga and Lozano, 2001])

C
(g+1)
EMNA =

1

µ− 1

µ∑
i=1

(x i :λ −m(g+1))(x i :λ −m(g+1))
>
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Update of the covariance C II

C
(g+1)
µ

C
(g+1)
EMNAglobal

sampling estimation new distribution

Figure 3: Estimation of the covariance matrix on flinear(x) = −P2
i=1 xi to be minimized.

Contour lines (dotted) indicate that the strategy should move toward the upper right corner.

Above: estimation of C
(g+1)
µ according to (12), where wi = 1/µ. Below: estimation of

C
(g+1)
EMNAglobal

according to (13). Left: sample of λ = 150 N (0, I) distributed points. Middle:
the µ = 50 selected points (dots) determining the entries for the estimation equation (solid
straight lines). Right: search distribution of the next generation (solid ellipsoids). Given wi =

1/µ, estimation via C
(g+1)
µ increases the expected variance in gradient direction for all µ <

λ/2, while estimation via C
(g+1)
EMNAglobal

decreases this variance for any µ < λ geometrically
fast

In (14), all generation steps have the same weight. To assign recent generations a higher
weight, exponential smoothing is introduced. Choosing C(0) = I to be the unity matrix and a
learning rate 0 < cµ ≤ 1, then C(g+1) reads

C(g+1) = (1− cµ)C
(g) + cµ

1

σ(g)2
C(g+1)

µ

= (1− cµ)C
(g) + cµ

µ
X

i=1

wi y
(g+1)
i:λ y

(g+1)
i:λ

T

, (15)

where

cµ ≤ 1 learning rate for updating the covariance matrix. For cµ = 1, no prior information is

retained and C(g+1) = 1
σ(g)2

C
(g+1)
µ . For cµ = 0, no learning takes place and C(g+1) =

C(0). Here, cµ ≈ min(1, µeff/n
2) is a reasonably choice.

w1...µ ∈ R such that w1 ≥ · · · ≥ wµ > 0 and
P

iwi = 1.

12

Adaptation of C (top row) versus of CEMNA (bottom row), from

[Hansen, 2016]. The step length of C correctly increases while that of
CEMNA prematurly decreases.
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Path=cumulated steps I

To decrease the cost for estimating C (= λ),
i) average the steps and
ii) cumulate them through time:

s =
1

µ

µ∑
i=1

(x (i :λ) −m(g)) = m(g+1) −m(g) (2)

One could then have an estimation of C
with a time smoothing,

C (g+1) = (1− c1)C (g) + c1s s>

but it is insensitive to a change of direc-
tion, hence unable to converge.
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Path=cumulated steps II

Path = time cumulation of the steps:

p(g+1) = (1− cc)p(g) +
√

cc(2− cc)µ s (3)

Why these coefficients? To allow convergence when everything is
stable: If p(g) ∼ N (0,C ) and s(i :λ) ∼ N (0,C ), then
p(g+1) ∼ N (0,C ).
Proof: 1st term ∼ N (0, (1− cc)2C ), s ∼ N (0, 1

µC2�
µC ), second term

∼ N (0, cc(2− cc)�µ
1

Aµ
C ), then sum the covariances of the two terms �
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Path=cumulated steps III

Putting it together:

C (g+1) = (1− c1)C (g) + c1 p
(g+1)p(g+1)>︸ ︷︷ ︸
rank 1 update

(4)

Quiz 5: Why is it called “rank 1 update”?

Default values [Hansen, 2016]:

Population size and selection pressure: λ ≥ 4 + b3 ln(d)c,
µ = λ/2

c1 ≈ 2/d2 and cc ≈ 3/d .
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Algorithm 5 A simplified CMA-ES

Require: tmax, m(1), C (1), λ, µ, p(1)

t ← 0, g ← 1
1: while t < tmax do
2: x1, . . . , xλ ← i.i.d. calls to N (m(1),C (1))
3: Calculate f (x1), . . . , f (xλ) , t ← t + λ

and rank them, f (x1:λ) ≤ . . . ≤ f (xλ:λ)
4: Update m and C (Eqs. (1) to (4)):

m(g+1) = 1
µ

∑µ
i=1 x

i :λ

s = m(g+1) −m(g)

p(g+1) = (1− cc)p(g) +
√

cc(2− cc)µ s

C (g+1) = (1− c1)C (g) + c1p
(g+1)p(g+1)>

5: g ← g + 1
6: end while
7: return best observed point and m(g)
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The state-of-the-art CMA-ES

The above simplified CMA-ES was given for its ease of explanations.
The following features are missing:

Weighting of the parents: s =
∑µ

i=1 wis
i :λ

Separation of the size and shape of the covariance matrix:
C = σ2R

Simultaneous rank-1 (pp>) and rank-µ (
∑µ

i=1 s
i :λs i :λ

>
) updates

of the covariance

Restarts with increasing population sizes
[Auger and Hansen, 2005]
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Optimizing with the help of GPs

Scientific domain: Bayesian optimization.

The problem:
min

x∈S⊂Rd
f (x) (5)

where f () is a black-box costly function. No property of f that is
helpful for optimization such as Lipschitz, convexity, uni-modality is
known.

Principle: replace calls to f () by the predicted density of the GP.
Underlying assumption about the regularity of the function through
the kernel choice, but it still works if this assumption is not satisfied.
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Given a GPR, where do you sample next?

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

(EGO figures from [Durrande and Le Riche, 2017])
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In our example, the best observed value is 1.79

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

6

We need an acquisition criterion that uses the GP and seeks a
compromise between exploration and intensification: the expected
improvement . . .
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The Expected Improvement

EI(x) =

∫ +∞

−∞
max (0, (min(F )− y(x))) p(y(x))dy(x) = · · · =√
c(x , x) [w(x)cdfN (w(x)) + pdfN (w(x))]

with w(x) = min(F )−m(x)√
(c(x ,x))

.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
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EI formula I

EI(x) =

∫ +∞

−∞
max (0, (min(F )− y(x))) p(y(x)) dy(x)

=

∫ min(F )

−∞
(min(F )− y(x)) p(y(x)) dy(x) +

∫ +∞

min(F )

0 dy(x)

change of variable, temporarily drop some x ’s to ease notation:
v = v(x) = y(x)−m(x)

s(x)
, s = s(x) =

√
c(x , x)

EI(x) =

∫ min(F )−m
s

−∞
(min(F )−m − vs) p(v)dv
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EI formula II

v is made to be standard, p(v) = pdfN (v) = 1√
2π

exp
(
−1

2
v 2
)
, so

pdfN
′(v) = −v × pdfN (v)

EI(x) = (min(F )−m(x))× cdfN (v(x)) + s(x)× pdfN (v(x))

=
√

c(x , x) [w(x)× cdfN (w(x)) +×pdfN (w(x))]

where w(x) = min(F )−m(x)√
(c(x ,x))

�.
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Expected Improvement

Let’s see how it works... iteration 0

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
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Expected Improvement

Let’s see how it works... iteration 1

0.0 0.2 0.4 0.6 0.8 1.0
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6
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Expected Improvement

Let’s see how it works... iteration 2

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6
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Expected Improvement

Let’s see how it works... iteration 3

0.0 0.2 0.4 0.6 0.8 1.0
0
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6
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Expected Improvement

Let’s see how it works... iteration 4

0.0 0.2 0.4 0.6 0.8 1.0
0
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6
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Expected Improvement

Let’s see how it works... iteration 5

0.0 0.2 0.4 0.6 0.8 1.0
0
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6
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This algorithm is called Efficient Global Optimization (EGO,
[Jones et al., 1998]):

1 make an initial design of experiments X and calculate the
associated F , t = length(F )

2 built a GP from (X ,F ) (max. log-likelihood on σ and θi ’s)
3 Xt+1 = arg maxx EI (x) (with another optimizer, e.g. CMA-ES

[Hansen and Ostermeier, 2001])
4 calculate Ft+1 = f (Xt+1), increment t
5 stop (t > tmax) or go to 2.

+ EGO provides a good trade-off between intensification and
exploration without arbitrary parameters.

+ It requires few function observations to get close to optima.

× EGO does not converge in the traditional sense: it creates dense
samples in the volume of S. The efficiency comes from the order
in which points are sampled.
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EGO in higher dimension

Hartmann function, f (x?) = −3.32, 10 points in initial design of
experiments

Notice the global sampling of the search space with point clusters
(from [Ginsbourger, 2009])
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EI and the intensification/exploration tradeoff

EI(x) increases when the variance c(x , x) increases and it increases
when the mean m(x) decreases.

Quiz 6: Prove that ∂EI(x)/∂m(x) < 0.
Quiz 7: Prove that ∂EI(x)/∂c(x , x) > 0.
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Answers to the quizzes I

Quiz 1 : Let’s consider minx1 f (x1, x2 = z) where z is fixed. At
the local optima, the necessary optimality condition for is
∂f (x1, z)/∂x1 = 0 but these (x1, z) may not be optima in 2
dimensions since ∂f (x1, z)/∂x2 may not be 0. As an example,
the function f (x1, x2) = (‖x‖ − R)2 + 0.1‖x − (−2, 0)>‖2 has a
unique optimum at (−2, 0)>. It is multimodal for many x2 fixed,

e.g., x2 = 0.5 :
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x2
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−
3

−
2

−
1

0
1

2
3
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Answers to the quizzes II

Quiz 2 :

∀i ∈ {1, . . . , t} , f (x i)− L‖x − x i‖ ≤ f (x)

tightest lower bound : max
i=1,...,t

(
f (x i)− L‖x − x i‖

)
≤ f (x)

the min of the left-hand-side remains smaller than the min of the
right-hand-side,

min
x∈S

max
i=1,...,t

(
f (x i)− L‖x − x i‖

)
≤ f (x?) = min

x∈S
f (x)

multiply this inequality by −1 and add it to mini=1,...,t f (x i) to
upperbound the f -distance to the optimum,

min
i=1,...,t

f (x i)− f (x?) ≤ min
i=1,...,t

f (x i)−min
x∈S

max
i=1,...,t

(
f (x i)− L‖x − x i‖

)
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Answers to the quizzes III

Quiz 3: because the point is uniformly sampled, the probability
to be in the neighborhood of x? is
p = volume neighborhood/volume S = 10−5/1 = 10−5. The
number of trials before a point falls in the neighborhood, T ,
follows a geometric distribution, P(T = k) = (1− p)k−1p whose
expectation is 1/p = 105 and whose standard deviation is√

1− 10−5/10−5 ≈ 105.

Quiz 4: Let pr be the probability of locating the optimum within
r restarts, pr = 1− (1− p1)r .
pr+1 − pr = 1− (1− p1)r+1 − 1 + (1− p1)r = p1(1− p1)r which
is positive, so there is a gain in a (r + 1)-th search, but it is a
decreasing gain with r .
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Answers to the quizzes IV

Quiz 5: It is called “rank 1 update” because the correction to

the covariance matrix, p(g+1)p(g+1)>, is a matrix of rank 1.
Indeed, the rank of a matrix is the dimension of its image space,
which is the number of non-zero eigenvalues. A matrix like pp>

has 1 non-zero eigenvalue, ‖p‖2, because (pp>) p
‖p‖ = ‖p‖2 p

‖p‖ ,
and all d − 1 vectors perpendicular to p have a 0 eigenvalue.

Quiz 6: switch to shorthand notation dropping all x ’s
(everything is at x), s =

√
c(x , x), w = (min(F )−m)/s, one

has: ∂w
∂m

= −1
s
,

∂EI
∂m

= s[−1
s
×cdfN (w) +w(−1

s
)×pdfN (w)−w(−1

s
)×pdfN (w)]

= −cdfN (w) < 0.

Quiz 7: same notation as previous quiz, ∂w
∂s

= −1
s
w ,

∂EI
∂s

= w × cdfN (w) +×pdfN (w) + s[−1
s
w × cdfN (w) +

w(−1
s
w)× pdfN (w)− w(−1

s
w)× pdfN (w)] = pdfN (w) > 0.
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