
HAL Id: hal-03500536
https://hal.science/hal-03500536

Submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subspace Detours Meet Gromov-Wasserstein
Clément Bonet, Titouan Vayer, Nicolas Courty, François Septier, Lucas

Drumetz

To cite this version:
Clément Bonet, Titouan Vayer, Nicolas Courty, François Septier, Lucas Drumetz. Subspace Detours
Meet Gromov-Wasserstein. Algorithms, 2021, Special Issue Optimal Transport: Algorithms and Ap-
plications, 14 (12), pp.366. �10.3390/a14120366�. �hal-03500536�

https://hal.science/hal-03500536
https://hal.archives-ouvertes.fr


Subspace Detours Meet Gromov-Wasserstein

Clément Bonet
Univ. Bretagne Sud, LMBA

F-56000 Vannes
clement.bonet@univ-ubs.fr

Nicolas Courty
Univ. Bretagne Sud, IRISA

F-56000 Vannes
nicolas.courty@irisa.fr

François Septier
Univ. Bretagne Sud, LMBA

F-56000 Vannes
francois.septier@univ-ubs.fr

Lucas Drumetz
IMT Atlantique, Lab-STICC

F-29200 Brest
lucas.drumetz@imt-atlantique.fr

Abstract

In the context of optimal transport methods, the subspace detour approach was
recently presented by Muzellec and Cuturi (2019). It consists in building a nearly
optimal transport plan in the measures space from an optimal transport plan in
a wisely chosen subspace, onto which the original measures are projected. The
contribution of this paper is to extend this category of methods to the Gromov-
Wasserstein problem, which is a particular type of transport distance involving
the inner geometry of the compared distributions. After deriving the associated
formalism and properties, we also discuss a specific cost for which we can show
connections with the Knothe-Rosenblatt rearrangement. We finally give an experi-
mental illustration on a shape matching problem.

1 Introduction

Classical optimal transport (OT) has received lots of attention recently, in particular in Machine
Learning for tasks such as generative networks (Arjovsky et al., 2017) or domain adaptation (Courty
et al., 2016) to name a few. It generally relies on the Wasserstein distance, that builds an optimal
coupling between distributions given their geometry. Yet, this metric lacks from potentially important
properties, such as translation or rotation invariance, which can be useful when comparing shapes
for instance (Mémoli, 2011; Chowdhury et al., 2021), and cannot be used directly whenever the
distributions lie in different metric spaces. In order to alleviate those problems, custom solutions have
been proposed, such as (Alvarez-Melis et al., 2019; Cai and Lim, 2020).

Apart from these works, another meaningful OT distance to tackle these problems is the Gromov-
Wasserstein (GW) distance, originally proposed in Mémoli (2007, 2011). It is a distance between
metric spaces and has several appealing properties such as geodesics or invariances (Sturm, 2012).
Yet, the price to be paid lies in its computational complexity, which requires to solve a quadratic
optimization problem with linear constraints. A recent line of work tends to compute approximations
or relaxations of the original problem, in order to spread its use in more data intensive machine
learning applications. For example, Peyré et al. use an entropic regularization in order to iterate
several Sinkhorn projections (Cuturi, 2013). A related recent method imposes coupling with low-rank
constraints (Scetbon et al., 2021). Vayer et al. proposed a sliced approach to approximate Gromov-
Wasserstein. Fatras et al. studied an estimator based on mini-batches. In Chowdhury et al. (2021),
authors propose to partition the space and to solve the optimal transport problem between a subset of
points, before finding a coupling between all the points.

Preprint. Under review.
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In this work, we study the subspace detour approach for Gromov-Wasserstein. This class of method
was first proposed for the Wasserstein setting in Muzellec and Cuturi (2019) and consists in choosing
the optimal transport plan between projected measures on a subspace, before finding a coupling on
the whole space between the original measures using disintegration. Our main contribution is to
derive the subspace detours between different subspaces and to apply it for GW costs. We derive
some useful properties as well as closed-form solution between Gaussians. Interestingly enough,
we also propose a separable quadratic cost for the GW problem that can be related with a triangular
coupling, hence bridging the gap with Knothe-Rosenblatt (KR) rearrangements. Illustrations of the
method are also given on a shape matching problem.

2 Background

In this section, we introduce all the necessary material to describe the subspace detour approach,
from classical optimal transport and its connection to the Knothe-Rosenblatt rearrangement, before
defining subspace optimal couplings via the gluing lemma and measure disintegration. Then, we
introduce the Gromov-Wasserstein problem for which we will derive the subspace detour in the next
sections.

2.1 Classical optimal transport

Let µ, ν ∈ P(Rd) be two probability measures. The set of couplings between µ and ν is defined as

Π(µ, ν) = {γ ∈ P(Rd × Rd), π1
#γ = µ, π2

#γ = ν}

where π1 and π2 are the projections on the first and second coordinate (i.e. π1(x, y) = x), and # is
the push forward operator, defined such that

∀A ∈ B(Rd), T#µ(A) = µ(T−1(A)).

Kantorovitch problem There exists several types of coupling between probability measures and a
non exhaustive list can be found in (Villani, 2008)[Chapter 1]. Among them, the so called optimal
coupling is the minimizer of the following Kantorovitch problem:

inf
γ∈Π(µ,ν)

∫
c(x, y)dγ(x, y) (1)

with c some cost function. When c(x, y) = ‖x− y‖22, then it defines the Wasserstein distance

W 2
2 (µ, ν) = inf

γ∈Π(µ,ν)

∫
‖x− y‖22 dγ(x, y). (2)

The Kantorovitch problem (1) is known to admit a solution when c is nonnegative and lower
semi-continuous (Santambrogio, 2015)[Theorem 1.7]. When the optimal coupling is of the form
γ = (Id, T )#µ with T some deterministic map such that T#µ = ν, T is called the Monge map.

In one dimension, with µ atomless, the solution to (2) is a deterministic coupling of the form
(Santambrogio, 2015)[Theorem 2.5]

T = F−1
ν ◦ Fµ, (3)

where Fµ is the cumulative distribution function of µ and F−1
ν the quantile function of ν. This map

is also known as the increasing rearrangement.

Knothe-Rosenblatt rearrangement Another interesting coupling is the Knothe-Rosenblatt rear-
rangement, which takes advantage of the increasing rearrangement in one dimension by iterating
over the dimension and disintegrating. Concatenating all the increasing rearrangements between the
conditional probabilities, we obtain the KR rearrangement, which turns out to be a nondecreasing
triangular map (i.e. T : Rd → Rd, for all x ∈ Rd, T (x) = (T1(x1), . . . , Tj(x1, . . . , xj), . . . , Td(x))
and for all j, Tj is nondecreasing with respect to xj), and a deterministic coupling (i.e. T#µ = ν)
(Villani, 2008; Santambrogio, 2015; Jaini et al., 2019).
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Carlier et al. made a connection between this coupling and optimal transport by showing that it can
be obtained as the limit of optimal transport plans for a degenerated cost

ct(x, y) =

d∑
i=1

λi(t)(xi − yi)2,

where for all i ∈ {1, . . . , d}, t > 0, λi(t) > 0 and for all i ≥ 2, λi(t)
λi−1(t) −−−→t→0

0. This cost can be

recast as in (Bonnotte, 2013) as ct(x, y) = (x− y)TAt(x− y) where At = diag(λ1(t), . . . , λd(t)).
This formalizes into the following Theorem:

Theorem 1 (Carlier et al. (2010); Santambrogio (2015)). Let µ and ν be two absolutely continuous
measures on Rd, with compact supports. Let γt be an optimal transport plan for the cost ct, let TK be
the Knothe-Rosenblatt map between µ and ν, and γK = (Id× TK)#µ the associated transport plan.

Then, we have γt
D−−−→
t→0

γK . Moreover, if γt are induced by transport maps Tt, then Tt converges in

L2(µ) when t tends to zero to the Knothe-Rosenblatt rearrangement.

2.2 Subspace detours and disintegration

Muzellec and Cuturi proposed another OT problem by optimizing over the couplings which share a
measure on a subspace. More precisely, they defined subspace optimal plans for which the shared
measure is the OT plan between projected measures.

Definition 1 (Subspace-Optimal Plans (Muzellec and Cuturi, 2019) Definition 1). Let µ, ν ∈ P2(Rd)
and let E ⊂ Rd be a k-dimensional subspace. Let γ∗E be an OT plan between µE = πE#µ and
νE = πE#ν (with πE the orthogonal projection on E). Then the set of E-optimal plans between µ
and ν is defined as ΠE(µ, ν) = {γ ∈ Π(µ, ν)| (πE , πE)#γ = γ∗E}.

By the Gluing lemma (Villani, 2008), it is possible to construct a coupling γ ∈ Π(µ, ν) such that
(πE , πE)#γ = γ∗E . A way to do that is to rely on disintegration.

Disintegration Let (Y,Y) and (Z,Z) be measurable spaces, and (X,X ) = (Y × Z,Y ⊗ Z) the
product measurable space. Then, for µ ∈ P(X), we denote µY = πY#µ and µZ = πZ#µ the marginals,
where πY (respectively πZ ) is the projection on Y (respectively Z). Then, a family (K(y, ·))y∈Y is a
disintegration of µ if for all y ∈ Y , K(y, ·) is a measure on Z, for all A ∈ Z , K(·, A) is measurable
and

∀φ ∈ C(X),

∫
Y×Z

φ(y, z)dµ(y, z) =

∫
Y

∫
Z

φ(y, z)K(y,dz)dµY (y),

where C(X) is the set of continuous functions on X . We can note µ = µY ⊗K. K is a probability
kernel if for all y ∈ Y , K(y, Z) = 1. The disintegration of a measure actually corresponds to
conditional laws in the context of probabilities. This concept will allow us to obtain measures on the
whole space from marginals on subspaces.

In the case where X = Rd, which is the main case of interest in the remainder of the paper, we have
existence and uniqueness of the disintegration (see Box 2.2 of Santambrogio (2015) or Chapter 5 of
Ambrosio et al. (2008) for the more general case).

Coupling on the whole set Let’s note µE⊥|E and νE⊥|E the disintegrated measures on the orthog-
onal spaces (i.e. µ = µE ⊗ µE⊥|E and ν = νE ⊗ νE⊥|E). Then, to get a transport plan between the
two originals measures on the whole space, we can look for another coupling between disintegrated
measures µE⊥|E and νE⊥|E . In particular, two such couplings are proposed in Muzellec and Cuturi
(2019), the Monge-Independent (MI) plan

πMI = γ∗E ⊗ (µE⊥|E ⊗ νE⊥|E)

where we take the independent coupling between µE⊥|E(xE , ·) and νE⊥|E(yE , ·) for γ∗E almost
every (xE , yE), and the Monge-Knothe (MK) plan

πMK = γ∗E ⊗ γ∗E⊥|E

3



where γ∗E⊥|E((xE , yE), ·) is an optimal plan between µE⊥|E(xE , ·) and νE⊥|E(yE , ·) for γ∗E almost
every (xE , yE). Muzellec and Cuturi observed that MI is more adapted to noisy environments since
it only computes the OT plan on the subspace. MK is more suited for applications where we want to
prioritize some subspace but where all the directions still contain relevant informations.

2.3 Gromov-Wasserstein

Formally, the Gromov-Wasserstein distance allows to compare metric measure spaces (mm-space),
triplets (X, dX , µX) and (Y, dY , µY ) where (X, dX) and (Y, dY ) are complete separable metric
spaces and µX , µY Borel probability measures on X and Y (Sturm, 2012), by computing

GW (X,Y ) = inf
γ∈Π(µX ,µY )

∫∫
L(dX(x, x′), dY (y, y′))dγ(x, y)dγ(x′, y′)

where L is some loss on R. It has actually been extended to other spaces by replacing the distances
by cost functions cX and cY , as e.g. in (Chowdhury and Mémoli, 2019). Furthermore, it has many
appealing properties such as having invariances (which depend on the costs).

Vayer studied notably this problem in the setting where X and Y are Euclidean spaces, with
L(x, y) = (x − y)2 and c(x, x′) = 〈x, x′〉 or c(x, x′) = ‖x − x′‖22. In particular, let µ ∈ P(Rp),
ν ∈ P(Rq), the inner-GW problem is defined as

InnerGW(µ, ν) = inf
γ∈Π(µ,ν)

∫∫
(〈x, x′〉p − 〈y, y′〉q)2 dγ(x, y)dγ(x′, y′). (4)

For this problem, a closed-form in one dimension can be found:

Theorem 2 (Vayer (2020) Theorem 4.2.4). Let µ, ν ∈ P(R), with µ absolutely continuous with
respect to the Lebesgue measure. Let F↗µ (x) := Fµ(x) = µ(]−∞, x]) be the cumulative distribution
function and F↘µ (x) = µ(] − x,+∞[) the anti-cumulative distribution function. Let Tasc(x) =

F−1
ν (F↗µ (x)) and Tdesc(x) = F−1

ν (F↘µ (−x)). Then, an optimal solution of (4) is achieved either
by γ = (Id× Tasc)#µ or by γ = (Id× Tdesc)#µ.

3 Subspace detours for GW

In this section, we propose to extend subspace detours from Muzellec and Cuturi (2019) with Gromov-
Wasserstein costs. We show that we can even take subspaces of different dimensions, and still obtain
a coupling on the whole space using the Independent or the Monge-Knothe coupling. Then, we derive
some properties analogously to Muzellec and Cuturi (2019), as well as some closed-form solutions
between Gaussians.

3.1 Motivations

First, we adapt the definition of subspace optimal plans for difference subspaces. Indeed, the Gromov-
Wasserstein distance being able to compare data on spaces of different dimensions, we can argue that
the main information would not be in the same subspace for both datasets. For example, by rotating a
dataset, we would change the subspace of interest and most likely lose information as we can see on
Figure 1. On this illustration, we use as a source one moon of the Two moons dataset, and obtain a
target by rotating it by an angle of π

2 . As GW with c(x, x′) = ‖x − x′‖22 is invariant with respect
to isometries, we are able to recover the exact correspondence between the points. However, when
choosing a subspace to project both the source and target, we completely lose the optimal coupling
between them. Nonetheless, by choosing more wisely one subspace by dataset (using here the first
component of the principal component analysis (PCA) decomposition), we find the right coupling.
This illustration underlines the idea that the choice of both subspaces is important. A way of choosing
the subspaces could be to project on the subspace containing the more information for each dataset
using e.g. PCA independently on each distribution. Muzellec and Cuturi proposed to optimize the
optimal transport cost with respect to an orthonormal matrix with a projected gradient descent, which
could be extended to an optimization over two orthonormal matrices in our context.

By allowing to have different subspaces, we get the following definition of subspace optimal plans.

4



Figure 1: From left to right: Data (moons), OT plan obtained with GW for c(x, x′) = ‖x − x′‖22,
Data projected on the 1st axis, OT plan obtained between the projected measures, Data projected on
their 1st PCA component, OT plan obtained between the the projected measures

Definition 2. Let µ ∈ P2(Rp), ν ∈ P2(Rq), E be a k-dimensional subspace of Rp and F a k′-
dimensional subspace of Rq . Let γ∗E,F be an optimal transport plan for GW between µE = πE#µ and
νF = πF#ν (with πE (resp. πF ) the orthogonal projection on E (resp. F )). Then the set of (E,F )-
optimal plans between µ and ν is defined as ΠE,F (µ, ν) = {γ ∈ Π(µ, ν)| (πE , πF )#γ = γ∗E,F }.

Analogously to Muzellec and Cuturi (2019) (Section 2.2), we can obtain from γ∗E,F a coupling on
the whole set by either defining the Monge-Independent plan πMI = γ∗E,F ⊗ (µE⊥|E ⊗ νF⊥|F ) or
the Monge-Knothe plan πMK = γ∗E,F ⊗ γ∗E⊥×F⊥|E×F where OT plans are taken with some OT cost
such as e.g. GW .

3.2 Properties

Following Muzellec and Cuturi (2019), the Monge-Knothe coupling is the optimal measure among
the subspace optimal plans for the corresponding cost. We show it for the Gromov-Wasserstein
distance with cost L, which is a direct transposition of Proposition 1 in Muzellec and Cuturi (2019).
Proposition 1. Let µ ∈ P(Rp) and ν ∈ P(Rq), E ⊂ Rp, F ⊂ Rq, πMK = γ∗E,F ⊗ γ∗E⊥×F⊥|E×F
where γ∗ are optimal for the Gromov-Wasserstein problem with cost L. Then we have:

πMK ∈ argmin
γ∈ΠE,F (µ,ν)

∫∫
L(x, x′, y, y′)dγ(x, y)dγ(x′, y′).

Key properties of GW that we would like to keep are its invariances. We show in two particular cases
that we conserve them on the orthogonal spaces (since the measure on E × F is fixed).
Proposition 2. Let µ ∈ P(Rp), ν ∈ P(Rq), and denote

GWE,F (µ, ν) = inf
γ∈ΠE,F (µ,ν)

∫∫
L(x, x′, y, y′)dγ(x, y)dγ(x′, y′).

For L(x, x′, y, y′) =
(
‖x − x′‖22 − ‖y − y′‖22

)2
, GWE,F is invariant with respect to translations

and isometries on E⊥ and F⊥.

For L(x, x′, y, y′) =
(
〈x, x′〉p − 〈y, y′〉q

)2
, GWE,F is invariant with respect to isometries on E⊥

and F⊥.

We refer to Appendix A.1 for the proofs of the two previous propositions.

3.3 Closed-form between Gaussians

We can also derive explicit formulas between Gaussians in particular cases. Let q ≤ p, µ =
N (mµ,Σ) ∈ P(Rp), ν = N (mν ,Λ) ∈ P(Rq) two Gaussian measures with Σ = PµDµP

T
µ and

Λ = PνDνP
T
ν . As previously, let E ⊂ Rp and F ⊂ Rq be respectively k and k′ dimensional

subspaces. Following Muzellec and Cuturi (2019), we represent Σ in an orthonormal basis of

E ⊕ E⊥, and Λ in an orthonormal basis of F ⊕ F⊥, i.e. Σ =

(
ΣE ΣEE⊥

ΣE⊥E ΣE⊥

)
. Now, let’s denote

Σ/ΣE = ΣE⊥ − ΣTEE⊥Σ−1
E ΣEE⊥
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the Schur complement of Σ with respect to ΣE . We know that the conditionals of Gaussians are
Gaussians, and of covariance the Schur complement (see e.g. Rasmussen (2003); Von Mises (1964)).

For L(x, x′, y, y′) =
(
‖x−x′‖22−‖y−y′‖22

)2
, we have for now no certainty that the optimal transport

plan is Gaussian. By restricting the minimization problem to Gaussian couplings, Salmona et al.
showed that there is a solution γ∗ = (Id, T )#µ ∈ Π(µ, ν) with µ = N (mµ,Σ), ν = N (mν ,Λ)
and

∀x ∈ Rd, T (x) = mν + PνAP
T
µ (x−mµ) (5)

where A =
(
ĨqD

1
2
ν (D

(q)
µ )−

1
2 0q,p−q

)
∈ Rq×p and Ĩq is of the form diag

(
(±1)i≤q

)
.

By combining the results of Muzellec and Cuturi (2019) and Salmona et al. (2021), we get the
following closed-form for Monge-Knothe couplings.

Proposition 3. Suppose p ≥ q and k = k′. For the Gaussian restricted GW problem, a Monge-
Knothe transport map between µ = N (mµ,Σ) ∈ P(Rp) and ν = N (mν ,Λ) ∈ P(Rq) is, for all
x ∈ Rp, TMK(x) = mν +B(x−mµ) where

B =

(
TE,F 0
C TE⊥,F⊥|E,F

)
with TE,F an optimal transport map between N (0E ,ΣE) and N (0F ,ΛF ) (of the form (5)),
TE⊥,F⊥|E,F an optimal transport map between N (0E⊥ ,Σ/ΣE) and N (0F⊥ ,Λ/ΛF ) and C satisfy-
ing

C = (ΛF⊥F (TTE,F )−1 − TE⊥,F⊥|E,FΣE⊥E)Σ−1
E .

Proof. See Appendix A.2.1.

Suppose that k ≥ k′, mµ = 0, mν = 0 and let TE,F be an optimal transport map between µE and
νF (of the form (5)). We can derive a formula for the Monge-Independent coupling for the inner-GW
problem and the Gaussian restricted GW problem.

Proposition 4. πMI = N (0p+q,Γ) where Γ =

(
Σ C
CT Λ

)
with

C = (VEΣE + VE⊥ΣE⊥E)TTE,F (V TF + Λ−1
F ΛTF⊥FV

T
F⊥)

where TE,F is an optimal transport map, either for the inner-GW problem or the Gaussian restricted
problem.

Proof. See Appendix A.2.2.

3.4 Limit of optimal transport plans?

Another interesting property derived in Muzellec and Cuturi (2019) of the Monge-Knothe coupling is
that it can be obtained as the limit of classic optimal transport plans, similar to Theorem 1, using a
separable cost of the form

ct(x, y) = (x− y)TPt(x− y)

with Pt = VEV
T
E + tVE⊥V

T
E⊥ and (VE , VE⊥) an orthonormal basis of Rp.

However, this property is not valid for the classical Gromov-Wasserstein cost (e.g. L(x, x′, y, y′) =
(dX(x, x′)2 − dY (y, y′)2)2 or L(x, x′, y, y′) = (〈x, x′〉p − 〈y, y′〉q)2) as the cost is not separable.
Motivated by this question, we ask ourselves in the following if we can derive a quadratic optimal
transport cost for which we would have this property.

Construction and properties of the Hadamard-Wasserstein problem The main idea of the
proof of Theorem 1 in Carlier et al. (2010) is to decompose the objective function as∫

ct(x, y)dγ(x, y) = λ1(t)
(∫

(x1 − y1)2dγ(x, y) +

∫ d∑
k=2

λk(t)

λ1(t)
(xk − yk)2dγ(x, y)

)
,

6



before taking the limit t → 0 which makes the right-hand term vanish and allows to conclude on
the limit of the first marginal of the optimal map. Reasoning by induction on the dimension, Carlier
et al. are able to deal with one term at a time, and finally show that the limit of the optimal map is the
Knothe-Rosenblatt transport (2.1). Another key ingredient is to have access to a unique transport map
between measures in R, as it is the case for the Wasserstein distance with cost c(x, y) = 1

2 (x− y)2,
the Monge map being the increasing rearrangement (3) (it can actually be extended to smoothly
strictly convex costs, see Santambrogio (2015)[Theorem 2.9]).

For now, the only cost for which we have an optimal transport map in 1D is for the inner product
(Vayer, 2020). Hence, we need a cost which reduces to inner-GW (4) in 1D. A natural choice is
therefore to use the following cost:

∀x, x′, y, y′ ∈ Rd, L(x, x′, y, y′) =

d∑
k=1

(xkx
′
k − yky′k)2 = ‖x� x′ − y � y′‖22 (6)

as a loss function, where � is the Hadamard product (element wise product). We define the following
“Hadamard Wasserstein” problem

HW(µ, ν) = inf
γ∈Π(µ,ν)

∫∫
‖x� x′ − y � y′‖22 dγ(x, y)dγ(x′, y′). (7)

Properties The loss L (6) satisfies well the separability condition and reduces to the inner-GW loss
in 1D. We can therefore define a degenerated version of it,

∀x, x′, y, y′, Lt(x, x′, y, y′) =

d∑
k=1

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2

= (x� x′ − y � y′)At(x� x′ − y � y′)

(8)

withAt = diag(1, λ
(1)
t , λ

(1)
t λ

(2)
t , ...,

∏d−1
i=1 λ

(i)
t ), and such as for all t > 0, and for all i ∈ {1, . . . , d−

1}, λ(i)
t > 0 and λ(i)

t −−−→
t→0

0. We denoteHWt the problem (7) with the degenerate cost (8). We will
derive some useful properties which are usual for the regular Gromov-Wasserstein cost.
Proposition 5. Let µ, ν ∈ P(Rd).

1. The problem (7) always admits a minimizer.

2. HW is a pseudometric (i.e. it is symmetric, nonnegative,HW(µ, µ) = 0 and it satisfies the
triangle inequality).

3. HW is invariant to reflexion with respect to axes.

Proof. See Appendix B.1.

HW loses somes properties compared to GW . Indeed, it is only invariant with respect to axes and
it can compare only measures lying in the same Euclidean space in order for the distance to be
well defined. Nonetheless, we show in the following that we can derive some links with triangular
couplings in the same way as the Wasserstein distance and KR.

We first define a triangular coupling different from the Knothe-Rosenblatt rearrangement in the sense
that each map will not be nondecreasing. Indeed, following Theorem 2, the solution of each 1D
problem

argmin
γ∈Π(µ,ν)

∫∫
(xx′ − yy′)2 dγ(x, y)dγ(x′, y′)

is either (Id× Tasc)#µ or (Id× Tdesc)#µ. Hence, at each step k ≥ 1, if we disintegrate the joint
law of the k first variables as µ1:k = µ1:k−1 ⊗ µk|1:k−1, the optimal transport map T (·|x1, . . . , xk)
will be the solution of

argmin
T∈{Tasc,Tdesc}

∫∫ (
xkx

′
k − T (xk)T (x′k)

)2
µk|1:k−1(dxk | x1:k−1)µk|1:k−1(dx′k | x′1:k−1).

We now state the main theorem where we show that the limit of the OT plans obtained with the
degenerated cost will be the triangular coupling we just defined.
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Theorem 3. Let µ and ν be two absolutely continuous measures on Rd such that
∫
‖x‖42 µ(dx) <

+∞,
∫
‖y‖42 ν(dy) < +∞ and with compact support. Let γt be an optimal transport plan forHWt,

let TK be the alternate Knothe-Rosenblatt map between µ and ν as defined in the last paragraph,
and let γK = (Id× TK)#µ be the associated transport plan. Then, we have γt

D−−−→
t→0

γK . Moreover,

if γt are induced by transport maps Tt, then Tt
L2(µ)−−−−→
t→0

TK .

Proof. See appendix B.2.

We report in Appendix C how to computeHW (7) in the discrete setting.

4 Illustrations

We use the Python Optimal Transport (POT) library (Flamary et al., 2021) to compute the different
optimal transport problems involved in this illustration. We are interested here in solving a 3D mesh
registration problem, which is a natural application of Gromov-Wasserstein (Mémoli, 2011) since it
enjoys invariances with respect to isometries such as permutations, and can also naturally exploit the
topology of the meshes. For this purpose, we selected two base meshes from the FAUST dataset (Bogo
et al., 2014), which provides ground truth correspondences between shapes. The information available
from those meshes are geometrical (6890 vertices positions) and topological (mesh connectivity).
These two meshes are represented, along with the visual results of the registration, in Figure 2. In
order to visually depict the quality of the assignment induced by the transport map, we propagate
through it a color code of the source vertices toward their associated counterpart vertices in the
target mesh. Both original color coded source and associated target ground truth are available on the
first line of the illustration. To compute our method, we simply use as a natural subspace for both
meshes the algebraic connectivity of the mesh topological information, also known as the Fiedler
vector (eigenvector associated to the second smallest eigenvalue of the un-normalized Laplacian
matrix). Reduced to a 1D optimal transport problem, following Eq. 4, the computation time is very
low (∼ 5secs. on a standard laptop), and the associated matching is very good with more than
98% of correct assignments. We qualitatively compare this result to Gromov-Wasserstein mappings
induced by different cost functions, in the second line of Figure 2: adjacency (Xu et al., 2019),
weighted adjacency (weights are given by distances between vertices), heat kernel (derived from the
un-normalized Laplacian) (Chowdhury and Needham, 2021) and finally geodesic distances over the
meshes. In average, computing the Gromov-Wasserstein mapping using POT took around 10 minutes
of time. Both methods based on adjacency fail to recover a meaningful mapping. Heat kernel allows
to map continuous areas of the source mesh, but fails in recovering a global structure. Finally, the
geodesic distance gives a much more coherent mapping, but has inverted left and right of the human
figure. Notably, a significant extra computation time was induced by the computation of the geodesic
distances (∼ 1h/mesh using the NetworkX (Hagberg et al., 2008) shortest path procedure). As a
conclusion, and despite the simplification of the original problem, our method performs best, with a
speed-up of two-orders of magnitude.

5 Discussion

We proposed in this work to extend the subspace detour approach to different subspaces, and to other
optimal transport costs such as Gromov-Wasserstein. Being able to project on different subspaces can
be useful when the data are not aligned and do not share the same axes of interest, as well as when
we are working between different metric spaces as it is the case for example with graphs. However, a
question arising is how to choose these subspaces. Since the method is mostly interesting when we
choose one dimensional subspaces, we proposed to use a PCA and to project on the first directions
for data embedded in euclidean spaces. For more complicated data such as graphs, we projected
onto the Fiedler vector and obtained good results in an efficient way on a 3D mesh registration
problem. More generally, Muzellec and Cuturi proposed to perform a gradient descent on the loss
with respect to orthonormal matrices. This approach is non-convex and only guaranteed to converge
to a local minimum. Designing such an algorithm, which would minimize alternatively between two
transformations in the Stiefel manifold, is left for future works.
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Figure 2: 3D Mesh registration. (First row) source and target meshes, color code of the source,
ground truth color code on the target, result of subspace detour using Fiedler vectors as subspace.
(Second row) After recalling the expected ground truth for ease of comparison, we present results of
different Gromov-Wasserstein mappings obtained with metrics based on adjacency, heat kernel and
geodesic distances.

The subspace detour approach for transport problem is meaningful whenever one can identify
subspaces that gather most of the information from the original distributions, while making the
estimate more robust and with a better sample complexity as far as dimensions are lower. On the
computational complexity side, and when we have only access to discrete data, the subspace detour
approach brings better computational complexity solely when the subspaces are chosen as one
dimensional. Indeed, otherwise, we have the same complexity for solving the subspace detour and
solving directly the OT problem (since the complexity only depends on the number of samples). In
this case, the 1D projection often gives distinct values for all the samples (for continuous valued data)
and hence the Monge-Knothe coupling is exactly the coupling in 1D. As such, information is lost on
the orthogonal spaces. It can be artificially recovered by quantizing the 1D values (as experimented in
practice in Muzellec and Cuturi (2019)), but the added value is not clear and deserves broader studies.
If given absolutely continuous distributions wrt. the Lebesgue measure however, this limit does not
exist, but comes with the extra cost of being able to compute efficiently the projected measure onto
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the subspace, which might require discretization of the space and is therefore not practical in high
dimensions.

We also proposed a new quadratic cost HW that we call Hadamard-Wasserstein, which allows to
define a degenerated cost for which the optimal transport plan converges to a triangular coupling.
However, this cost loses many properties compared to W2 or GW , for which we are inclined to
use these problems. Indeed, while HW is a quadratic cost, it uses an euclidean norm between
the Hadamard product of vectors and requires the two spaces to be the same (in order to have the
distance well defined). A work around in the case X = Rp and Y = Rq with p ≤ q would be to
“lift” the vectors in Rp into vectors in Rq with padding as it is proposed in Vayer et al. (2019b), or to
project the vectors in Rq on Rp as in Cai and Lim (2020). Yet for some applications where only the
distance/similarity matrices are available, a different strategy still needs to be found. Another concern
is the limited invariance properties (only with respect to axial symmetry symmetry in our case).
Nevertheless, we expect that such a cost can be of interest in cases where invariance to symmetry is a
desired property, such as in (Nagar and Raman, 2019).
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A Subspace detours

A.1 Proofs

Proof of Proposition 1. ∀γ ∈ ΠE,F (µ, ν),∫∫
L(x, x′, y, y′)dγ(x, y)dγ(x′, y′)

=

∫∫ (∫∫
L(x, x′, y, y′)γE⊥×F⊥|E×F ((xE , yF ), (dxE⊥ ,dyF⊥))γE⊥×F⊥|E×F ((x′E , y

′
F ), (dx′E⊥ ,dy

′
F⊥)))

dγ∗E×F (xE , yF )dγ∗E×F (x′E , y
′
F )

However, for γ∗E×F a.e. (xE , yF ), (x′E , y
′
F ),∫∫

L(x, x′, y, y′)γE⊥×F⊥|E×F ((xE , yF ), (dxE⊥ ,dyF⊥))γE⊥×F⊥|E×F ((x′E , y
′
F ), (dx′E⊥ ,dy

′
F⊥))

≥
∫∫

L(x, x′, y, y′)γ∗E⊥×F⊥|E×F ((xE , yF ), (dxE⊥ ,dyF⊥))γ∗E⊥×F⊥|E×F ((x′E , y
′
F ), (dx′E⊥ ,dy

′
F⊥))

by definition of the Monge-Knothe coupling. This is well optimal for subspace optimal plans.

Proof of Proposition 2. Let f : Rp → Rp be an invariance of GW on E⊥, i.e. ∀x ∈ Rp, f(x) =

(xE , fE⊥(xE⊥)). We first deal with L(x, x′, y, y′) =
(
‖x− x′‖22 − ‖y − y′‖22

)2
, and therefore fE⊥

is either an isometry or a translation.

From lemma 6 of Paty and Cuturi (2019), we know that Π(f#µ, ν) = {(f, Id)#γ| γ ∈ Π(µ, ν)}.
We can rewrite

ΠE,F (f#µ, ν) = {γ ∈ Π(f#µ, ν)|(πE , πF )#γ = γ∗E,F }
= {(f, Id)#γ|γ ∈ Π(µ, ν), (πE , πF )#(f, Id)#γ = γ∗E,F }
= {(f, Id)#γ|γ ∈ Π(µ, ν), (πE , πF )#γ = γ∗E,F }
= {(f, Id)#γ|γ ∈ ΠE,F (µ, ν)}

using f = (IdE , fE⊥), πE ◦ f = IdE and (πE , πF )#(f, Id)#γ = (πE , πF )#γ.

Now, for all γ ∈ ΠE,F (f#µ, ν), there exists γ̃ ∈ ΠE,F (µ, ν) such that γ = (f, Id)#γ̃ and we can
disintegrate γ̃ with respect to γ∗E,F

γ̃ = γ∗E,F ⊗K

with K a probability kernel on (E × F,B(E)⊗ B(F )).

For γ∗E,F almost every (xE , yF ), (x′E , y
′
F ), we have∫∫ (

‖xE − x′E‖22 + ‖xE⊥ − x′E⊥‖
2
2 − ‖yF − y′F ‖22 − ‖yF⊥ − y′F⊥‖

2
2

)2
(fE⊥ , Id)#K((xE , yF ), (dxE⊥ ,dyF⊥))(fE⊥ , Id)#K((x′E , y

′
F ), (dx′E⊥ ,dy

′
F⊥))

=

∫∫ (
‖xE − x′E‖22 + ‖fE⊥(xE⊥)− fE⊥(x′E⊥)‖22 − ‖yF − y′F ‖22 − ‖yF⊥ − y′F⊥‖

2
2

)2
K((xE , yF ), (dxE⊥ ,dyF⊥))K((x′E , y

′
F ), (dx′E⊥ ,dy

′
F⊥))

=

∫∫ (
‖xE − x′E‖22 + ‖xE⊥ − x′E⊥‖

2
2 − ‖yF − y′F ‖22 − ‖yF⊥ − y′F⊥‖

2
2

)2
K((xE , yF ), (dxE⊥ ,dyF⊥))K((x′E , y

′
F ), (dx′E⊥ ,dy

′
F⊥))

using in the last line that ‖fE⊥(xE⊥)− fE⊥(x′E⊥)‖2 = ‖xE⊥ − x′E⊥‖2 since d(x, y) = ‖x− y‖2
is translation and rotation invariant (d(Ox,Oy) = d(x, y) and d(Tx, Ty) = d(x, y)).
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By integrating with respect to γ∗E,F , we obtain∫∫ (∫∫ (
‖x− x′‖22 − ‖y − y′‖22

)2
(fE⊥ , Id)#K((xE , yF ), (dxE⊥ ,dyF⊥))(fE⊥ , Id)#K((x′E , y

′
F ), (dx′E⊥ ,dy

′
F⊥))

)
dγ∗E,F (xE , yF )dγ∗E,F (x′E , y

′
F )

=

∫∫ (
‖x− x′‖22 − ‖y − y′‖22

)2
dγ̃(x, y)dγ̃(x′, y′).

(9)

Now, we show that γ = (f, Id)#γ̃ = γ∗E,F ⊗ (fE⊥ , Id)#K. Let φ some bounded measurable
function on Rp × Rq ,∫

φ(x, y)dγ(x, y) =

∫
φ(x, y)d((f, Id)#γ̃(x, y))

=

∫
φ(f(x), y)dγ̃(x, y)

=

∫∫
φ(f(x), y)K

(
(xE , yF ), (dxE⊥ ,dyF⊥)

)
dγ∗E,F (xE , yF )

=

∫∫
φ((xE , fE⊥(xE⊥)), y)K

(
(xE , yF ), (dxE⊥ ,dyF⊥)

)
dγ∗E,F (xE , yF )

=

∫∫
φ(x, y)(fE⊥ , Id)#K

(
(xE , yF ), (dxE⊥ ,dyF⊥)

)
dγ∗E,F (xE , yF ).

Hence, we can rewrite (9) as∫∫ (
‖x−x′‖22−‖y−y′‖22

)2
d(f, Id)#γ̃(x, y)d(f, Id)#γ̃(x′, y′) =

∫∫ (
‖x−x′‖22−‖y−y′‖22

)2
dγ̃(x, y)dγ̃(x′, y′).

Now, by taking the infimum with respect to γ̃ ∈ ΠE,F (µ, ν), we find

GW 2
E,F (f#µ, ν) = GW 2

E,F (µ, ν).

For the inner product case, we can do the same proof for isometries.

A.2 Closed-form between Gaussians

Let q ≤ p, µ = N (mµ,Σ) ∈ P(Rp), ν = N (mν ,Λ) ∈ P(Rq) two Gaussian measures with
Σ = PµDµP

T
µ and Λ = PνDνP

T
ν .

Let E ⊂ Rp be a subspace of dimension k and F ⊂ Rq a subspace of dimension k′.

We represent Σ in an orthonormal basis of E ⊕E⊥, and Λ in an orthonormal basis of F ⊕ F⊥, i.e.

Σ =

(
ΣE ΣEE⊥

ΣE⊥E ΣE⊥

)
. We denote Σ/ΣE = ΣE⊥ − ΣTEE⊥Σ−1

E ΣEE⊥ the Schur complement of

Σ with respect to ΣE . We know that the conditionals of Gaussians are Gaussians, and of covariance
the Schur complement (see e.g. Rasmussen (2003) or Von Mises (1964)).

A.2.1 Quadratic GW problem

For GW with c(x, x′) = ‖x − x′‖22, we have for now no guarantee that there exists an optimal
coupling which is a transport map. Salmona et al. proposed to restrict the problem to the set of
Gaussian couplings π(µ, ν) ∩Np+q where Np+q denotes the set of Gaussians in Rp+q . In that case,
the problem becomes

GGW 2
2 (µ, ν) = inf

γ∈Π(µ,ν)∩Np+q

∫∫ (
‖x− x′‖22 − ‖y − y′‖22

)2
dγ(x, y)dγ(x′, y′). (10)

In that case, they showed that an optimal solution is of the form T (x) = mν + PνAP
T
µ (x −mµ)

with A =
(
ĨqD

1
2
ν (D

(q)
µ )−

1
2 0q,p−q

)
and Ĩq of the form diag

(
(±1)i≤q

)
.
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Since the problem is translation invariant, we can always solve the problem between the centered
measures.

In the following, we suppose that k = k′. Let’s denote TE,F the optimal transport map for (10)
between N (0,ΣE) and N (0,ΛF ). According to Theorem 4.1 in Salmona et al. (2021), such a
solution exists and is of the form (5). We also denote TE⊥,F⊥ the optimal transport map between
N (0,Σ/ΣE) and N (0,Λ/ΛF ) (which is well defined since we assumed p ≥ q and hence p− k ≥
q − k′ since k = k′).

We know that the Monge-Knothe transport map will be a linear map TMK(x) = Bx with B a block
triangular matrix of the form

B =

(
TE,F 0k′,p−k
C TE⊥,F⊥

)
∈ Rq×p,

with C ∈ R(q−k′)×k, and such that BΣBT = Λ (to have well a transport map between µ and ν).

Actually,

BΣBT =

(
TE,FΣET

T
E,F TE,FΣEC

T + TE,FΣEE⊥T
T
E⊥,F⊥

(CΣE + TE⊥,F⊥ΣE⊥E)TTE,F (CΣE + TE⊥,F⊥ΣE⊥E)CT + (CΣEE⊥ + TE⊥,F⊥ΣE⊥)TTE⊥,F⊥ .

)
First, we have well TE,FΣET

T
E,F = ΛF as TE,F is a transport map between µE and νF . Then,

BΣBT = Λ ⇐⇒


TE,FΣET

T
E,F = ΛF

TE,FΣEC
T + TE,FΣEE⊥T

T
E⊥,F⊥ = ΛFF⊥

(CΣE + TE⊥,F⊥ΣE⊥E)TTE,F = ΛF⊥F
(CΣE + TE⊥,F⊥ΣE⊥E)CT + (CΣEE⊥ + TE⊥,F⊥ΣE⊥)TTE⊥,F⊥ = ΛF⊥ .

We have
(CΣE + TE⊥,F⊥ΣE⊥E)TTE,F = ΛF⊥F ⇐⇒ CΣET

T
E,F = ΛF⊥F − TE⊥,F⊥ΣE⊥ET

T
E,F .

As k = k′, ΣET
T
E,F ∈ Rk×k and is invertible (as ΣE and ΛF are positive definite and TE,F =

PµE
AE,FPνF with AE,F =

(
ĨkD

1
1
νFD

− 1
2

µE

)
with positive values on the diagonals. Hence, we have

C = (ΛF⊥F (TTE,F )−1 − TE⊥,F⊥ΣE⊥E)Σ−1
E .

Now, we still have to check the last two equations. First,
TE,FΣEC

T + TE,FΣEE⊥T
T
E⊥,F⊥ = TE,FΣEΣ−1

E T−1
E,FΛTF⊥F − TE,FΣEΣ−1

E ΣTE⊥ET
T
E⊥,F⊥ + TE,FΣEE⊥T

T
E⊥,F⊥

= ΛFF⊥ .

And for the last equation,

(CΣE + TE⊥,F⊥ΣE⊥E)CT + (CΣEE⊥ + TE⊥,F⊥ΣE⊥)TTE⊥,F⊥

= (ΛF⊥F (TTE,F )−1 − TE⊥,F⊥ΣE⊥E + TE⊥,F⊥ΣE⊥E)Σ−1
E (T−1

E,FΛTF⊥F − ΣTE⊥ET
T
E⊥,F⊥)

+ ΛF⊥F (TTE,F )−1Σ−1
E ΣEE⊥T

T
E⊥,F⊥ − TE⊥,F⊥ΣE⊥EΣ−1

E ΣEE⊥T
T
E⊥,F⊥ + TE⊥,F⊥ΣE⊥T

T
E⊥,F⊥

= ΛF⊥F (TTE,F )−1Σ−1
E T−1

E,FΛTF⊥F − ΛF⊥F (TTE,F )−1Σ−1
E ΣTE⊥ET

T
E⊥,F⊥ − TE⊥,F⊥ΣE⊥EΣ−1

E T−1
E,FΛTF⊥F

+ TE⊥,F⊥ΣE⊥EΣ−1
E ΣTE⊥ET

T
E⊥,F⊥ + TE⊥,F⊥ΣE⊥EΣ−1

E T−1
E,FΛTF⊥F − TE⊥,F⊥ΣE⊥EΣ−1

E ΣTE⊥ET
T
E⊥F⊥

+ ΛF⊥F (TTE,F )−1Σ−1
E ΣEE⊥T

T
E⊥,F⊥ − TE⊥,F⊥ΣE⊥EΣ−1

E ΣTE⊥ET
T
E⊥,F⊥ + TE⊥,F⊥ΣE⊥T

T
E⊥,F⊥

= ΛF⊥F (TTE,F )−1Σ−1
E T−1

E,FΛTF⊥F − TE⊥,F⊥ΣE⊥EΣ−1
E ΣTE⊥ET

T
E⊥,F⊥ + TE⊥,F⊥ΣE⊥T

T
E⊥,F⊥

Now, using that (TTE,F )−1Σ−1
E T−1

E,F = (TE,FΣET
T
E,F )−1 = Λ−1

F and ΣE⊥ − ΣE⊥EΣ−1
E ΣTE⊥E =

Σ/ΣE , we have
(CΣE + TE⊥,F⊥ΣE⊥E)CT + (CΣEE⊥ + TE⊥,F⊥ΣE⊥)TTE⊥,F⊥

= ΛF⊥FΛ−1
F ΛTF⊥F + TE⊥,F⊥(ΣE⊥ − ΣE⊥EΣ−1

E ΣTE⊥E)TTE⊥,F⊥

= ΛF⊥FΛ−1
F ΛTF⊥F + Λ/ΛF

= ΛF⊥
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Then πMK is of the form (Id, TMK)#µ with

TMK(x) = mν +B(x−mµ).

A.2.2 Closed-form between Gaussians for Monge-Independent

Suppose k ≥ k′ in order to be able to define the OT map between µE and νF .

For the Monge-Independent plan πMI = γ∗E,F ⊗ (µE⊥|E ⊗ νF⊥|F ), let (X,Y ) ∼ πMI. We know
that πMI is a degenerate Gaussian with a covariance of the form

Cov(X,Y ) =

(
Cov(X) C
CT Cov(Y )

)
where Cov(X) = Σ and Cov(Y ) = Λ. Moreover, we know that C is of the form(

Cov(XE , YF ) Cov(XE , YF⊥)
Cov(XE⊥ , YF ) Cov(XE⊥ , YF⊥)

)
.

Let’s assume that mµ = mν = 0, then

Cov(XE , YF ) = Cov(XE , TE,FXE) = E[XEX
T
E ]TTE,F = ΣET

T
E,F ,

Cov(XE , YF⊥) = E[XEY
T
F⊥ ]

= E[E[XEY
T
F⊥ |XE , YF ]]

= E[XEE[Y TF⊥ |YF ]]

since YF = TE,FXE , XE is σ(YF )-measurable. Now, using the equation (A.6) from Rasmussen
(2003), we have

E[YF⊥ |YF ] = ΛF⊥FΛ−1
F YF

= ΛF⊥FΛ−1
F TE,FXE

and
E[XE⊥ |XE ] = ΣE⊥EΣ−1

E XE .

Hence,
Cov(XE , YF⊥) = E[XEE[Y TF⊥ |YF ]]

= E[XEX
T
E ]TTE,FΛ−1

F ΛTF⊥F

= ΣET
T
E,FΛ−1

F ΛTF⊥F .

We also have
Cov(XE⊥ , YF ) = E[XE⊥X

T
ET

T
E,F ] = ΣE⊥ET

T
E,F ,

and
Cov(XE⊥ , YF⊥) = E[XE⊥Y

T
F⊥ ]

= E[E[XE⊥Y
T
F⊥ |XE , YF ]]

= E[E[XE⊥ |XE ]E[Y TF⊥ |YF ]] by independence

= E[ΣE⊥EΣ−1
E XEX

T
ET

T
E,FΛ−1

F ΛTF⊥F ]

= ΣE⊥ET
T
E,FΛ−1

F ΛTF⊥F .

Finally, we find

C =

(
ΣET

T
E,F ΣET

T
E,FΛ−1

F ΛTF⊥F
ΣE⊥ET

T
E,F ΣE⊥ET

T
E,FΛ−1

F ΛTF⊥F

)
.

By taking orthogonal bases (VE , VE⊥) and (VF , VF⊥), we can put it in a more compact way such as
in Proposition 4 in Muzellec and Cuturi (2019):

C = (VEΣE + VE⊥ΣE⊥E)TTE,F (V TF + Λ−1
F ΛTF⊥FV

T
F⊥).

To check it, just expand the terms and see that CE,F = VECV
T
F .
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B Knothe-Rosenblatt

B.1 Properties of (7)

Proof of Proposition 5. Let µ, ν ∈ P(Rd),

1. (x, x′) 7→ x� x′ is a continuous map, therefore L is lower semi-continuous. Hence, by ap-
plying lemma 2.2.1 of (Vayer, 2020), we have that γ 7→

∫∫
L(x, x′, y, y′)dγ(x, y)dγ(x′, y′)

is lower semi-continuous for the weak convergence of measures.

Now, as Π(µ, ν) is a compact set (see the proof of Theorem 1.7 in Santambrogio (2015)
for the Polish space case, and of Theorem 1.4 for the compact metric space), and γ 7→∫∫

Ldγdγ is lower semi-continuous for the weak convergence, we can apply the Weierstrass
theorem (Memo 2.2.1 in Vayer (2020)) which states that (7) always admits a minimizer.

2. See Theorem 16 in Chowdhury and Mémoli (2019).

3. For invariances, we first look at the properties that must be satisfied by T in order to have:
∀x, x′, f(x, x′) = f(T (x), T (x′)) where f : (x, x′) 7→ x� x′.

We find that ∀x ∈ Rd, ∀1 ≤ i ≤ d, |[T (x)]i| = |xi| because, denoting (ei)
d
i=1 as the

canonical basis, we have

f(ei, x) = xei = f(T (ei), T (x)) =⇒ [T (ei)]i[T (x)]i = xi =⇒ |[T (x)]i| = |xi|
as f(ei, ei) = f(T (ei), T (ei)) =⇒ [T (ei)]

2
i = 1.

If we take for T the reflection with respect to axis, then it satisfies well f(x, x′) =
f(T (x), T (x′)). Moreover, it is well an equivalent relation, and therefore we have a distance
on the quotient space.

Proposition 6. In a slightly more general setting, let X0 = X1 = Rd, functions f0, f1 from Rd×Rd

to Rd and measures µ0 ∈ P(X0), µ1 ∈ P(X1). Then the family Xt = (X0 ×X1, ft, γ
∗) defines a

geodesic between X0 and X1, where γ∗ is the optimal coupling ofHW between µ0 and µ1, and

ft((x0, x
′
0), (x1, x

′
1)) = (1− t)f0(x0, x

′
0) + tf1(x1, x

′
1).

Proof. See Theorem 3.1 in Sturm (2012).

B.2 Proof of Theorem 3

We first recall a useful theorem.
Theorem 4 (Theorem 2.8 in Billingsley (2013)). Let Ω = X × Y be a separable space, and
let P, Pn ∈ P(Ω) with marginals PX (respectively Pn,X ) and PY (respectively Pn,Y ). Then,

Pn,X ⊗ Pn,Y
D−→ P if and only if Pn,X

D−→ PX , Pn,Y
D−→ PY and P = PX ⊗ PY .

Proof of Theorem 3. The following proof is mainly inspired by the proof of Theorem 1 in (Carlier
et al., 2010)[Theorem 2.1], (Bonnotte, 2013)[Theorem 3.1.6] and (Santambrogio, 2015)[Theorem
2.23].

Let µ, ν ∈ P(Rd), absolutely continuous, with finite fourth moments and compact supports. We
recall the problemHWt,

HW2
t (µ, ν) = inf

γ∈Π(µ,ν)

∫∫ ( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγt(x, y)dγt(x

′, y′),

with ∀t > 0, ∀i ∈ {1, . . . , d− 1}, λ(i)
t > 0 and λ(i)

t −−−→
t→0

0.

First, let’s denote γt the optimal coupling forHWt for all t > 0. We want to show that γt
D−−−→
t→0

γK

with γK = (Id× TK)#µ and TK our alternate Knothe-Rosenblatt rearrangement. Let γ ∈ Π(µ, ν)
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such that γt
D−−−→
t→0

γ (true up to subsequence as {µ} and {ν} are tight in P(X) and P(Y ) if X and

Y are polish space, therefore, by (Villani, 2008)[Lemma 4.4], Π(µ, ν) is a tight set, and we can apply
the Prokhorov theorem (Santambrogio, 2015)[Box 1.4] on (γt)t and extract a subsequence)).

Part 1:

First, let’s notice that:

HW2
t (µ, ν) =

∫∫ d∑
k=1

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγt(x, y)dγt(x

′, y′)

=

∫∫
(x1x

′
1 − y1y

′
1)2 dγt(x, y)dγt(x

′, y′) +

∫∫ d∑
k=2

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγt(x, y)dγt(x

′, y′).

Moreover, as γt is the optimal coupling between µ and ν, and γK ∈ Π(µ, ν),

HW2
t (µ, ν) ≤

∫∫ d∑
k=1

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγK(x, y)dγK(x′, y′)

=

∫∫
(x1x

′
1 − y1y

′
1)2 dγK(x, y)dγK(x′, y′) +

∫∫ d∑
k=2

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγK(x, y)dγK(x′, y′).

In our case, we have γt
D−−−→
t→0

γ, thus, by Theorem 4, we have γt ⊗ γt
D−−−→
t→0

γ ⊗ γ. Using the fact

that ∀i, λ(i)
t −−−→

t→0
0 (and lemma 1.8 of Santambrogio (2015), since we are on compact support, we

can bound the cost (which is continuous) by its max), we obtain the following inequality∫∫
(x1x

′
1 − y1y

′
1)2 dγ(x, y)dγ(x′, y′) ≤

∫∫
(x1x

′
1 − y1y

′
1)2 dγK(x, y)dγK(x′, y′).

By denoting γ1 and γ1
K the marginals on the first variables, we can use the projection π1(x, y) =

(x1, y1), such as γ1 = π1
#γ and γ1

K = π1
#γK . Hence, we get∫∫

(x1x
′
1 − y1y

′
1)2 dγ1(x1, y1)dγ1(x′1, y

′
1) ≤

∫∫
(x1x

′
1 − y1y

′
1)2 dγ1

K(x1, y1)dγ1
K(x′1, y

′
1).

However, γ1
K was constructed in order to be the unique optimal map for this cost (either Tasc

or Tdesc according to theorem (Vayer, 2020)[Theorem 4.2.4]). Thus, we can deduce that γ1 =
(Id× T 1

K)#µ
1 = γ1

K .

Part 2:

We know that for any t > 0, γt and γK share the same marginals. Thus, as previously, π1
#γt should

have a cost worse than π1
#γK , which translates to∫∫

(x1x
′
1 − y1y

′
1)2 dγ1

K(x1, y1)dγ1
K(x′1, y

′
1) =

∫∫
(x1x

′
1 − y1y

′
1)2 dγ1(x1, y1)dγ1(x′1, y

′
1)

≤
∫∫

(x1x
′
1 − y1y

′
1)2 dγ1

t (x1, y1)dγ1
t (x′1, y

′
1).

Therefore, we have the following inequality,∫∫
(x1x

′
1 − y1y

′
1)2 dγ1(x, y)dγ1(x′, y′) +

∫∫ d∑
k=2

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγt(x, y)dγt(x

′, y′)

≤ HW2
t (µ, ν)

≤
∫∫

(x1x
′
1 − y1y

′
1)2 dγ1(x, y)dγ1(x′, y′) +

∫∫ d∑
k=2

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγK(x, y)dγK(x′, y′).
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We can substract the first term and factorize by λ(1)
t > 0,∫∫ d∑

k=2

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγt(x, y)dγt(x

′, y′)

= λ
(1)
t

(∫∫
(x2x

′
2 − y2y

′
2)2 dγt(x, y)dγt(x

′, y′) +

∫∫ d∑
k=3

( k−1∏
i=2

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγt(x, y)dγt(x

′, y′)
)

≤ λ(1)
t

(∫∫
(x2x

′
2 − y2y

′
2)2 dγK(x, y)dγK(x′, y′) +

∫∫ d∑
k=3

( k−1∏
i=2

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγK(x, y)dγK(x′, y′)

)
.

By dividing by λ(1)
t and by taking the limit t→ 0 as in the first part, we get∫∫

(x2x
′
2 − y2y

′
2)2 dγ(x, y)dγ(x′, y′) ≤

∫∫
(x2x

′
2 − y2y

′
2)2 dγK(x, y)dγK(x′, y′). (11)

Now, the 2 terms depend only on (x2, y2) and (x′2, y
′
2). We will project on the two first coordinates,

i.e. let π1,2(x, y) = ((x1, x2), (y1, y2)) and γ1,2 = π1,2
# γ, γ1,2

K = π1,2
# γK . Using the disintegration

of measures, we know that there exist kernels γ2|1 and γ2|1
K such that γ1,2 = γ1 ⊗ γ2|1 and γ1,2

K =

γ1
K ⊗ γ

2|1
K , where

∀A ∈ B(X × Y ), µ⊗K(A) =

∫∫
1A(x, y)K(x, dy)µ(dx).

We can rewrite the previous equation (11) as∫∫
(x2x

′
2 − y2y

′
2)2 dγ(x, y)dγ(x′, y′)

=

∫∫∫∫
(x2x

′
2 − y2y

′
2)2 γ2|1((x1, y1), (dx2,dy2))γ2|1((x′1, y

′
1), (dx′2,dy

′
2))dγ1(x1, y1)dγ1(x′1, y

′
1)

≤
∫∫∫∫

(x2x
′
2 − y2y

′
2)2 γ

2|1
K ((x1, y1), (dx2,dy2))γ

2|1
K ((x′1, y

′
1), (dx′2,dy

′
2))dγ1

K(x1, y1)dγ1
K(x′1, y

′
1).

(12)

Now, we will assume at first that the marginals of γ2|1((x1, y1), ·) are well µ2|1(x1, ·) and ν2|1(y1, ·).
Then, by definition of γ2|1

K , as it is optimal for the GW cost with inner products, we have for all
(x1, y1), (x′1, y

′
1),∫∫
(x2x

′
2 − y2y

′
2)2 γ

2|1
K ((x1, y1), (dx2,dy2))γ

2|1
K ((x′1, y

′
1), (dx′2,dy

′
2))

≤
∫∫

(x2x
′
2 − y2y

′
2)2 γ2|1((x1, y1), (dx2,dy2))γ2|1((x′1, y

′
1), (dx′2,dy

′
2)).

(13)

Moreover, we know from the first part that γ1 = γ1
K , then by integrating with respect to (x1, y1) and

(x′1, y
′
1), we have∫∫∫∫

(x2x
′
2 − y2y

′
2)2 γ

2|1
K ((x1, y1), (dx2,dy2))γ

2|1
K ((x′1, y

′
1), (dx′2,dy

′
2))dγ1(x1, y1)dγ1(x′1, y

′
1)

≤
∫∫∫∫

(x2x
′
2 − y2y

′
2)2 γ2|1((x1, y1), (dx2,dy2))γ2|1((x′1, y

′
1), (dx′2,dy

′
2))dγ1(x1, y1)dγ1(x′1, y

′
1).

(14)
By (12) and (14), we deduce that we have an equality and we get∫∫ (∫∫

(x2x
′
2 − y2y

′
2)2 γ2|1((x1, y1), (dx2,dy2))γ2|1((x′1, y

′
1), (dx′2,dy

′
2))

−
∫∫

(x2x
′
2 − y2y

′
2)2 γ

2|1
K ((x1, y1), (dx2,dy2))γ

2|1
K ((x′1, y

′
1), (dx′2,dy

′
2))
)

dγ1(x1, y1)dγ1(x′1, y
′
1) = 0.

(15)
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However, we know by (13) that the middle part of (15) is nonnegative, thus we have for γ1-a.e.
(x1, y1), (x′1, y

′
1),∫∫
(x2x

′
2 − y2y

′
2)2 γ

2|1
K ((x1, y1), (dx2,dy2))γ

2|1
K ((x′1, y

′
1), (dx′2,dy

′
2))

=

∫∫
(x2x

′
2 − y2y

′
2)2 γ2|1((x1, y1), (dx2,dy2))γ2|1((x′1, y

′
1), (dx′2,dy

′
2)).

From that, we can conclude as in the first part that γ2|1 = γ
2|1
K (by unicity of the optimal map). And

thus γ1,2 = γ1,2
K .

Now, we still have to show that the marginals of γ2|1((x1, y1), ·) and γ2,1
K ((x1, y1), ·) are well the

same, i.e. µ2|1(x1, ·) and ν2|1(y1, ·). Let φ and ψ be continuous functions, then we have to show that
for γ1-a.e. (x1, y1), we have{∫

φ(x2)γ2|1((x1, y1), (dx2,dy2)) =
∫
φ(x2)µ2|1(x1,dx2)∫

ψ(y2)γ2|1((x1, y1), (dx2,dy2)) =
∫
ψ(y2)ν2|1(y1,dy2).

As we want to prove it for γ1-a.e. (x1, y1), it is sufficient to prove that for all continuous function ξ,{∫∫
ξ(x1, y1)φ(x2)γ2|1((x1, y1), (dx2,dy2))dγ1(x1, y1) =

∫∫
ξ(x1, y1)φ(x2)µ2|1(x1,dx2)dγ1(x1, y1)∫∫

ξ(x1, y1)ψ(y2)γ2|1((x1, y1), (dx2,dy2))dγ1(x1, y1) =
∫∫

ξ(x1, y1)ψ(y2)ν2|1(y1,dy2)dγ1(x1, y1).

First, we can use the projections πx(x, y) = x and πy(x, y) = y. Moreover, we know that γ1 =
(Id×T 1

K)#µ
1. The alternate Knothe-Rosenblatt rearrangement is, as the usual one, bijective (because

µ and ν are absolutely continuous), and thus, as we suppose that ν satisfies the same hypothesis than
µ, we also have γ1 = ((T 1

K)−1, Id)#ν
1. Let’s note T̃ 1

K = (T 1
K)−1. Then, the equalities that we

want to show are{∫∫
ξ(x1, T

1
K(x1))φ(x2)γ

2|1
x ((x1, T

1
K(x1)),dx2)dµ1(x1) =

∫∫
ξ(x1, T

1
K(x1))φ(x2)µ2|1(x1,dx2)dµ1(x1)∫∫

ξ(T̃ 1
K(y1), y1)ψ(y2)γ

2|1
y ((T̃ 1

K(y1), y1),dy2)dν1(y1) =
∫∫

ξ(T̃ 1
K(y1), y1)ψ(y2)ν2|1(y1,dy2)dν1(y1).

And we have indeed∫∫
ξ(x1, T

1
K(x1))φ(x2)γ2|1

x ((x1, T
1
K(x1)),dx2)dµ1(x1) =

∫∫
ξ(x1, T

1
K(x1))φ(x2)dγ1,2((x1, x2), (y1, y2))

=

∫∫
ξ(x1, T

1
K(x1))φ(x2)dγ1,2

x (x1, x2)

=

∫∫
ξ(x1, T

1
K(x1))φ(x2)µ2|1(x1,dx2)dµ1(x1).

We can do the same for the ν part by symmetry.

Part 3:

Now, we can proceed the same way by induction. Let ` ∈ {2, . . . , d} and suppose that the result is
true in dimension `− 1 (i.e. γ1:`−1 = π1:`−1

# γ = γ1:`−1
K ).

For this part of the proof, we rely on (Santambrogio, 2015)[Theorem 2.23]. We can build a measure
γtK ∈ P(Rd × Rd) such that 

πx#γ
t
K = µ

πy#γ
t
K = ν

π1:`−1
# γtK = ηt,`

(16)

where ηt,` is the optimal transport plan between µ` = π1:`−1
# µ and ν` = π1+`−1

# ν for the objective∫∫ `−1∑
k=1

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγ(x, y)dγ(x′, y′).
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By induction hypothesis, we have ηt,`
D−−−→
t→0

π1:`−1
# γK . To build such a measure, we can first

disintegrate µ and ν {
µ = µ1:`−1 ⊗ µ`:d|1:`−1

ν = ν1:`−1 ⊗ ν`:d|1:`−1,

then we pick the Knothe transport γ`:d|1:`−1
K between µ`:d|1:`−1 and ν`:d|1:`−1. Thus, by taking

γTK = ηt,` ⊗ γ`:d|1:`−1
K , γTK satisfies well the conditions (16).

Hence, we have,∫∫ `−1∑
k=1

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγtK(x, y)dγtK(x′, y′)

=

∫∫ `−1∑
k=1

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dηt,`(x1:`−1, y1:`−1)dηt,`(x

′
1:`−1, y

′
1:`−1)

≤
∫∫ `−1∑

k=1

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγt(x, y)dγt(x

′, y′),

and therefore∫∫ `−1∑
k=1

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγtK(x, y)dγtK(x′, y′) +

∫∫ d∑
k=`

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγt(x, y)dγt(x

′, y′)

≤ HW2
t (µ, ν)

≤
∫∫ `−1∑

k=1

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγtK(x, y)dγtK(x′, y′) +

∫∫ d∑
k=`

( k−1∏
i=1

λ
(i)
t

)
(xkx

′
k − yky′k)2 dγtK(x, y)dγtK(x′, y′).

As before, by substracting the first term, and dividing by
∏`−1
i=1 λ

(i)
t , we get∫∫

(x`x
′
` − y`y′`)2dγt(x, y)dγt(x

′, y′) ≤
∫∫

(x`x
′
` − y`y′`)2dγtK(x, y)dγtK(x′, y′).

For the right hand side, using that γtK = ηt,` ⊗ γ`:d|1:`−1
K , we have∫∫

(x`x
′
` − y`y′`)2dγtK(x, y)dγtK(x′, y′)

=

∫∫∫∫
(x`x

′
` − y`y′`)2γ

`:d|1:`−1
K ((x1:`−1, y1:`−1), (dx`:d,dy`:d))γ

`:d|1:`−1
K ((x′1:`−1, y

′
1:`−1), (dx′`:d,dy

′
`:d))

dηt,`(x1:`−1, y1:`−1)dηt,`(x
′
1:`−1, y

′
1:`−1)

=

∫∫∫∫
(x`x

′
` − y`y′`)2γ

`|1:`−1
K ((x1:`−1, y1:`−1), (dx`,dy`))γ

`|1:`−1
K ((x′1:`−1, y

′
1:`−1), (dx′`,dy

′
`))

dηt,`(x1:`−1, y1:`−1)dηt,`(x
′
1:`−1, y

′
1:`−1).

Let’s note for ηt,` almost every (x1:`−1, y1:`−1), (x′1:`−1, y
′
1:`−1)

GW (µ`|1:`−1, ν`|1:`−1) =

∫∫
(x`x

′
`−y`y′`)2γ

`|1:`−1
K ((x1:`−1, y1:`−1), (dx`,dy`))γ

`|1:`−1
K ((x′1:`−1, y

′
1:`−1), (dx′`,dy

′
`)),

then∫∫
(x`x

′
`−y`y′`)2dγtK(x, y)dγtK(x′, y′) =

∫∫
GW (µ`|1:`−1, ν`|1:`−1)dηt,`(x1:`−1, y1:`−1)dηt,`(x

′
1:`−1, y

′
1:`−1).

By Theorem 4, we have ηt,` ⊗ ηt,`
D−−−→
t→0

π1:`−1
# γK ⊗ π1:`−1

# γK . So, if η 7→∫∫
GW (µ`|1:`−1, ν`|1:`−1)dηdη is continuous over the transport plans between µ1:`−1 and ν1:`−1,

we have∫∫
(x`x

′
` − y`y′`)2dγtK(x, y)dγtK(x′, y′)

−−−→
t→0

∫∫
GW (µ`|1:`−1, ν`|1:`−1)π1:`−1

# γK(dx1:`−1,dy1:`−1)π1:`−1
# γK(dx′1:`−1,dy

′
1:`−1)
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and ∫∫
GW (µ`|1:`−1, ν`|1:`−1)π1:`−1

# γK(dx1:`−1,dy1:`−1)π1:`−1
# γK(dx′1:`−1,dy

′
1:`−1)

=

∫∫
(x`x

′
` − y`y′`)2dγK(x, y)dγK(x′, y′)

by replacing the true expression of GW and using the disintegration γK = (π1:`−1
K )#γK ⊗ γ`|1:`−1

K .

For the continuity, we can apply (Santambrogio, 2015)[Lemma 1.8] (as in the (Santambrogio,
2015)[Corollary 2.24]) with X = Y = R`−1 × R`−1, X̃ = Ỹ = P(Ω) with Ω ⊂ Rd−`+1 × Rd−`+1

and c(a, b) = GW (a, b) which can be bounded on compact supports by max |c|. Moreover, we use
Theorem 4 and the fact that ηt ⊗ ηt

D−−−→
t→0

γ1:`−1
K ⊗ γ1:`−1

K .

By taking the limit t→ 0, we now get∫∫
(x`x

′
` − y`y′`)2dγ(x, y)dγ(x′, y′) ≤

∫∫
(x`x

′
` − y`y′`)2dγK(x, y)dγK(x′, y′).

We can now disintegrate with respect to γ1:`−1 as before. We just need to prove that the marginals
coincide which is done by taking for test functions{

ξ(x1, ..., x`−1, y1, ..., y`−1)φ(x`)

ξ(x1, ..., x`−1, y1, ..., y`−1)ψ(y`)

and using the fact that the measures are concentrated on yk = TK(xk).

Part 4:

Therefore, we have well γt
D−−−→
t→0

γK . Finally, for the L2 convergence, we have∫
‖Tt(x)− TK(x)‖22 µ(dx) =

∫
‖y − TK(x)‖22 dγt(x, y)→

∫
‖y − TK(x)‖22 dγK(x, y) = 0

as γt = (Id× Tt)#µ and γK = (Id× TK)#µ. Hence, Tt
L2

−−−→
t→0

TK .

C SolvingHW in the discrete setting

In this part, we derive formulas to solve numericallyHW .

Let x1, . . . , xn ∈ Rd, y1, . . . , ym ∈ Rd, α ∈ Σn, β ∈ Σm, p =
∑n
i=1 αiδxi

and q =
∑m
j=1 βjδyj

two discrete measures in Rd. The Hadamard Wasserstein problem (7) becomes in the discrete setting

HW2(p, q) = inf
γ∈Π(p,q)

∑
i,j

∑
k,`

‖xi � xk − yj � y`‖22 γi,jγk,`

= inf
γ∈Π(p,q)

E(γ)

with E(γ) =
∑
i,j

∑
k,` ‖xi � xk − yj � y`‖22 γi,jγk,`. As denoted in Peyré et al. (2016), if we note

Li,j,k,` = ‖xi � xk − yj � y`‖22, then we have

E(γ) = 〈L ⊗ γ, γ〉,

where ⊗ is defined as

L ⊗ γ =
(∑
k,`

Li,j,k,`γk,`
)
i,j
∈ Rn×m.
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Proposition 7. Let γ ∈ Π(p, q) = {M ∈ (R+)n×m, M1m = p, MT1n = q}, where 1n =
(1, . . . , 1)T ∈ Rn. Let’s note X = (xi � xk)i,k ∈ Rn×n×d, Y = (yj � y`)j,` ∈ Rm×m×d, X(2) =

(‖Xi,k‖22)i,k ∈ Rn×n, Y (2) = (‖Yj,l‖22)j,l ∈ Rm×m and, ∀t ∈ {1, ..., d}, Xt = (Xi,k,t)i,k ∈ Rn×n

and Yt = (Yj,`,t)j,` ∈ Rm×m. Then,

L ⊗ γ = X(2)p1Tm + 1nq
T (Y (2))T − 2

d∑
t=1

XtγY
T
t .

Proof of Proposition 7. First, we can start by writing

Li,j,k,` = ‖xi � xk − yj � y`‖22
= ‖Xi,k − Yj,`‖22
= ‖Xi,k‖22 + ‖Yj,`‖22 − 2〈Xi,k, Yj,`〉
= [X(2)]i,k + [Y (2)]j,` − 2〈Xi,k, Yj,`〉.

We cannot directly apply proposition 1 from (Peyré et al., 2016) (as the third term is a scalar product),
but by doing the same type of computation, we get

L ⊗ γ = A+B + C

with

Ai,j =
∑
k,`

[X(2)]i,kγk,` =
∑
k

[X(2)]i,k
∑
`

γk,` =
∑
k

[X(2)]i,k[γ1m]k,1 = [X(2)γ1m]i,1 = [X(2)p]i,1

Bi,j =
∑
k,`

[Y (2)]j,`γk,` =
∑
`

[Y (2)]j,`
∑
k

γk,` =
∑
`

[Y (2)]j,`[γ
T1n]`,1 = [Y (2)γT1n]j,1 = [Y (2)q]j,1

and

Ci,j = −2
∑
k,`

〈Xi,k, Yj,`〉γk,` = −2
∑
k,`

d∑
t=1

Xi,k,tYj,`,tγk,`

= −2

d∑
t=1

∑
k

[Xt]i,k
∑
`

[Yt]j,`γ
T
`,k

= −2

d∑
t=1

∑
k

[Xt]i,k[Ytγ
T ]j,k

= −2

d∑
t=1

[Xt(Ytγ
T )T ]i,j .

Finally, we have

L ⊗ γ = X(2)p1Tm + 1nq
T (Y (2))T − 2

d∑
t=1

XtγY
T
t .

Remark 1. The complexity for computing L ⊗ γ is O(d(n2m+m2n)).

Remark 2. For the degenerated cost function (8), we just need to replace X and Y by X̃t = A
1
2
t X

and Ỹt = A
1
2
t Y in the previous proposition.

To solve this problem numerically, we can use the conditional gradient algorithm (Algorithm 2 in
(Vayer et al., 2019a)). This algorithm only requires to compute the gradient

∇E(γ) = 2(A+B + C) = 2(L ⊗ γ)

at each step and a classical OT problem. This algorithm is more efficient than solving directly the
quadratic problem. Moreover, while it is a non convex problem, it actually converges to a local
stationary point (Lacoste-Julien, 2016).
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Figure 3: Degenerated Coupling

On Figure 3, we generated 30 points of two gaussian distributions, and computed the optimal
coupling of HWt for several t. These points have the same uniform weight. On the first row, we
projected the points on the first coordinate. Note that for discrete points, the Knothe-Rosenblatt
coupling comes back to sort the point with respect to the first coordinate if there is no ambiguity (i.e.
x

(1)
1 < · · · < x

(1)
n ) as it comes back to perform the optimal transport in one dimension (Peyré et al.,

2019)[Remark 2.28]. For our cost, the optimal coupling in 1D can either be the increasing or the
decreasing one. We observe well on the first row of figure (3) that the optimal coupling when t is
close to 0 corresponds to the “anti-cdf”.
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