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Abstract

While annual crop rotations play a crucial role for agricultural optimization, they
have been largely ignored for automated crop type mapping . In this paper, we take
advantage of the increasing quantity of annotated satellite data to propose the first deep
learning approach modeling simultaneously the inter- and intra-annual agricultural
dynamics of parcel classification. Along with simple training adjustments, our model
provides an improvement of over 6.6 mloU points over the current state-of-the-art of
crop classification. Furthermore, we release the first large-scale multi-year agricultural
dataset with over 300 000 annotated parcels.

1 Introduction

The Common Agricultural Policy (CAP) is responsible for allocating agricultural subsidies
in the European Union, which nears 50 billion euros each year . Consequently, moni-
toring the crop types for subsidy allocation represents a significant challenge for payment
agencies, which have encouraged the development of automated crop classification tools
based on machine learning . In particular, The Sentinels for Common Agricultural Pol-
icy (SendCAP) project aims to provide EU member states with algorithmic solutions
and best practice studies on crop monitoring based on satellite data from the Sentinel con-
stellation . Despite the inherent difficulty of differentiating between the complex growth
patterns of plants, this task is made possible by the nearly limitless access to data and an-
notations. Indeed, Sentinel-2 offers multi-spectral observations at a high revisit time of five
days on average, which are particularly appropriate for characterizing the complex spectral
and temporal characteristics of crop phenology. Moreover, farmers declare the crop culti-
vated in each of their parcels every year. This represents over 10 million of annotations each
year for France alone , all openly accessible in the Land-Parcel Identification System
(LPIS). However, the sheer scale of the problem raises interesting computational challenges:
Sentinel-2 gathers over 25Tb of data each year over Europe.

The state-of-the-art of yearly parcel-based crop type classification from Satellite Image
Time Series (SITS) is particularly dynamic, especially since the adoption of deep learning
methods . However, most methods operate on a single year worth of temporal
acquisitions and ignore inter-annual crop rotations. In this paper, we propose the first deep
learning framework for classifying yearly crop types from information spanning several years,
as represented in Figure[l] We show that we can improve their predictions by a large margin



with straightforward alterations of the top-performing models and their training protocols.
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Figure 1: Multi-Year Sentinel-2 Data. Details of our area of interest for the three years
studied in this article. The crop type of each parcel is represented by the color of a polygon
following their contour according to the legend above. This color code is used throughout
this article for all figures representing cultivated crops.

Single-Year Crop-Type Classification. Single-year crop-type classification involves
the classification of the crop grown in a parcel from a single year worth of observation. Pre-
deep learning parcel-based classification methods rely on such as support vector machines
or random forests operating on handcrafted descriptors such as the Normalized
Difference Vegetation Index. The temporal dynamics are typically handled with stacking
[38], probabilistic graphical models , or dynamic warping method .

In conjunction with growing data availability, the adoption of deep learning-based meth-
ods has allowed for a large increase in performance for parcel-based crop classification. The
spatial dimension of parcels is typically handled with convolutional neural networks ,
parcel-based statistics , or set-based encoders . The temporal dynamics are mod-
eled with temporal convolutions , recurrent neural networks , hybrid convolutional-
recurrent networks [30], and temporal attention 41].

Multiple recent studies have solidified the PSE+LTAE (Pixel Set
Encoder & Lightweight Temporal Attention) as the state-of-the-art of crop type classifica-
tion for these reasons. Furthermore, this network is particularly parsimonious in terms of
computation and memory usage, which proves well suited for training on multi-year data.
Finally, the code is available (https://github.com/VSainteuf/lightweight-temporal-
attention-pytorch, accessed on 10/10/21). For these reasons, we choose to use this net-
work as the basis for our analysis and design modifications.

Multi-Year Agricultural Optimization. Most of the literature on multi-year crop
rotation focuses on agricultural optimization, ie, improving agricultural practices aiming to
improve yields. These models generate suggested rotations according to expert knowledge
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[11], handcrafted rules [9], or statistical analysis [18], while other models are based on
a physical analysis of the soil composition |7] such as the nitrogen cycle [§]. Aurbacher
and Dabbert also take a simple economic model into account in their study [1]. More
sophisticated models combine different sources of knowledge for better suggestions, such as
ROTOR |[2] or CropRota [33]. The RPG Explorer software [23] uses a second-order Markov
Chain for a more advanced statistical analysis of rotations.

Given the popularity of these tools, it is clear that the careful choice of cultivated crops
can substantially impact agricultural yields and is the object of meticulous attention from
farmers. This is reinforced by the multi-model, multi-country meta-study of Kollas et
al. [20], showing that multi-year modeling allows for a large increase in yield prediction.
Consequently, we posit that a classification model with access to multi-year data will learn
inter-annual patterns to improve its accuracy.

Multi-Year Crop Type Classification. Multi-year crop type classification refers to
leveraging information (satellite observations, past declarations) to improve the classification
of the grown crop type in agricultural parcels. Osman et al. [26] propose to use probabilistic
Markov models to predict the most probable crop type from the sequence of past cultivated
crops of the previous 3 to 5 years. Giordano et al. [16] and Bailly et al. [4] propose to
model the multi-year rotation with a second-order chain-Conditional Random Field (CRF).
Finally, Yaramasu et al. |[40| are the first to propose to analyze multi-year data with a deep
convolutional-recurrent model. However, they only choose one image per year and hence do
not model both inter- and intra-annual dynamics. In contrast, we propose to explicitly our
model operates at both the intra-annual scale by using the sequence of yearly observation
and the inter-annual scale by considering past declarations.

We list here the main contributions of this paper:

e We propose a straightforward training scheme to leverage multi-year data and show
its impact on yearly agricultural parcel classification.

e We introduce a modified attention-based temporal encoder able to model both inter-
and intra-annual dynamics of agricultural parcels, yielding a large improvement in
precision.

e We present the first open-access multi-year dataset [25] for crop classification based
on Sentinel-2 images, along with the full implementation of our model.

e Our code is open-source and accessible at the following repository: https://github.
com/felixquintonl/deep-crop-rotationl

2 Materials and Methods

We present our dataset and proposed method to model multi-year SITS, along with several
baseline methods to assess the performance of its components. We denote by [1, I] the set of
years for which satellite observations are available to us and use the compact pizel-set format
to represent the SITS. For a given parcel and a year i € [1, I], we denote the corresponding
SITS by a tensor z' of size C x S x Tj, with C the number of spectral channels, S the
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number of pixels within the parcel, and T; the number of temporal observation available for
the year i. Likewise, we denote by I’ € {0, 1}* the one-hot-encoded label at year i, denoting
which kind of crop is cultivated in the considered parcel among a set L of crop types. Note
that, in this article, we focus on the prediction of the main culture, ie, only one crop type
per year.

2.1 Dataset

Our proposed dataset, represented in Figure is based on parcels within the 31TFM
Sentinel-2 tile, covering an area of 110 x 110 km? in the South East of France (centered
around 4.31N, 46.44E in WGS84). This area is in the Auvergne-Rhone-Alpes region, a
major producer of cereal with over 54000ha of corn and 30000ha of wheat. Extensive
livestock production makes meadow the most common crop type with over 60% of declared
parcels in the LPIS. The most frequent crop rotations are permanent cultures (meadows,
vineyards, pasture) and alternating between corn, wheat, and rapeseed.

Our satellite time series are constituted of Sentinel-2 level 2A images. We discard the
bands B01, B09, and B10 and resample the remaining 10 spectral bands to a spatial resolu-
tion of 10m per pixel with bilinear interpolation. Our data spans three years of acquisition:
2018, 2019, and 2020, with respectively 36, 27 and 29 valid entries, see Figure[3] The length
of sequences varies due to the automatic discarding of cloudy tiles by the data provider
THEIA . We do not apply further preprocessing such as cloud removal or radiometric
calibration than what is already performed by the data provider THEIA.

(a)

Figure 2: Area of Interest. The studied parcels are taken from the 31TFM Sentinel-2
tile, covering 110 x 110 km and containing over 103 602 parcels meeting our size, shape, and
stability criteria. (a) Large view of the tile. (b) Detail of the area.

We select stable parcels, meaning that their contours only undergo minor changes across
the three studied years. We also discard very small parcels (under 800m?) small or with very
narrow shapes to reflect the resolution of the Sentinel-2 satellite. Each parcel has a ground
truth cultivated crop type for each year corresponding to the main culture as reported by the
French LPIS, whose precision is estimated at over 97% as reported by the French Payment
Agency. Note that we ignore secondary cultures for parcels with multiple growth cycles.
To limit class imbalance, we only keep crop types among a list of 20 of the most cultivated
species in the area of interest. In sum, our dataset is composed of 103 602 parcels, each
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associated with three image time sequences and three crop annotations corresponding to
the farmers’ declarations for 2018, 2019, and 2020.

The Sentinel2Agri dataset , composed of parcels from the same area, is composed
of 191703 parcels. We can estimate that our selection criteria exclude approximately every
other parcel. A more detailed analysis of the evolving parcel partitions across different plots
could lead to retaining a higher proportion of the original parcels.

Figure 3: Intra-Year Dynamics. Evolution of two areas across three seasons of the year
2020. The top parcels contain mainly meadow parcels, while the bottom one comprises
more diverse crops. The aspect of most parcel drastically changes across one year’s worth of
acquisition, corresponding to different phases in the growth cycle. (a) Winter. (b) Spring.
(c) Summer

As represented in Table[1] the dataset is still imbalanced: more than 60% of declarations
correspond to meadows. In comparison, potato is cultivated in less than 100 parcels each
year in the area of interest.

2.2 Pixel-Set and Temporal Attention Encoders

The Pixel Set Encoder (PSE) is an efficient spatio-spectral encoder which learns ex-
pressive descriptors of the spectral distribution of the observations by randomly sampling
pixels within a parcel. Its architecture is inspired by set-encoding deep architecture
, and dispenses us from preprocessing parcels into image patches, saving memory and
computation. The Temporal Attention Encoder (TAE) and its parsimonious version
Lightweight-TAE (LTAE) are temporal sequence encoders based on the language pro-
cessing literature and adapted for processing SITS. Both networks can be used sequen-

tially to map the sequence of observations z’ at year i to a learned yearly spatio-temporal



Table 1: Crop distribution. We indicate the number of parcels declarations in the LPIS
for each class across all 103 602 parcels and all 3 years.

Class Count Class Count
Meadow 184489  Triticale 5114
Maize 42006 Rye 569
Wheat 27921 Rapeseed 7624
Barley Winter 10516 Sunflower 1886
Vineyard 15461 Soybean 6072
Sorghum 820 Alfalfa 2682
Oat Winter 529 Leguminous 1454
Mixed cereal 1061 Flo./fru./veg. 1079
Oat Summer 330 Potato 230
Barley Summer 538 Wood pasture 425
descriptor e’:
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Figure 4: Multi-Year Modeling. Different approaches to model crop rotation dynamics:
@ the model only has access to the current year’s observation; (]ED a chain-CRF is used to
model the influence of past cultivated crop; the model has access to the observation of
the past two years; @ proposed approach: the model has access to the last two declared
Crops.

2.3 Multi-Year Modeling

We now present a simple modification of the PSE+LTAE network to model crop rotation. In
the original PSE+LTAE approach, the descriptor e is directly mapped to a vector of class



scores z° by a Multi-Layer Perceptron (MLP). In order to make the prediction z¢ covariant
with past cultivated crops, we augment the spatio-temporal descriptors e’ by concatenating
the sum of the one-hot-encoded labels I/ for the previous two years j =i — 1,7 — 2. Then,
a classifier network D, typically an MLP, maps this feature to a vector z* of L class scores:

Zi = D ([ei H li—l —+ li—Z]) y (2)

with [-]|-] the channelwise concatenation operator. We handle the edge effects of the first two
available years by defining I° and I=! as vectors of zero of size L (temporal zero-padding).
This model can be trained end-to-end to simultaneously learn inter-annual crop rotations
along with the intra-annual evolution of the parcels’ spectral statistics.. Our model makes
three simplifying assumptions:

e We only consider the last two previous years because of the limited span of our avail-
able data. However, it would be straightforward to extend our approach to a longer
duration.

e We consider that the history of a parcel is entirely described by its past cultivated
crop types, and we do not take the past satellite observations into account. In other
words, the label at year ¢ is independent from past observations conditionally to its
past labels [39, Chap 2]. This design choice allows the model to stay tractable in terms
of memory requirements.

e The labels of the past two years are summed and not concatenated. The order in
which the crops were cultivated is then lost, but results in a more compact model.

2.4 Baseline Models

In order to meaningfully evaluate the performance of our proposed approach, we implement
different baselines for classifying parcels from multi-year data . In Figure @ we represent
schematically the main idea behind these baselines and our proposed approach. Note that
the choice of backbone network to handle single-year data is out of the scope of this paper.

Single-Year: Mnge. We do not provide the previous years’ labels, and directly map
the current year’s observations to a vector of class scores [13].

Conditional Random Fields: Mcrp. Based on the work of [4] and [16], we implement
a simple chain-CRF probabilistic model. We use the prediction of the previous PSE+LTAE,
calibrated with the method of Guo et al. [17] to approximate the posterior probability
p € [0,1]F of a parcel having the label k for year i : pp = P(I' = k | 2*) (see Section [3.3| for
more details). We then model the second order transition probability p(I* = k | 171, 1'72)
with a three-dimensional tensor T € [0, 1]£*£*L which can be approximated based on the
observed transitions in the training set. As suggested by Bailly et al. , we use a Laplace
regularization [34, Chap. 13] to increase robustness. The resulting probability for a given
year ¢ is given by:

zéRF [k] =D © T[li_ga li_la :] ) (3)

with ® the Hadamard term-wise multiplication. This method is restricted to ¢ > 2 as edge
effects are not straightforwardly fixed with padding.



Observation Bypass: M,,s. Instead of concatenating the labels of previous years to
the embedding e?, we concatenate the average of the descriptors of the last two years !
for e'=2:

I=

[t +ei2] ifi>1
0 ifi=11|. (4)
ifi =0

% %
Zobs — DObS €

S O N

Edge effects are handled with mirror and zero temporal padding.

Label Concatenation: Mec.concat- Instead of concatenating the sum of the last two
previous years, we propose to concatenate each one-hot-encoded vector {*~! and I~2 with
the learned descriptor z°. This approach is similar to Equation [2, but leads to a larger
descriptor and a higher parameter count.

Single-Year Label Bypass: Mycc-one-year- 10 order to evaluate the impact of describing
the history of parcels as the past two cultivated crops, we only concatenate the label of the
previous year to the learned descriptor e’.

2.5 Training Protocol

Year 1 Encoder 1 Classifier 1

‘ Encoder ‘ Classifier ‘

Year 2 Encoder 2 Classifier 2

Year 3 Encoder 3

Classifier 3

e

(a) Mixed-year training . (b) Specialized models

Figure 5: Training Protocol. A single model is trained with parcels taken from all three
years @, and three specialized models whose training set only comprises observation for a
given year @

We propose a simple training protocol to leverage the availability of observations and
farmers’ declarations from multiple years.

Mixed-year Training: We train a single model with parcels from all available years. Our

rationale is that exposing the model to data from several years will contribute to learning
richer and more resilient descriptors. Indeed, each year has different meteorological condi-
tions influencing the growth profiles of crops. Moreover, by increasing the size of the dataset,
mixed-year training mitigates the negative impact of rare classes on the performance.

We assess the impact of mixed-year training by considering I = 3 specialized models
whose training set is restricted to a given year: Msg18, M2g19, and Mageg. In contrast, the
model Mpixeq is trained with all parcels across all years with no information regarding of the
year of acquisition. All models share the same PSE4+LTAE configuration [13]. We visualize
the training protocols in Figure [5] and report the results in Table 2]



Cross-validation: We split our data into 5 folds for cross-validation. For each fold, we
train on 3 folds and use the last fold for calibration and model selection, corresponding
to a train/validation/test ratio of 60%,20% and 20% in each fold. In order to avoid data
contamination and self-correlation, our folds are all spatially separated: the fold separation
is done parcel-wise and not for yearly observations. A parcel cannot appear in multiple folds
for different years.

2.6 Evaluation Metrics

In order to assess the performance of the different approaches evaluated, we report the
Overall Accuracy (OA), corresponding to the rate of correct prediction. If we denote by N,
the number of accurate predictions and N the total number of parcels, the overall accuracy
writes:
N

OA = N (5)
To address the high class imbalance, we also report the mean Intersection over Union (mlIoU),
defined as the unweighted class-wise average of the intersection over Union (or Jaccard
distance) between the prediction and the ground truth for each class. For a given class
i, IoU; is defined as the ratio between the number of elements that are both predicted
and labeled by class 4 (the intersection, or true positives, and the number of elements that
are either predicted or labeled as belonging to class ¢ (the union). In terms of binary
classification (class 7 vs. not class i), this translates into the following formula:

B TP,
~ TP, + FP; + FN; ’

with TP;, FP; and FN; the number of true positives, false positives, and false negatives
respectively. The mloU represents the average of the IoU calculated over the K studied
classes:

K
1 .
mloU = 174 ;:1 IoU; .is (7)

3 Results

This section presents the quantitative and qualitative impact of our design choice in terms
of training protocol and architecture.

3.1 Training Protocol

Predictably, the specialized models have good performance when evaluated on a test set
composed of parcels from the year they were trained, and poor results for other years,
making this training procedure ill-fitted for the application at hand. In contrast, the model
M ixea vastly outperformed specialized models on average over the three considered years:
over 15 points of mloU. More surprisingly, the model M ,ixeq also outperforms all specialized
models even when evaluated on the year of their training set. This implies that the increased
diversity of the mixed-year training set allows the model to learn more robust and expressive
representations.



In Figure @, we illustrate the representations learned by the mixed model M ixeq and the
specialized model Msgog. We remark that the parcel embeddings of the specialized model
are inconsistent from one year to another, resulting in a higher overlap between classes. In
contrast, the mixed year model M ixecq learns year-consistent representations. This results
in embedding clusters with large margins between classes, illustrating the ability of the
model to learn robust and discriminative SITS embeddings.

Table 2: Quantitative evaluation. Performance (mIoU and OA) of the different special-
ized models Msg1s, Mag19, Maogag and of the mixed-years model M ixeq evaluated on each
year individually and all available years simultaneously with 5-fold cross-validation. The
best performances are shown in bold. Boxed values correspond to evaluations where the
training and evaluation sets are drawn from the same year. The mixed-year model performs
better for all years, even compared to specialized models.

In the rest of the paper, we use mixed year training for all models.
2018 2019 2020 3 years

Model OA mloU OA  mloU OA mloU OA mloU
Mog1s 97.0 64.7 90.3 45.5 90.8 434 92.7 49.1
Mog19 88.9  39.5 ] 97.2 70.1 \ 88.7  40.1 91.6 48.0
Mosg20 91.4 44.2 93.7 51.8 ] 96.7 67.3 \ 93.9 54.0

M ixed 97.3 69.2 97.4 T72.2 96.8 68.7 97.2 704

3.2 Influence of Crop Rotation Modeling

We evaluate all models presented in Section [2.3] and Section [2.4] and provide qualitative
illustration in Figure[7]. All models are trained with the mixed-year training protocol and
only tested on parcels from 2020 to avoid edge effects affecting the evaluation. We give
quantitative cross-validated results in Table [3] Training our model on one fold takes 4
hours, and inference on all parcels takes under 3 minutes (over 500-parcels per second).

Table 3: Performance by model. Performances (mloU and OA) of the models Mingle,
Mops, Mcrr, and Mgec tested for the year 2020. Our proposed model Mge. achieve higher
performance than Mgpgle with a 6.3% mloU gap.

Model Description OA  mloU
Miingle single-year observation 96.8 68.7
Mops bypassing 2 years of observation 96.8 69.3
Mcrr using past 2 declarations in a CRF  96.8  72.3
Mgec-one-year ~ concatenating last declaration only 97.5  74.3
M gec-concat concatenating past 2 declarations 97.5 744
Myee proposed method 97.5 75.0

We observe that our model appreciably improved on the single-year model, with over
6 points gained in mloU. The CRF models also increase the results to a lesser margin.
We attribute this inferior performance to an oversmoothing phenomenon already pointed
out by Bailly et al. : CRFs tend to resolve ambiguities with the most frequent transition

10
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regardless of the specificity of the observation. In contrast, our approach simultaneously
models the current year’s observations and the influence of past cultivated crops. Mgy
barely improves the quality of the single-year model. While this model has indeed access
to more information than Mjingle, the same model is used to extract SITS descriptors for
all three years. This means that the model’s ambiguities and errors will be the same for
all three representations, which prevent M, from largely improving its prediction. Our
approach injects new information into the model by concatenating the labels of previous
years, which is independent of the model’s limitations. Our method is more susceptible to
the propagation of mistakes in the farmers’ declarations but provides the most significant
increase in performance in practice.

Lastly, we concatenate both past label vectors to keep information about the order in
which past crops were cultivated and observe a slight decrease in performance. The increase
in model size can explain this. We conclude that this order is not crucial information for our
model conditionally to the observation of the target year. Lastly, the model’s performance
with only the declaration of the last year performs almost as well as our model with two
years worth of crop declarations. This suggests that yearly transition rules are sufficient to
capture most inter-year dynamics, such as permanent culture. Alternatively, our two-year
scheme may suffer from sharp edge effects with only three years’ worth of data. Only a
quantitative analysis over a longer period may resolve this ambiguity. On average, our M.
model obtains an mIoU of 84.7% and overall accuracy of 98.1% on the training set.

We report the confusion matrix of Mgec in Figure[8] and its performance for each crop in
Table |4 We also compute A = IoU(Mgec) — IoU(Mgingle) the gain compared to the single-
year model IoU(Mginglc), as well as the ratio of improvement p = A/(1 — mIoU(Mgingie))-
This last number indicates the proportion of IoU that have been gained by modeling crop
rotations. We observe that our model provides a large performance increase across all classes
but four. The improvement is particularly stark for classes with strong temporal stability
such as vineyards.

Figure 7: Qualitative Illustration. Detail of the area of interest with the ground truth in
@ and the qualification of the prediction in (]ED with correct prediction in blue and errors
in red.

To further this analysis, we arrange the crop types into three groups according to the
crop grown in 2018 and the number of observed class successions over the 2018 —2019 — 2020
period:

e Permanent Culture. Classes within this group are such that at least 90% of the

12
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Figure 8: Confusion Matrix. Confusion matrix of the prediction of Mge. for the year
2020. The area of each entry corresponds to the square root of the number of predictions.

observed successions are constant over three years. It Contains Meadow, Vineyard,
and Wood Pasture.

e Structured Culture. A crop is said to be structured if, when grown in 2018, over
75% of the observed three-year successions fall into 10 different rotations or less and
is not permanent. It contains Rapeseed, Sunflower, Soybean, Alfalfa, Leguminous,
Flowers/Fruits/vegetables, and Potato.

o Other. All other classes.

We report the unweighted class average for these three groups in Table o} Predictably, our
approach considerably improves the results for permanent cultures. Our model is also able
to learn non-trivial rotations as the improvement for structured classes is also noticeable.
On average, our method also improves the performance for other nonstructured classes,
albeit to a lesser degree. This indicates that our model can learn multi-year patterns not
easily captured by simple rotation statistics.

3.3 Model Calibration

Crop mapping can be used for various downstream applications, such as environmental mon-
itoring, subsidy allocation, and price prediction. These applications carry crucial economic

13



Table 4: Performance by class. IoU per class of our model My for the year 2020, as
well as the improvement A compared to the single-year model Mgingle, and the ratio of
improvement p. All values are given in %, and we sort the classes according to decreasing
ratios p.

Class IoU A p Class IoU A p

Wood Pasture  92.4 +48.2 86.3 Oat Summer 52.8 +43.6 7.0
Vineyard 99.3 +14 68.7 Rapeseed 983 +0.1 6.6
Alfalfa 68.7 4239 499 Maize 95.7 402 6.3
Flo./Fru./Veg. 83.4 +414.5 46.5 Wheat 91.9 403 39
Meadow 98.4 +09 36.9 Barley Summer 64.3 +1.1 3.1
Leguminous 45.2 +14.6 21.1 Potato 57.1 405 1.2
Rye 54.7 +46.4 12.4  Sunflower 92.2 -0.1 -0.3
Oat Winter 57.7 +4.5 9.7 Sorghum 56.6 -0.2 -04
Triticale 68.7 +2.6 7.8 Soybean 91.8 -0.2 -3.1

Mix. Cereals 31.0 +5.1 6.8 Barley Winter 928 -06 -85

Table 5: Improvement Relative to Structure. Classwise IoU and mean improvement
of our model compared to the single-year model according to the rotation structure of the
cultivated crops.

Category mloU mean A

Permanent 97.3 16.9
Structured 77.7 7.6
Other 66.6 2.3

and ecological stakes and hence benefit from properly calibrated prediction. A prediction is
said to be calibrated when the confidence (ie, the probability associated to a given class) of
the prediction corresponds to the empirical rate of correct prediction: we want 90% of the
prediction with a 90% confidence to be accurate. This allows for more precise risk estimation
and improves control on the rate of false positives / negatives.

Deep learning methods such as ours are notoriously badly calibrated. However, this
can be corrected with the simple technique proposed by Guo et al. [17]. This method,
called temperature scaling, consists in minimizing the discrepancy between the predicted
confidence and the rate of errors binned into quantiles (we chose here 15 bins) on the
validation set by adjusting the temperature parameters in the last softmax layer |6, Chap.
2.4]. Asrepresented in Figure@ we can improve the calibration and observe a 43% decrease
of the Expected Calibration Error (ECE) at a small computation cost.

4 Discussion

In this paper, we set out to develop a deep learning method to leverage both the inter- and
intra-annual dynamics of crop growth for crop mapping. We propose to enrich the learned
spatio-temporal features with the last two declared cultures. Our experiments show that
this simple method leads to an appreciable increase in performance compared to models
operating on data drawn from a single year. Our method outperforms other approaches
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Figure 9: Model calibration. Empirical rate of correct prediction by predicted confidence.
We quantize the predicted confidence into 100 bins for visualization purposes. For a perfectly
calibrated prediction, the blue histogram would exactly follow the orange line. We observe
that a simple post-processing step can considerably improve calibration.

such as CRF smoothing or observation stacking. This improvement can be observed for
most crop types, including those with rotation patterns beyond permanent culture. We now
discuss the limitations of our method and of our analysis.

Choice of Backbone Network.  Our method can be adapted to any network with a
distinct classifier module mapping a spatio-temporal learned feature vector to a predicted
vector of class scores. However, the choice of spatio-temporal encoder (backbone) is out of
the scope of this article. While it may be relevant to explore the effect of our modification
on other architectures, we limited our investigation to the PSE4+LTAE as it is the current
state-of-the-art network for crop type mapping by a large margin.

Operational Setting. We showed that training our model with samples from all available
years leads to considerably improved results. However, this scenario is not compatible with
the operational setting of crop monitoring, in which payment agencies may want to detect
erroneous declarations before all farmers’ declarations have been received. Instead, we use
the same setting as the vast majority of work in parcel classification and whose task is to
classify parcels after the year is over [42, 38, 35| 5, |22} |31} {27} [12] (30} 141}, |21}, |13}, |15}, |32} [14].

As the Sentinel-2 mission was only operational starting in 2017, we only have access to
full-year coverage since 2018. This means that we only have three years’ worth of data at
the time of writing this paper. In our opinion, this prevents us from a realistic setting in
which the last year is withheld from the training set. Indeed, the inter-year meteorological
variations between two years are typically too great to test for a third year and reasonably
expect good results, as corroborated with preliminary experiments not shown in this paper.
As more Sentinel-2 data become available, we will be able to evaluate our approach in a
more realistic setting.

Scope of the Study. Given the large amount of data involved and the complexity of
data collection, we have limited our analysis and our proposed open-access dataset to a
single area of the French Metropolitan territory. While nothing in our method is specific to
this area, some of our analysis may be biased by the preponderance of stable cultures such
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as vineyards in this area. To confirm the generality of our conclusions, we would require
a dataset with parcels taken from regions across the world with various meteorological
conditions and agricultural practices. This task is complicated by the lack of harmonization
between LPIS regarding open-access policy and even nomenclature. We hope that our
results will encourage mapping agencies worldwide to release multi-year LPIS in open-source
to help constitute a truly global dataset, allowing the community to assess the spatial
generalizability of state-of-the-art methods. We also limit ourselves to predicting the main
culture in each parcel while ignoring cases with multiple growth cycles within one year. This
may be particularly detrimental to its application in subtropical regions.

Applicability of our Model. By requiring the last two grown crops to classify a parcel,
our method cannot be applied to areas where the LPIS is not easily accessible. Furthermore,
our training setting requires only selecting stable parcels. This can be easily obtained from
the LPIS if it also contains information about the extent and position of each parcel, as is
the case for the French LPIS. As a consequence, the effect of parcels with changing contours
is out of the scope of our investigation.

5 Conclusions

We explored the impact of using multi-year data to improve the quality of the automatic
classification of parcels from satellite image time series. We showed that training a deep
learning model from multi-year observations improved its ability to generalize and better
precision across the board. We proposed a simple modification to a state-of-the-art network
to model both inter- and intra-year dynamics. This resulted in an increase of +6.3% of mIoU
when compared to models operating on single-year data. The effect is most substantial for
classes with strong temporal structures, but also impacts other crop types. We also showed
how simple post-processing could improve the calibration of the models considered.

Finally, we release both our code and our data. We hope that our promising results will
encourage the SITS community to develop methods modeling multiple time scales simulta-
neously and release more datasets spanning several years.
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