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Abstract— 

Rationale and Objectives: The purpose of this study was to develop and validate an algorithm that can 

automatically estimate the amount of coronary artery calcium (CAC) from non-enhanced ECG-gated 

computed tomography (CT) cardiac volume acquisitions by using multiple convolutional neural networks 

(CNN). 

Materials and Methods: Our method used an ensemble of 5 CNN with 3D U-Net architecture trained on a 

database of 783 CT examinations to detect and segment coronary artery calcifications in a 3D volume. The 

Agatston score, the conventional CAC scoring, was then computed slice by slice from the resulting 

segmentation mask and compared to the ground truth manually estimated by radiologists. 

The quality of the estimation was assessed with the Concordance Index (C-index) on a separate testing set of 

98 independent CT examinations. 

Results: The final ensemble model yields a C-index of 0.951 on the testing set. The remaining errors of the 

method were mainly observed on small-size and/or low-density calcifications, or calcifications located near 

the mitral valve or ring. Our model was also compared to other methods from the literature showing state-of-

the-art performance for CAC quantification. 

Conclusion: The deep learning-based method we proposed to compute automatically the CAC score from a 

non-enhanced ECG-gated cardiac CT is fast, robust and could improve workflow efficiency, eliminating the 

time spent on manually selecting coronary calcifications to compute the Agatston score. 

 

Keywords— Tomography, X-ray computed, Deep learning, Coronary Artery Disease, Convolutional 

neural networks (CNN) 

 

 



 

ABBREVIATIONS: 

CAD: Coronary artery disease 

CAC: Coronary Artery Calcium 

CNN: Convolutional Neural Networks 

FCNN: Fully Convolutional Neural Networks 

HU: Hounsfield Units 

SFR: the French Radiology Society 
 

 

Introduction  

 

Coronary artery disease (CAD) is one of the leading causes of mortality in the world. Coronary Artery 

Calcium (CAC) has been shown to be associated with the presence of CAD and to be a strong and independent 

predictor of cardio-vascular events and mortality [1]. CAC can be quantified with low dose ECG-gated non 

enhanced CT acquisition, by using standardized parameters and notably a tube voltage of 120 kV and a series 

of 2.5 to 3 mm thick slices covering the entire cardiac volume. 

In clinical practice, the CAC burden is estimated by the Agatston score, which has been widely validated in 

numerous studies in estimating cardiovascular risk [2]. Such Agatston score is computed from 2D axial 

connected components above 130 Hounsfield Units (HU) that are manually or semi automatically identified 

as coronary calcification by the radiologist. A manual intervention is often required to validate a segmentation 

made beforehand by a software, which exposes, beyond the time spent, to measurement variability depending 

on the software and the experience of the operator. According to several guidelines [3], this score is a reliable 

tool to classify patients into 5 classes for risk assessment and to guide follow-up preventive strategy and 

testing. Several recent studies report different experiences in automating the procedure of segmentation and 

quantification of the CAC burden, using different deep learning approaches.  
Indeed, in the last few years semantic segmentation architectures were used to predict dense segmentation 

maps by extending Convolutional Neural Networks (CNN) to Fully Convolutional Neural Networks (FCNN) 

[4]. They were first applied to 2D biomedical imagery with the so-called U-Net [5] and later with a 

straightforward extension to 3D and 4D V-Net [6]. The objective of our study was to propose and validate a 

new fully automated method of segmentation and quantification of CAC burden based on a customized 

version of these architectures in the context of the data challenge organized in 2020 by the French Radiology 

Society (SFR). 

 

Materials and Methods 

 

Patient Population and Database 

 

The data set of the SFR’s data challenge 2020 is composed of 3 different batches of CT acquisitions 

collected from different clinical sites and provided at different stages of the data challenge. A first batch of 

100 CT examinations was made available at the beginning of the data challenge (J1 data set), then a second 

larger batch of 322 CT examinations was released two days before the end of the challenge (J2 dataset). A 

final dataset of 98 CT examinations (J3 dataset) was given during the last day of the data challenge to be 

used as a test set to evaluate in one hour the results submitted by all the participants to the challenge. 

Patients included in this final dataset were classified at intermediate cardiovascular risk group, based on the 

risk score index, with an average age of 60 years plus or minus 13 years (range 43-84 years). However, 

based on the manually calculated Agatston score, and unbeknownst to the challenge participants, the 



 

distribution of classes was homogeneous as nearly 20% of the subjects were selected to represent each class 

from A to E. 

All ECG gated CT exams were acquired without contrast injection, by using tube voltage of 120 KeV and a 

slice spacing of 2.5 or 3.0 millimetres. The need for informed consent from the patient was waived by the 

national commission in charge of data protection and the relationship between computer science and freedom 

in France (CNIL). Furthermore, the SFR ensure the data protection to radiologists wishing to participate in 

the challenge by providing an automatic anonymization process integrated into the platform for loading 

images. 

The competition organisers ensured a good distribution of the examinations between 4 CT vendors in order 

to avoid results depending on a manufacturer specific type of image. They also accompanied each patient 

image series with a list of 3d positions of each coronary calcification manually and specifically marked by a 

radiologist expert in the field.  Finally, based on the radiologist results, they assigned the following standard 

risk categories for each patient: A, B, C, D or E when Agatston score was zero, 1-10, 11-100, 101-400, > 400, 

respectively. 

The distribution of Agatston score for each subset is provided in Figure 1. An additional 361 annotated CT 

acquisitions (AD dataset) coming from our internal database was also used as training data.  

 

 
 

Figure 1: Distribution of Agatston risk score for each batch of data 

 

As an additional validation step, we also evaluated the model on the public test set of the orCaScore challenge 

to assess the capacity of our model to generalize on external data independent from the SFR challenge data 

distribution [7]. The orCaScore challenge provides a public benchmark to evaluate and compare different 

methods for CAC scoring. This public dataset consists of non-contrast enhanced ECG-triggered cardiac CT 

acquired on CT scanners from four different vendors from four different hospitals. The training data provided 

with this framework was not used in this study, only the 40 test CT volumes were used as external test set. 

 

AI methodology 
 

Overview  

Our approach consists in training an ensemble of 3D U-Net models that outputs a binary segmentation mask 

of calcifications. The Agatston score (AS) is then computed by 2d connected component analysis performed 

on each slice of the mask using the following formula: 

𝐴𝑔𝑎𝑡𝑠𝑡𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 = ∑ ∑ 𝑎𝑖𝑗𝑑𝑖𝑗

Δ𝑧

3𝑗𝑖
 



 

Where 𝑎𝑖𝑗  is the area of the 𝑗𝑡ℎ 2d connected component (of at least 3 voxels) on the 𝑖𝑡ℎ axial slice, 𝑑𝑖𝑗 is a 

density factor determined by the maximum attenuation in this connected component (130 − 199 𝐻𝑈: 1, 200 −

299 𝐻𝑈: 2, 300 − 399 𝐻𝑈: 3, ≥ 400 𝐻𝑈: 4), and Δ𝑧 is the axial thickness of the acquisition in millimeters. 

 

Ground truth generation 

For each CT volume of the training set, we created a ground truth derived from the provided annotations. This 

ground truth is a binary mask of calcifications. This process was performed automatically by selecting the 

connected components of voxels above 130 HU connected to the calcification 3d positions provided in the 

annotation. To ensure the quality of the segmentation mask, the Agatston score was then computed from the 

mask and compared to the original Agatston score category. In case of discrepancy between the two scores, 

the masks were reviewed, and manually corrected if needed. 

 

Pre-processing 
Each CT volume was first downsampled to an isotropic resolution of either 2.5 mm or 3 mm (depending on 

the original slice spacing). As an effect of the downsampling, the information of low-density calcifications 

could be lost in the low-resolution image. In order to restore this information, intensities above 130 HU in the 

original image were enhanced in the downsampled image. Finally, the processed volume was clipped below 

-300 HU and above 800 HU, and linearly normalized between 0 and 1. Corresponding ground truth masks 

were also downsampled at the same resolution. 

 

 

Model architecture 

Each model was built on a 3D U-Net architecture with a depth of 4 levels and 16 initial filters. Each 

convolution layer used residual connections, exponential linear unit (ELU) activation and batch 

normalization. The number of filters was doubled after each max pooling layer in the encoding path, while in 

the decoding path, the number of filters was symmetrically decreased by a factor 2 after each up-sampling 

layer. The detailed architecture of the network is provided in Figure 2. A majority vote per voxel among the 

5 different outputs of each model was used as the final prediction of the calcification mask. 

 

 
 

Figure 2: Model architecture 

 

Training 



 

The training of each U-Net model was done from scratch with Adam optimizer on the Dice loss function. A 

validation set of 20 exams from J1 was used to select the best epoch during training. The training process was 

done with TensorFlow version 1.14 in Python 3.6, on a NVIDIA® GV100-32GB GPU. We considered 3 

different data subsets for training: J1, J1+J2, J1+J2+AD, and trained independently 5 models for each of these 

subsets.  

 

Post-processing 

The ensembled model was obtained by majority vote per voxel among the different outputs of the 5 models 

trained on the same training subset. The predicted mask was then upsampled to the original resolution and 

intensities were thresholded at 130HU. 
 

Testing and validation 

For each test volume, the model predicted a calcification mask on which the Agatston score was further 

calculated. The resulting Agatston score risk category was then compared to the ground truth for each volume 

of the test set. Two metrics were computed to evaluate the method: category accuracy and C-index. The 

category accuracy gives the percentage of correct risk category in the evaluation set. The C-index or Harrel 

index measures the proportion of concordant pairs divided by the total number of possible evaluation pairs: 

C-index = 
 # 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

# 𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠 
 = 

 # { (𝑖,𝑗) 𝑠.𝑡.  𝑝𝑖<𝑝𝑗 𝑎𝑛𝑑 𝑡𝑖<𝑡𝑗 }

(𝑛
2) 

 where 𝑝𝑖 is the predicted risk category, 𝑡𝑖 is the true 

risk category and 𝑛 is the number of elements to compare. The C-index lies between 0.5 (random prediction) 

and 1 (all risk category correctly predicted). 

 

Results 

 

The performance of the different models is presented in Table 1 and Figure 3, showing the average 

performance obtained with a single model compared to the performance of the ensembled model for the 

different training sets considered. As expected, the C-index improved with the size of the training set from 

0.9391, 0.9437 to 0.9509 when using J1, J1+J2 and J1+J2+AD data sets respectively. The final model was 

trained on the full training set of 783 exams (J1+J2+AD). 

 
Table 1: Performance of each model. 1 model vs Ensembled model. 

For 1 model, average and standard deviation across the 5 trained models are reported. 

Method 
Metrics 

C-index category accuracy 

1 model trained on J1 (average performance) 0.932 (std=0.008) 0.832 (std=0.010) 

Ensemble of 5 models trained on J1 0.939 0.847 

1 model trained on J1 + J2 (average performance) 0.943 (std=0.005) 0.849 (std=0.015) 

Ensemble of 5 models trained on J1 + J2 0.944 0.847 

1 model trained on J1 + J2 + AD (average performance) 0.949 (std=0.006) 0.864 (std=0.010) 

Ensemble of 5 models trained on J1 + J2 + AD (Final) 0.951 0.857 

 

 

In addition, we observed that ensembling 5 different models improved the performance in terms of C-index 

compared to the average performance of a single model. On the models trained with the full set, we have seen 

a small degradation in accuracy with the ensembled model, while the C-index is improved. The two metrics 

are indeed not equivalent. With the C-index, a large error on the predicted class has more influence on the 

metric than a small one, whereas this predicted class difference is weighted equally with the accuracy measure. 

Thus, the ensemble model made slightly more errors than the average model, but the magnitude of the errors 

was smaller. 



 

 
Figure 3: C-index vs accuracy for different models evaluated on the test set (J3). 

 

This observation was confirmed by the confusion matrix (Figure 4) which gives the distribution of errors 

across the different patient risk categories based on the Agatston score. With the final model, most of the 

errors were distributed near the diagonal, corresponding to off-by-one errors. Some recurring failure patterns 

were observed: small low-density calcifications could be missed (6 errors where A is predicted instead of B), 

and in a few cases some coronary calcifications were mistaken for calcifications on the mitral valve. This is 

illustrated in Figure 5 where examples of both successful and failed predictions are presented. These error 

patterns could indicate the type of exams that should be added in the training set in order to further increase 

the performance. 

 
Figure 4: Confusion Matrix for the Risk Score of the final prediction on the test set (J3) 

 

 

 



 

 

 

   

   

   
Figure 5: Examples of prediction by the final ensembled model. Green circles are true positives, red circles are false positives (false 

detection), yellow circles are false negatives (missed calcification). 1-4 are examples of correct predictions, 5-9 are examples of 

incorrect predictions with either false detections or missed detections. Examples 5, 6 and 9 are typical examples of the confusion 

made between mitral valve calcifications and coronary artery calcifications.  

 

Finally, the final model was evaluated on the public benchmark of OrcaScore [7] and yielded a F1-score of 

0.974 with an accuracy of 0.975 on the 40 CT volumes of the test set, ranking first in the leaderboard at the 



 

time of the submission. This confirmed our model can generalize well on a wide range of non-enhanced 

ECG-gated cardiac CT examinations. 

 

DISCUSSION 

 
 

Our method based on an ensemble of five 3D U-Net models to detect dense segmentation maps [8] has 

obtained good fully automated detection and quantification of the Agatston score. Indeed, our method was 

able to correctly classify the cardiovascular risk category in 86% of the 98 subjects of the validation database 

according to the Agatston's score level, quantified manually and conventionally by trained operators. As 

shown in the confusion matrix of the figure 4, a class discrepancy was observed in only 14 subjects, and since 

the amplitude of this discrepancy was low and =<1 class on 13 of these subjects, the c-index obtained with 

our method was 95%. We have also shown here the importance of the volume of the training data base of the 

different CNN models taken alone or combined on the final result.  

In these conditions, it is not surprising to see that AI model proposals published in 2018 on a training data 

base of 1744 ECG gated CT acquisition dedicated for CAC scoring [9] now obtain results very close to those 

obtained manually by operators trained to detect the coronary calcium score when these databases have been 

diversified by different types of scanner and when these training databases are much larger [10]. In this large 

study including 7240 participants with a wide range of CT examination with ECG gated CAC scoring CT, 

diagnostic chest CT, PET attenuation correction CT and radiation therapy CT, the deep learning solution was 

tested on 4324 CT examination to obtain a weighted kappa value of 0.90 for all test CT scans and ICC yielded 

0.79–0.97 for CAC across the range of different types of CT examinations. 

From a methodological point of view, different methods have been proposed in the automated detection and 

analysis of CAC score on CT. A method based on an ensemble of pairs of CNNs obtained 83% of accuracy 

in predicting patients CAC score risk class by using only the enhanced CT when the classification requested 

to the algorithm was only 4 classes instead of 5  [11]. If classes B and C are grouped together in a single class 

(CAC score from 1 to 100) as it is often suggested in clinical practice in non-diabetic subjects, the accuracy 

of our solution could also increase from 84 to 94%. Another approach makes use of fuzzy features and atlas-

based information in conjunction with Random Forest Models to exploit the available data at best and get 

accurate quantification and branch-wise location of CAC and only the non-enhanced-CT images are required 

[12]. To produce a more accurate segmentation of coronary artery, another method has been suggested to 

automatically detect calcified lesions on the non-enhanced CT images, but the segmentation of the aorta, the 

heart and coronary arteries was required and obtained by using associated contrast CT images [13]. Because 

of its relevance in CAD screening in a population of smokers, another deep learning method has been tested 

on the NLST (National Lung Screening Trial) [14]. This method uses of a 2-stage FCNN prediction to quantify 

branch-wise calcifications using the sole non-enhanced CT examination  [9]. This method previously trained 

on manual and segmental labeling of calcified coronary lesion per coronary artery in a subset population of 

the NLST patients was further tested on multiple cardiac CT protocols as previously mentioned [10]. Finally, 

a last interesting method still based on CNN [15] was trained on NLST data set using only the CAC score 

information as supervision. The method employs two CNNs, one for registration to align the input images to 

an atlas image made from cardiac CTs and one for direct CAC score prediction using regression. This second 

CNN operates on 2d slices and does not use the information across slices which according to the authors may 

account for some incorrect identification of CAC near the coronary artery ostia.  

By contrast our approach is fully 3D and therefore is capable of better using the information across adjacent 

slices to identify CAC. To maintain a large receptive field while limiting the depth of the CNN, we chose to 

train our model on low-resolution versions of the CT volumes using a single standard U-Net architecture, 

which led to a cost-effective training and inferencing process (less than 2 seconds per examination). The 



 

performance obtained with our model on the orCaScore test set was very close to the other top performing 

methods evaluated with this framework [12,13,15]. 

 

The limitation of our work presented here was that only dedicated non-enhanced-ECG-gated CT scans for 

calcium score were trained and evaluated. Given the value of the CAC score in detecting subjects at high 

cardiovascular risk who require primary prevention, it would be useful in future studies to test and validate 

this method on a wider range of CT acquisition performed for routine examinations for lung disease. 

 

CONCLUSION 

 

We have presented here a method based on an ensemble of five customized U-Net models trained on a 

database of 783 exams to compute the Agatston Score from non-enhanced CT scan. The performance achieved 

with our method to quantify CAC score was very close from those obtained by the best deep learning methods 

recently published in the literature. Thus, our deep learning method could improve clinical workflow 

efficiency as radiologists would not need to spend time tediously segmenting coronary calcifications by hand. 
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