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Abstract

Cardiac computed tomography angiography (CCTA) provides a non invasive imaging
solution that reliably depicts the anatomical features of coronary artery diseases (CAD).
Despite many successes with deep learning applications to medical imaging, recently devel-
oped methods for the automated detection of coronary plaque only suggests its feasibility as
results are not yet mature enough for application deployment. The task is mainly to localize
plaques and to characterize their composition depending on their appearance. Plaque com-
position can be divided into three classes: calcified, mixed and non-calcified. This study
proposes a novel architecture for plaque detection and characterization. Its performances
are tested against 2 state-of-the-art methods for coronary analysis. All trained models are
evaluated and tested in the same setting using a proprietary dataset of 205 manually anno-
tated CCTA cases. Our proposed method addresses two issues: unlike related methods it
seamlessly models bifurcations and secondly it does not rely on multi-planar reformatted
(MPR) visualization techniques which are by construction sensitive to centerline detection.
Keywords: Cardiac CT angiography, Major adverse cardiac event, prediction, deep learn-
ing.

1. Introduction

Coronary artery plaques present features of varying nature with corresponding functional
values. In recent studies (Williams et al., 2019) non-calcified plaques were identified as
a coronary obstruction independent factor associated with major adverse coronary events
(MACE). Non-calcified plaques appear in patients with no flow-limiting diseases and are
visually appreciable in CCTA by clinicians. The gold-standard reference method for non
invasive functional analysis in CCTA is the Fractional Flow Reserve estimated via CT (Lee
et al., 2016)(Pontone et al., 2016) (FFRcT). Recent studies(Stuijfzand et al., 2020) shows
that multivariate regression model based on calcium score(Agatston et al., 1990), stenosis
degree and visually assessed anatomical plaque composition is as effective at predicting
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MACE as the FFRcr, while both have superior predictive power compared to the sole
stenosis degree. Advantageously, anatomical features are reliably interpretable by clinicians,
therefore plaque localization and characterization is necessary in order to achieve automatic
clinical diagnosis.

1.1. Related methods

RCNN (Zreik et al., 2019) method processes the MPR coronary volumes (Kanitsar et al.,
2006) as a sequence of 3D cubes interleaved by a fixed step for coronary plaque charac-
terization and stenosis detection. Each cube is individually processed by a 3D-CNN for
local feature extaction to be aggregated into a sequence and processed together by a GRU
sequence classifier. In (Denzinger et al., 2019) the authors propose to replace the local
feature extractor by Radiomics features (Lambin et al., 2012) computed from the vessel
wall segmentation, these features are then processed together by the same GRU sequence
classifier. Subsequently in (Denzinger et al., 2020) the authors proposed to use as input
two perpendicular views of the MPR volume to a 2D CNN classifier based on VGG-16
features extractor (Cimpoi et al., 2015). The method achieved similar results to the 3D
RCNN in predicting revascularization and obstruction for a given input lesion, but with a
cost-effective pipeline. The TR (Ma et al., 2021) method has been recently proposed as the
state of the art for obstructive stenosis (> 50% occlusion) detection against both (Lambin
et al., 2012) and (Zreik et al., 2019). All presented method makes use of the extracted
centerline and the MPR reconstruction as a preprocessing step.

2. Method

In our proposed CNN-+ATT method, 3D patches 28 x 28 x 28 with isotropic resolution
of 0.35 mm are sampled from the CCTA volume along a previously extracted centerline
without MPR straightned reconstruction. Each cube is individually processed by a 3D-CNN
for local feature extaction. The 3D-CNN is composed of 4 convolutional blocks interleaved
with max pooling to achieve spatial reduction: 283 — 143 — 73 = 33. Each convolutional
block has 2 convolutional layers with residual connections and non-linear activation and
batch normalization. The last convolutional layers is pooled by a global average pooling
layer to obtain a fixed size feature vector (256 channels). The Self-Attention aggregation
block has 2 multi-head self attention blocks with residual connections in sequence followed
by a fully connected layer for classification. The number of layers is tuned experimentally
on the evaluation set to be as small as possible without loss of performance.

Positional context information is input to the model by computing positional embeddings
from the tree-graph structure of the centerline (Fig. 1). Given the graph G = (V, E),V =
U1,...,0n, B € V xV a k-order neighborhood of a node v; is N; = v; € V|d(v;,v;) < k.
Using the self-attention technique from (Vaswani et al., 2017), the layer operating on such
neighbourhood is defined as follows:

v = v; + pos;
Qi = o(Wou;™)
Kf = a(WgN/ ™)
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Where Wi, Wg, Wy, are trainable parameters and o is a non linear activation function,
where we overload the row vector multiplication to operate on sets as the result of v/2! is the
same independently of the ordering of ;. Positions pos; are computed locally by exploiting
the directed tree structure using a simple signed hop count from the center node (41 if
distal,-1 if proximal), this scalar function is then mapped to vectors of dimension dj, by using
sin functions at different frequencies (Vaswani et al., 2017) to obtain positional embeddings.
In order to avoid information for the center node getting diluted in the aggregation step only
the center node value vector V; is used compute the output while the whole neighbourhood
query @ and key K vector are used to compute the self-attention matrix. There are many
options for positional embeddings in graphs: a simple hop count suffices for this application
as it holds the desirable property of a constant representation for all sorts of configurations
unlike eigen-vector decomposition (Dwivedi and Bresson, 2020) and it is order invariant
unlike learnable embeddings.
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Figure 1: 3D patches are extracted from the CCTA volume by sampling points from the
centerline, for each patch a 3D-CNN computes a local features vector, the graph
distance is used. The centerline is extracted as a preprocessing step.

3. Experiments
3.1. Data

The dataset used in this work includes 205 coronary CT angiography (CCTA) scans, col-
lected from clinical sites in France and Italy. Images were acquired with tube voltage
ranging from 100 kVp to 120 kVp, a current from 600 mA to 1000 mA, a pixel spacing from
0.35mm to 0.48mm and 0.625mm slice thickness. Each patient underwent both CCTA and
anatomical tests (Agatston et al., 1990) and was assigned a CAD-RADS (Hecht et al., 2017)
score by trained radiologists. Each scan is paired with annotated coronary centerlines: for
each lesion a starting and ending point is marked so that each point of the centerline is
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associated to a label: 0 for healthy, 1 for calcified, 2 for mixed, and 3 for non-calcified. All
annotations are based on clinical reports issued during medical review. Manual annotations
were carried out to match the clinical report and the final annotations were submitted to a
trained cardiologist for review. A subset of 69 patients using CAD-RADS as stratification
criteria to match the global dataset plaque distribution (Fig. 2). The collection was carried
out to obtain a CAD-RADS uniform distribution: 32, 50, 46, 41 and 36 patients from 0
to 4. The datasets contains a higher-than-normal concentration of plaques as CAD-RADS
distribution usually follows an exponentially-decaying function (Fig. 2). For example in
(Zreik et al., 2019) 28 non-calcified annotated plaques where found in while for this study
104 non-calcified plaques where annotated.

PLAQUE ORDER, STENOSIS HUE (X ANNOTATION)

100 4 mmm Stenosis 0

mmm - Stenosis 1-24
mmm Stenosis 25-49
mmm Stenosis 50-69
= Stenosis 70-99
= Stenosis N/A

80 o

count

T
Plaque Calcified Plaque Mixed Plaque Soft Composition N/A
composition

Figure 2: The 69 patients test-set annotation distribution is obtained by CAD-RADS as
stratification criteria.

3.2. Training

Because of the high class imbalance, each data point is weighted so that at each iteration
t batches are uniformly distributed among healthy and (any) plaque and at ¢ + 1 among
and healthy and non-calcifed plaque. The loss is a combination of binary cross-entropy for
the healthy against (any) plaque class and multiclass cross-entropy for healthy, calcified,
mixed and non-calcified. Each term is weighted by a 0.5 scalar factor. For TR and RCNN,
patches are arranged in a sequence while for our CNN+ATT the patches are arranged into
a neighbourhoods of order k. To allow all networks the same batching, sequence size is kept
fixed while for our CNN+ATT the neighbours number is clipped to 2k.

3.3. Testing

90 patients are used for training, 46 patients for hyper-parameter tuning and 69 for testing.
The proposed method is tested against 2 models RCNN (Zreik et al., 2019) and TR (Ma
et al., 2021). RCNN is currently the state of the art for detection and characterization of
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coronary plaques while TR has been tested against RCNN for occlusive stenosis detection
(>50% stenosis). All models take as input 3d patches of size 28x28x28 with a isotropic voxel
size of 0.35 x 0.35 x 0.35 mm3. For TR and RCNN patches where sampled from the MPR
volume while for our CNN+ATT patches where sampled from the original CCTA volume.
Each model is evaluated on a test set comprising segments of fixed length 50.4 mm. Each
segment is labeled with the highest-interest occurring label in the following order: 0 for
healthy, 1 for calcified, 2 for mixed, 3 for non-calcified. For prediction, the most confident
inferred class overlapping the portion of highest-interest occurring label is assigned to the
segment. The test set has a non uniform distribution of healthy, calcified, mixed and non-
calcified plaques (Fig. 2). To capture the performance with respect to multiple classes,
sensitivity and specificity are evaluated in different label combinations: calcified against
healthy, mixed against healthy, non-calcified against healthy, all against healthy where all
means the union of calcified, mixed and non-calcified ( Fig. 3, Tab. 3.3 ).

For the RCNN the overlapping has not been used as the GRU unit last output is used
for the prediction of each segment already. The length of the segment is not arbitrary, it was
chosen to accommodate the TR architecture that uses sequences of 30 cubic patches of side
28 voxels interleaved by a 4 voxel step ((30—1)+44-28)voxel+0.352% = 144voxelx0.35 0 =
50.4mm. CNN-+ATT uses a smaller neighbourhood thus the inference is repeated for each
location of the segment with the same interleaving step.

By applying the same highest-interest label overlapping strategy as assignment criteria
the evaluation is also carried out at the coronary level. As most coronaries have plaques only
correct label assigned is considered and performance measured by C-Index or concordance
score and confusion matrix (Tab. 3.3).

ALL ROC CALC ROC MIX ROC NON-CALC ROC
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Figure 3: Segment level ROC curves

3.4. Centerline robustness

One of the major concerns about this method is the robustness to the centerline extraction
quality. In order to test how results are affected by centerline quality, our method under-
went evaluation using increasingly noisy centerline coordinates, to ensure that the content
perceived by the model remains unchanged under random shifts the consistency of inter-
mediate representation local feature extractoed by the 3D-CNN is measured using cosine
alignment metrics. Each coordinate point p around the centerline is perturbed by a uniform
noise u ~ U(—s, s)3. Embeddings e, consistency is measured using the cosine similarity as
noise increases cossim(ep, ep4y,)( Fig.5). The results suggest that the method is consistent
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Segment level All Calc

sens. spec. prec. fl sens. spec. prec. fl
RCNN(Zreik et al., 2019) | 0.83 0.72 0.69 0.75 | 0.82 094 091 0.86
TR(Ma et al., 2021) 0.86 0.52 0.59 0.70 | 0.93 0.97 0.96 0.94
CNN+ATT 0.88 0.83 0.79 0.83]0.94 082 0.79 0.86

Mix No-Calc

sens. spec. prec. fl sens. spec. prec. fl
RCNN(Zreik et al., 2019) | 0.88 0.96 091 0.86 | 0.67 0.65 0.57 0.61
TR(Ma et al., 2021) 091 094 0.92 0.91 | 056 058 0.48 0.52
CNN+ATT 0.94 083 0.79 0.85 | 0.87 0.70 0.66 0.75

Table 1: Segment level plaque localization.

Coronary Level PREDICTED
RCNN(Zreik et al., 2019) | Healthy Calc Mix No-Calc
Healthy 59 ) 3 6

Calc 8 4 12 10

Mix 20 6 29 12
No-Calc 15 3 11 14
C-Index 0.700

TR(Ma et al., 2021) Healthy Calc Mix No-Calc
Healthy 60 2 1 10

Calc 3 10 14 7

Mix 21 13 23 10
No-Calc 20 10 13 10
C-Index 0.697

CNN+ATT Healthy Calc Mix No-Calc
Healthy 52 2 9 10

Calc 3 11 10 10

Mix 6 5 50 6
No-Calc 12 3 10 18
C-Index 0.720

Table 2: Coronary level plaque characterization.

up to a threshold of 2.25 mm shift from the original ideal centerline, this result is reasonable
considering that the average coronary radius is about 2.5 mm.

4. Discussion

We presented an evaluation of a novel architecture that exploits the tree-graph structure
of inputs data. The proposed method outmatches the state of the art for characterization
of coronary plaques and non-calcified plaque detection. Non-calcified plaque remains the
hardest to detect as its attenuation can be indistinguishable from its surrounding tissue,
for example myocardial lipid tissue or in distal low-contrasted coronary portions (Fig. 4).



PLAQUE ATTENTION

= prediction
= NA

aalcified
= mixed

= soft

Figure 4: A descriptive example show strengths and weaknesses of the approach, in the
proximal portion of the coronary plaque are correctly localized while distal low-
contrasted coronary portion presents sparse false detections. Distal coronary
portions with luminal diameter of < 1.5mm may be considered non-clinical and
are often excluded from automatic analysis (Zreik et al., 2019)
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Figure 5: On the x-axis the centerline perturbation term s in voxels. The y-axis shared by
sensitivity, specificity and a local features e alignement metric, which together
represent the consistency of intermediate and output representation of the inputs
as the centerline is distrubed around its original location.
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The golden standard for medical application is visual inspection carried out by trained
cardiologists, however as more data becomes available automatic coronary plaque detection
will eventually become more mature. Consensus among experts in the medical community
remains an issue as a high inter observer variance affects the quality of data annotations.
The uncertainty is correlated with the spatial resolution of CT scanners. High resolution
scans may be used to mitigate the issue.

5. Compliance with Ethical Standard

5.1. Human rights

The authors declare that the work described has been carried out in accordance with the
Declaration of Helsinki of the World Medical Association revised in 2013 for experiments
involving humans.

5.2. Informed consent and patient details

The authors declare that neither this report nor the collected data contain any personal
information that could lead to the identification of the patient, data has been collected upon
agreement with the clinical sites and patients.
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