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Cardiac computed tomography angiography (CCTA) provides a non invasive imaging solution that reliably depicts the anatomical features of coronary artery diseases (CAD). Despite many successes with deep learning applications to medical imaging, recently developed methods for the automated detection of coronary plaque only suggests its feasibility as results are not yet mature enough for application deployment. The task is mainly to localize plaques and to characterize their composition depending on their appearance. Plaque composition can be divided into three classes: calcified, mixed and non-calcified. This study proposes a novel architecture for plaque detection and characterization. Its performances are tested against 2 state-of-the-art methods for coronary analysis. All trained models are evaluated and tested in the same setting using a proprietary dataset of 205 manually annotated CCTA cases. Our proposed method addresses two issues: unlike related methods it seamlessly models bifurcations and secondly it does not rely on multi-planar reformatted (MPR) visualization techniques which are by construction sensitive to centerline detection.

Introduction

Coronary artery plaques present features of varying nature with corresponding functional values. In recent studies [START_REF] Williams | Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study[END_REF] non-calcified plaques were identified as a coronary obstruction independent factor associated with major adverse coronary events (MACE). Non-calcified plaques appear in patients with no flow-limiting diseases and are visually appreciable in CCTA by clinicians. The gold-standard reference method for non invasive functional analysis in CCTA is the Fractional Flow Reserve estimated via CT (Lee et al., 2016) [START_REF] Pontone | Rationale and design of the PERFECTION (comparison between stress cardiac computed tomography PERfusion versus Fractional flow rEserve measured by Computed Tomography angiography In the evaluation of suspected cOroNary artery disease) prospective study[END_REF] (FFR CT ). Recent studies [START_REF] Wijnand | Stress Myocardial Perfusion Imaging vs Coronary Computed Tomographic Angiography for Diagnosis of Invasive Vessel-Specific Coronary Physiology: Predictive Modeling Results From the Computed Tomographic Evaluation of Atherosclerotic Determinants of Myocardial Ischemia (CREDENCE) Trial[END_REF] shows that multivariate regression model based on calcium score [START_REF] Agatston | Quantification of coronary artery calcium using ultrafast computed tomography[END_REF], stenosis degree and visually assessed anatomical plaque composition is as effective at predicting MACE as the FFR CT , while both have superior predictive power compared to the sole stenosis degree. Advantageously, anatomical features are reliably interpretable by clinicians, therefore plaque localization and characterization is necessary in order to achieve automatic clinical diagnosis.

1.1. Related methods RCNN [START_REF] Zreik | A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography[END_REF] method processes the MPR coronary volumes [START_REF] Kanitsar | Diagnostic Relevant Visualization of Vascular Structures[END_REF] as a sequence of 3D cubes interleaved by a fixed step for coronary plaque characterization and stenosis detection. Each cube is individually processed by a 3D-CNN for local feature extaction to be aggregated into a sequence and processed together by a GRU sequence classifier. In [START_REF] Denzinger | Coronary Artery Plaque Characterization from CCTA Scans Using Deep Learning and Radiomics[END_REF] the authors propose to replace the local feature extractor by Radiomics features [START_REF] Lambin | Radiomics: Extracting more information from medical images using advanced feature analysis[END_REF] computed from the vessel wall segmentation, these features are then processed together by the same GRU sequence classifier. Subsequently in [START_REF] Denzinger | Deep Learning Algorithms for Coronary Artery Plaque Characterisation from CCTA Scans[END_REF] the authors proposed to use as input two perpendicular views of the MPR volume to a 2D CNN classifier based on VGG-16 features extractor [START_REF] Cimpoi | Deep filter banks for texture recognition and segmentation[END_REF]. The method achieved similar results to the 3D RCNN in predicting revascularization and obstruction for a given input lesion, but with a cost-effective pipeline. The TR [START_REF] Ma | Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries[END_REF] method has been recently proposed as the state of the art for obstructive stenosis (> 50% occlusion) detection against both [START_REF] Lambin | Radiomics: Extracting more information from medical images using advanced feature analysis[END_REF] and [START_REF] Zreik | A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography[END_REF]. All presented method makes use of the extracted centerline and the MPR reconstruction as a preprocessing step.

Method

In our proposed CNN+ATT method, 3D patches 28 × 28 × 28 with isotropic resolution of 0.35 mm are sampled from the CCTA volume along a previously extracted centerline without MPR straightned reconstruction. Each cube is individually processed by a 3D-CNN for local feature extaction. The 3D-CNN is composed of 4 convolutional blocks interleaved with max pooling to achieve spatial reduction: 28 3 → 14 3 → 7 3 → 3 3 . Each convolutional block has 2 convolutional layers with residual connections and non-linear activation and batch normalization. The last convolutional layers is pooled by a global average pooling layer to obtain a fixed size feature vector (256 channels). The Self-Attention aggregation block has 2 multi-head self attention blocks with residual connections in sequence followed by a fully connected layer for classification. The number of layers is tuned experimentally on the evaluation set to be as small as possible without loss of performance.

Positional context information is input to the model by computing positional embeddings from the tree-graph structure of the centerline (Fig. 1). Given the graph

G = (V, E), V = v 1 , . . . , v n , E ∈ V × V a k -order neighborhood of a node v i is N i = v j ∈ V |d(v i , v j ) ≤ k.
Using the self-attention technique from [START_REF] Vaswani | Attention is all you need[END_REF], the layer operating on such neighbourhood is defined as follows:

v 0 i = v i + pos i Q l i = σ(W Q v l-1 i ) K l i = σ(W K N l-1 i ) V l i = σ(W V N l-1 i ) v l+1 i = Softmax(Q l i K l i ⊤ / d k )V l i (1)
Where W K , W Q , W V are trainable parameters and σ is a non linear activation function, where we overload the row vector multiplication to operate on sets as the result of v l≥1 is the same independently of the ordering of N i . Positions pos i are computed locally by exploiting the directed tree structure using a simple signed hop count from the center node (+1 if distal,-1 if proximal), this scalar function is then mapped to vectors of dimension d k by using sin functions at different frequencies [START_REF] Vaswani | Attention is all you need[END_REF] to obtain positional embeddings. In order to avoid information for the center node getting diluted in the aggregation step only the center node value vector V i is used compute the output while the whole neighbourhood query Q and key K vector are used to compute the self-attention matrix. There are many options for positional embeddings in graphs: a simple hop count suffices for this application as it holds the desirable property of a constant representation for all sorts of configurations unlike eigen-vector decomposition (Dwivedi and Bresson, 2020) and it is order invariant unlike learnable embeddings.

Figure 1: 3D patches are extracted from the CCTA volume by sampling points from the centerline, for each patch a 3D-CNN computes a local features vector, the graph distance is used. The centerline is extracted as a preprocessing step.

Experiments

Data

The dataset used in this work includes 205 coronary CT angiography (CCTA) scans, collected from clinical sites in France and Italy. Images were acquired with tube voltage ranging from 100 kVp to 120 kVp, a current from 600 mA to 1000 mA, a pixel spacing from 0.35mm to 0.48mm and 0.625mm slice thickness. Each patient underwent both CCTA and anatomical tests [START_REF] Agatston | Quantification of coronary artery calcium using ultrafast computed tomography[END_REF] and was assigned a CAD-RADS [START_REF] Hecht | SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: A report of the Society of Cardiovascular Computed Tomography and Society of Thoracic Radiology[END_REF] score by trained radiologists. Each scan is paired with annotated coronary centerlines: for each lesion a starting and ending point is marked so that each point of the centerline is associated to a label: 0 for healthy, 1 for calcified, 2 for mixed, and 3 for non-calcified. All annotations are based on clinical reports issued during medical review. Manual annotations were carried out to match the clinical report and the final annotations were submitted to a trained cardiologist for review. A subset of 69 patients using CAD-RADS as stratification criteria to match the global dataset plaque distribution (Fig. 2). The collection was carried out to obtain a CAD-RADS uniform distribution: 32, 50, 46, 41 and 36 patients from 0 to 4. The datasets contains a higher-than-normal concentration of plaques as CAD-RADS distribution usually follows an exponentially-decaying function (Fig. 2). For example in [START_REF] Zreik | A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography[END_REF] 28 non-calcified annotated plaques where found in while for this study 104 non-calcified plaques where annotated.

Figure 2: The 69 patients test-set annotation distribution is obtained by CAD-RADS as stratification criteria.

Training

Because of the high class imbalance, each data point is weighted so that at each iteration t batches are uniformly distributed among healthy and (any) plaque and at t + 1 among and healthy and non-calcifed plaque. The loss is a combination of binary cross-entropy for the healthy against (any) plaque class and multiclass cross-entropy for healthy, calcified, mixed and non-calcified. Each term is weighted by a 0.5 scalar factor. For TR and RCNN, patches are arranged in a sequence while for our CNN+ATT the patches are arranged into a neighbourhoods of order k. To allow all networks the same batching, sequence size is kept fixed while for our CNN+ATT the neighbours number is clipped to 2k.

Testing

90 patients are used for training, 46 patients for hyper-parameter tuning and 69 for testing. The proposed method is tested against 2 models RCNN [START_REF] Zreik | A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography[END_REF] and TR [START_REF] Ma | Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries[END_REF]. RCNN is currently the state of the art for detection and characterization of coronary plaques while TR has been tested against RCNN for occlusive stenosis detection (>50% stenosis). All models take as input 3d patches of size 28x28x28 with a isotropic voxel size of 0.35 x 0.35 x 0.35 mm 3 . For TR and RCNN patches where sampled from the MPR volume while for our CNN+ATT patches where sampled from the original CCTA volume.

Each model is evaluated on a test set comprising segments of fixed length 50.4 mm. Each segment is labeled with the highest-interest occurring label in the following order: 0 for healthy, 1 for calcified, 2 for mixed, 3 for non-calcified. For prediction, the most confident inferred class overlapping the portion of highest-interest occurring label is assigned to the segment. The test set has a non uniform distribution of healthy, calcified, mixed and noncalcified plaques (Fig. 2). To capture the performance with respect to multiple classes, sensitivity and specificity are evaluated in different label combinations: calcified against healthy, mixed against healthy, non-calcified against healthy, all against healthy where all means the union of calcified, mixed and non-calcified ( Fig. 3, Tab. 3.3 ).

For the RCNN the overlapping has not been used as the GRU unit last output is used for the prediction of each segment already. The length of the segment is not arbitrary, it was chosen to accommodate the TR architecture that uses sequences of 30 cubic patches of side 28 voxels interleaved by a 4 voxel step ((30-1) * 4+28)voxel * 0.35 mm voxel = 144voxel * 0.35 mm voxel = 50.4mm. CNN+ATT uses a smaller neighbourhood thus the inference is repeated for each location of the segment with the same interleaving step.

By applying the same highest-interest label overlapping strategy as assignment criteria the evaluation is also carried out at the coronary level. As most coronaries have plaques only correct label assigned is considered and performance measured by C-Index or concordance score and confusion matrix (Tab. 3.3). 

Centerline robustness

One of the major concerns about this method is the robustness to the centerline extraction quality. In order to test how results are affected by centerline quality, our method underwent evaluation using increasingly noisy centerline coordinates, to ensure that the content perceived by the model remains unchanged under random shifts the consistency of intermediate representation local feature extractoed by the 3D-CNN is measured using cosine alignment metrics. Each coordinate point p around the centerline is perturbed by a uniform noise u ∼ U (-s, s) 3 . Embeddings e p consistency is measured using the cosine similarity as noise increases cossim(e p , e p+u )( Fig. 5). The results suggest that the method is consistent Segment level All Calc sens. spec. prec. f1 sens. spec. prec. f1 RCNN [START_REF] Zreik | A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography[END_REF] up to a threshold of 2.25 mm shift from the original ideal centerline, this result is reasonable considering that the average coronary radius is about 2.5 mm.

Discussion

We presented an evaluation of a novel architecture that exploits the tree-graph structure of inputs data. The proposed method outmatches the state of the art for characterization of coronary plaques and non-calcified plaque detection. Non-calcified plaque remains the hardest to detect as its attenuation can be indistinguishable from its surrounding tissue, for example myocardial lipid tissue or in distal low-contrasted coronary portions (Fig. 4). 
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 3 Figure 3: Segment level ROC curves
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 45 Figure4: A descriptive example show strengths and weaknesses of the approach, in the proximal portion of the coronary plaque are correctly localized while distal lowcontrasted coronary portion presents sparse false detections. Distal coronary portions with luminal diameter of ≤ 1.5mm may be considered non-clinical and are often excluded from automatic analysis[START_REF] Zreik | A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography[END_REF] 

Table 1 :

 1 Segment level plaque localization.

		0.83 0.72 0.69 0.75 0.82 0.94 0.91 0.86
	TR(Ma et al., 2021)	0.86 0.52 0.59 0.70 0.93 0.97 0.96 0.94
	CNN+ATT	0.88 0.83 0.79 0.83 0.94 0.82 0.79 0.86
			Mix			No-Calc
		sens. spec. prec. f1	sens. spec. prec. f1
	RCNN(Zreik et al., 2019) 0.88 0.96 0.91 0.86 0.67 0.65 0.57 0.61
	TR(Ma et al., 2021)	0.91 0.94 0.92 0.91 0.56 0.58 0.48 0.52
	CNN+ATT	0.94 0.83 0.79 0.85 0.87 0.70 0.66 0.75
	Coronary Level			PREDICTED
	RCNN(Zreik et al., 2019) Healthy Calc Mix No-Calc
	Healthy		59	5	3	6
	Calc		8	4	12	10
	Mix		20	6	29	12
	No-Calc		15	3	11	14
	C-Index				0.700
	TR(Ma et al., 2021)	Healthy Calc Mix No-Calc
	Healthy		60	2	1	10
	Calc		3	10	14	7
	Mix		21	13	23	10
	No-Calc		20	10	13	10
	C-Index				0.697
	CNN+ATT		Healthy Calc Mix No-Calc
	Healthy		52	2	9	10
	Calc		3	11	10	10
	Mix		6	5	50	6
	No-Calc		12	3	10	18
	C-Index			0.720

Table 2 :

 2 Coronary level plaque characterization.
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The golden standard for medical application is visual inspection carried out by trained cardiologists, however as more data becomes available automatic coronary plaque detection will eventually become more mature. Consensus among experts in the medical community remains an issue as a high inter observer variance affects the quality of data annotations. The uncertainty is correlated with the spatial resolution of CT scanners. High resolution scans may be used to mitigate the issue.
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