
HAL Id: hal-03500434
https://hal.science/hal-03500434

Submitted on 24 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timing the last major merger of galaxy clusters with
large halo sparsity

T.R.G. Richardson, P.-S. Corasaniti

To cite this version:
T.R.G. Richardson, P.-S. Corasaniti. Timing the last major merger of galaxy clusters with large
halo sparsity. Monthly Notices of the Royal Astronomical Society, 2022, 513 (4), pp.4951-4967.
�10.1093/mnras/stac1241�. �hal-03500434�

https://hal.science/hal-03500434
https://hal.archives-ouvertes.fr


MNRAS 513, 4951–4967 (2022) https://doi.org/10.1093/mnras/stac1241 
Advance Access publication 2022 May 5 

Timing the last major merger of galaxy clusters with large halo sparsity 

T. R. G. Richardson 

1 ‹ and P.-S. Corasaniti 1 , 2 
1 Laboratoire Univers et Th ́eories, Observatoire de Paris, Universit ́e PSL, Universit ́e de Paris, CNRS, F-92190 Meudon, France 
2 Sorbonne Universit ́e, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis bd Arago, F-75014 Paris, France 

Accepted 2022 April 29. Received 2022 April 29; in original form 2021 December 13 

A B S T R A C T 

Numerical simulations have shown that massive dark matter haloes, which today host galaxy clusters, assemble their mass o v er 
time alternating periods of quiescent accretion and phases of rapid growth associated with major merger episodes. Observations 
of such events in clusters can provide insights on the astrophysical processes that characterize the properties of the intra-cluster 
medium, as well as the gravitational processes that contribute to their assembly. It is therefore of prime interest to devise a fast 
and reliable way of detecting such perturbed systems. We present a no v el approach to identifying and timing major mergers 
in clusters characterized by large values of halo sparsity. Using halo catalogues from the MultiDark-Planck2 simulation, we 
show that major merger events disrupt the radial mass distribution of haloes, thus leaving a distinct universal imprint on the 
evolution of halo sparsity o v er a period not exceeding two dynamical times. We exploit this feature using numerically calibrated 

distributions to test whether an observed galaxy cluster with given sparsity measurements has undergone a recent major merger 
and to eventually estimate when such an event occurred. We implement these statistical tools in a specifically developed public 
PYTHON library LAMMAS , which we apply to the analysis of Abell 383 and Abell 2345 as test cases. Finding that, for example, 
Abell 2345 had a major merger about 2.1 ± 0.2 Gyr ago. This work opens the way to detecting and timing major mergers in 

galaxy clusters solely through measurements of their mass at different radii. 

Key words: methods: statistical – galaxies: clusters: general – galaxies: fundamental parameters – galaxies: kinematics and 

dynamics. 
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 I N T RO D U C T I O N  

alaxy clusters are the ultimate result of the hierarchical bottom-up 
rocess of cosmic structure formation. Hosted in massive dark matter 
aloes that formed through subsequent phases of mass accretion and 
ergers, galaxy clusters carry information on the underlying cosmo- 

ogical scenario, as well as the astrophysical processes, which shape 
he properties of the intra-cluster medium (ICM; for a re vie w, see e.g.
oit 2005 ; Allen, Evrard & Mantz 2011 ; Kravtsov & Borgani 2012 ).
Being at the top of the pyramid of cosmic structures, galaxy 

lusters are mostly found in the late-time universe. These can 
e observed using a variety of techniques that probe either the 
istribution of the hot intra-cluster gas through its X-ray emission 
see e.g. Vikhlinin et al. 2005 ; Ebeling et al. 2010 ; Pierre et al.
016 ; CHEX-MATE Collaboration 2021 ), the scattering of the 
osmic microwave background radiation (CMB) due to the Sunyaev–
eldovich effect (see e.g. Staniszewski et al. 2009 ; Menanteau et al.
013 ; Reichardt et al. 2013 ; Planck Collaboration 2014b ; Bleem
t al. 2015 ), through measurement of galaxy o v erdensities or the
ravitational lensing effect caused by the cluster’s gravitational mass 
n background sources (Umetsu et al. 2011 ; Postman et al. 2012 ;
ykoff et al. 2016 ; Maturi et al. 2019 ). 
The mass distribution of galaxy clusters primarily depends on the 

ynamical state of the system. Observations of relaxed clusters have 
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hown that the matter density profile at large radii is consistent with
he universal Navarro-Frenk-White profile (NFW; Navarro, Frenk & 

hite 1997 ), while deviations have been found in the inner regions
Newman et al. 2013 ; Annunziatella et al. 2017 ; Collett et al. 2017 ;
artoris et al. 2020 ). In relaxed systems, the gas falls in the dark
atter -dominated gra vitational potential and thermalizes through 

he propagation of shock waves. This sets the gas in a hydrostatic
quilibrium (HE) that is entirely controlled by gravity. Henceforth, 
side astrophysical processes affecting the baryon distribution in the 
luster core, the thermodynamic properties of the outer ICM are 
xpected to be self-similar (see e.g. Ettori et al. 2019 ; Ghirardini
t al. 2019 , 2021 ). This is not the case of clusters undergoing major
ergers for which the virial equilibrium is strongly altered (see e.g.
iffi et al. 2016 ). Such systems exhibit deviations from self-similarity 

uch that scaling relations between the ICM temperature, the cluster 
ass, and X-ray luminosity differ from that of relaxed clusters (see

.g. Planelles & Quilis 2009 ; Rasia et al. 2011 ; Chen et al. 2019 ). 
A direct consequence of merger events is that the mass estimates

nferred assuming the HE hypothesis or through scaling relations 
ay be biased. This may induce systematic errors on cosmological 

nalyses that rely upon accurate cluster mass measurements. On the 
ther hand, merging clusters can provide a unique opportunity to 
nvestig ate the ph ysics of the ICM (Markevitch & Vikhlinin 2007 ;
uhone & Roediger 2016 ) and test the dark matter paradigm (as in

he case of the Bullet Cluster Clowe, Gonzalez & Markevitch 2004 ;
arkevitch et al. 2004 ). This underlies the importance of identifying
erging events in large cluster surv e y catalogues. 

http://orcid.org/0000-0002-5002-7100
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The identification of unrelaxed clusters relies upon a variety of
roxies specifically defined for each type of observations (for a
e vie w, see e.g. Molnar 2016 ). As an example, the detection of radio
aloes and relics in clusters is usually associated with the presence
f mergers. Similarly, the offset between the position of the brightest
entral galaxy and the peak of the X-ray surface brightness, or the
entroid of the SZ signal are used as proxy of merger events. This is
ecause the merging process differently alters the distribution of the
arious matter constituents of the cluster. 

The growth of dark matter haloes through cosmic time has been
nv estigated e xtensiv ely in a vast literature using results from N -
ody simulations. Zhao et al. ( 2003 ) found that haloes build-up
heir mass through an initial phase of fast accretion followed by
 slow one. Li et al. ( 2007 ) have shown that during the fast-accretion
hase, the mass assembly occurs primarily through major mergers,
hat is mergers in which the mass of the less massive progenitor is
t least one-third of the more massive one. Moreover, they found
hat the greater the mass of the halo the later the time when the

ajor merger occurred. In contrast, slow accretion is a quiescent
hase dominated by minor mergers. Subsequent studies have mostly
ocused on the relation between the halo mass accretion history and
he concentration parameter of the NFW profile (see e.g. Neto et al.
007 ; Zhao et al. 2009 ; Ludlow et al. 2012 , 2016 ; Lee et al. 2017 ;
ey, Pontzen & Saintonge 2019 ). Recently, Wang et al. ( 2020 ) have

hown that major mergers have a universal impact on the evolution of
he median concentration. In particular, after a large initial response,
n which the concentration undergoes a large excursion, the halo
eco v ers a more quiescent dynamical state within a few dynamical
imes. Surprisingly, the authors have also found that even minor
ergers can have a non-negligible impact on the mass distribution

f haloes, contributing to the scatter of the concentration parameter. 
The use of concentration as a proxy of galaxy mergers is neverthe-

ess challenging for multiple reasons. First, the concentration exhibits
 large scatter across the merger phase and the value inferred from
he analysis of galaxy cluster observations may be sensitive to the
uality of the NFW -fit. Secondly , astrophysical processes may alter
he mass distribution in the inner region of the halo, thus resulting
n values of the concentration that differ from those estimated from
 -body simulations (see e.g. Mead et al. 2010 ; King & Mead 2011 ),
hich could especially be the case for merging clusters. 
Alternatively, a non-parametric approach to characterize the mass

istribution in haloes has been proposed by Balm ̀es et al. ( 2014 ) in
erms of simple mass ratios, dubbed halo sparsity : 

 � 1 ,� 2 = 

M � 1 

M � 2 

, (1) 

here M � 1 and M � 2 are the masses within spheres enclosing,
espectiv ely, the o v erdensity � 1 and � 2 (with � 1 < � 2 ) in units
f the critical density (or equi v alently the background density). This
tatistics presents a number of interesting properties that o v ercome
any of the limitations concerning the concentration parameter.
irst of all, the sparsity can be estimated directly from cluster
ass estimates without having to rely on the assumption of a

pecific parametric profile, such as the NFW profile. Secondly,
or an y giv en choice of � 1 and � 2 , the sparsity is found to be
eakly dependent on the o v erall halo mass with a much reduced

catter than the concentration (Balm ̀es et al. 2014 ; Corasaniti et al.
018 ; Corasaniti & Rasera 2019 ). Thirdly, these mass ratios retain
osmological information encoded in the mass profile, thus providing
n independent cosmological proxy . Finally , the halo ensemble
verage sparsity can be predicted from prior knowledge of the
alo mass functions at the o v erdensities of interests, which allows
NRAS 513, 4951–4967 (2022) 
o infer cosmological parameter constraints from cluster sparsity
easurements (see e.g. Corasaniti et al. 2018 ; Corasaniti, Sereno &
ttori 2021 ). 
As haloes grow from inside out such that newly accreted mass is

edistributed in concentric shells within a few dynamical times (see
.g. Wang et al. 2011 ; Taylor 2011 , for a re vie w), it is natural to expect
hat major mergers can significantly disrupt the onion structure of
aloes and result in values of the sparsity that significantly differ
rom those of the population of haloes that have had sufficient time
o rearrange their mass distribution and reach the virial equilibrium. 

Here, we perform a thorough analysis of the relation between halo
parsity and the halo mass accretion history using numerical halo
atalogues from large volume high-resolution N -body simulations.
e show that haloes that undergo a major merger in their recent

istory form a distinct population of haloes characterized by large
parsity values. Quite importantly, we are able to fully characterize
he statistical distributions of such populations in terms of the halo
parsity and the time of their last major merger. Thus, building upon
hese results, we have developed a statistical tool that uses cluster
parsity measurements to test whether a galaxy cluster has undergone
 recent major merger and if so, when such event took place. 

The paper is organized as follows. In Section 2 , we describe the
umerical halo catalogues used in the analysis, while in Section 3 ,
e present the results of the study of the relation between halo

parsity and major mergers. In Section 4 , we present the statistical
ests devised to identify the imprint of mergers in galaxy clusters
nd discuss the statistical estimation of the major merger epoch from
parsity measurements. In Section 5 , we discuss the implications of
hese results regarding cosmological parameter estimation studies
sing halo sparsity. In Section 6 , we validate our approach using
imilar data, assess its robustness to observational biasses, and
escribe the application of our methodology to the analysis of known
alaxy clusters. Finally, in Section 7 , we discuss the conclusions. 

 N U M E R I C A L  SI MULATI ON  DATA  SET  

.1 N -body halo catalogues 

e use N -body halo catalogues from the MultiDark-Planck2
MDPL2) simulation (Klypin et al. 2016 ), which consists of 3840 3 

articles in (1 h 

−1 Gpc ) 3 comoving volume (corresponding to a
article mass resolution of m p = 1 . 51 · 10 9 h 

−1 M �) of a flat � CDM
osmology run with the GADGET-2 1 code (Springel 2005 ). The
osmological parameters have been set to the values of the Planck
osmological analysis of the CMB anisotropy power spectra (Planck
ollaboration 2014a ): �m = 0.3071, �b = 0.0482, h = 0.6776,
 s = 0.96, and σ 8 = 0.8228. Halo catalogues and merger trees at
ach redshift snapshot were generated using the friend-of-friend halo
nder code ROCKSTAR 

2 (Behroozi, Wechsler & Wu 2013a ; Behroozi
t al. 2013b ). We consider the default set up with the detected haloes,
onsisting of gravitationally bound particles only. We specifically
ocus on haloes in the mass range of galaxy groups and clusters
orresponding to M 200 c > 10 13 h 

−1 M �. 
For each halo in the MDPL2 catalogues, we build a data set

ontaining the following set of variables: the halo masses M 200c ,
 500c , and M 2500c estimated from the number of N -body particles
ithin spheres enclosing o v erdensities � = 200, 500, and 2500 (in
nits of the critical density), respectively; the scale radius, r s , of the

https://wwwmpa.mpa-garching.mpg.de/gadget/
https://code.google.com/archive/p/rockstar/
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Table 1. Characteristics of the selected halo samples at z = 0, 0.2, 0.4, and 
0.6 (columns from left to right). Quoted in the rows are the number of haloes 
in the samples and the redshift of the last major merger z LMM 

used to select 
the haloes for each sample. 

Merging halo sample ( T > −1/2) 
z = 0.0 z = 0.2 z = 0.4 z = 0.6 

#-haloes 23164 28506 31903 32769 
z LMM 

< 0.113 < 0.326 < 0.540 < 0.754 

Quiescent halo sample ( T < −4) 
z = 0.0 z = 0.2 z = 0.4 z = 0.6 

#-haloes 199853 169490 140464 113829 
z LMM 

> 1.15 > 1.50 > 1.86 > 2.22 
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est-fitting NFW profile; the virial radius, r vir ; the ratio of the kinetic
o the potential energy, K / U ; the offset of the density peak from the
verage particle position, x off ; and the scale factor (redshift) of the last
ajor merger, a LMM 

( z LMM 

). From these variables, we additionally 
ompute the following set of quantities: the halo sparsities s 200, 500 , 
 200, 2500 , and s 500, 2500 ; the offset in units of the virial radius, � r =
 off / r vir , and the concentration parameter of the best-fitting NFW
rofile, c 200c = r 200c / r s , with r 200c being the radius enclosing an
 v erdensity � = 200 (in units of the critical density). In our analysis,
e also use the mass accretion history of MDPL2 haloes. 
In addition to the MDPL2 catalogues, we also use data from

he Uchuu simulations (Ishiyama et al. 2021 ), which co v er a
arger cosmic volume with higher mass resolution. We use these 
atalogues to calibrate the sparsity statistics that provide the base 
or practical applications of halo sparsity measurements as cosmic 
hronometers of galaxy cluster mergers. The Uchuu simulation suite 
onsists of N -body simulations of a flat � CDM model realized
ith GREEM code (Ishiyama, Fukushige & Makino 2009 ; Ishiyama, 
itadori & Makino 2012 ) with cosmological parameters set to 

he values of a later Planck -CMB cosmological analysis (Planck 
ollaboration 2016 ): �m = 0.3089, �b = 0.0486, h = 0.6774, 
 s = 0.9667, and σ 8 = 0.8159. In particular, we use the halo
atalogues from the (2 Gpc h 

−1 ) 3 comoving volume simulation with 
2 800 3 particles (corresponding to a particle mass resolution of 
 p = 3 . 27 · 10 8 h 

−1 M �) that, as for MDPL2, were also generated
sing the ROCKSTAR halo finder. 
It is important to stress that the major merger epoch to which we

efer in this work is defined by the ROCKSTAR halo finder, which is the
ime when the particles of the merging halo and those of the parent
ne are within the same iso-density contour in phase-space. Hence, 
his should not be confused with the first core-passage time usually 
stimated in Bullet-like clusters. 

.2 Halo sample selection 

e aim to study the impact of merger events on the halo mass
rofile. To this purpose, we focus on haloes that undergo their last
ajor merger at different epochs. In such a case, it is convenient

o introduce a time variable that characterizes the backward time 
nterval between the redshift z (scale factor a ) at which a halo is
nvestigated and that of its last major merger z LMM 

( a LMM 

) in units
f the dynamical time (Jiang & van den Bosch 2016 ; Wang et al.
020 ), 

 ( z | z LMM 

) = 

√ 

2 

π

∫ z 

z LMM 

√ 

� vir ( z ) 

z + 1 
d z , (2) 

here � vir ( z) is the virial o v erdensity, which we estimate using the
pherical collapse model approximated formula � vir ( z) = 18 π2 + 

2[ �m ( z) − 1] − 39[ �m ( z) − 1] 2 (Bryan & Norman 1998 ). Hence,
ne has T = 0 for haloes, which undergo a major merger at the time
hey are investigated (i.e. z LMM 

= z), and T < 0 for haloes that had
heir last major merger at earlier times (i.e. z LMM 

> z). Notice that the
efinition used here differs by a minus sign from that of Wang et al.
 2020 ), where the authors have found that merging haloes reco v er a
uiescent state within | T | ∼ 2 dynamical times. 
In Section 3.1 , we investigate the differences between the halo 
ass profiles of merging haloes and quiescent haloes, to maximise 

heses differences we select haloes samples as following: 

(i) Merging haloes : a sample of haloes that are at less than one-
alf the dynamical time since their last major merger ( T > −1/2), and
herefore still in the process of rearranging their mass distribution; 
(ii) Quiescent haloes : a sample of haloes for which their last major
erger occurred far in the past ( T ≤ −4), thus they had sufficient

ime to rearrange their mass distribution to an equilibrium state; 

In the case of the z = 0 catalogue, the sample of merging haloes
ith T > −1/2 consists of all haloes for which their last major
erger, as tagged by the ROCKSTAR algorithm, occurred at a LMM 

 0.897 ( z LMM 

< 0.115), while the samples of quiescent haloes
ith T ≤ −4 in the same catalogue are characterized by a last
ajor merger at a LMM 

< 0.464 ( z LMM 

> 1.155). In order to study
he redshift dependence, we perform a similar selection for the 
atalogues at z = 0.2, 0.4, and 0.6, respectively. In Table 1 , we quote
he characteristics of the different samples selected in the various 
atalogues. 

 H A L O  SPARSITY  &  M A J O R  M E R G E R S  

.1 Halo sparsity profile 

ere, we seek to investigate the halo mass profile of haloes un-
ergoing a major merger as traced by halo sparsity and e v aluate
o which extent the NFW profile can account for the estimated
parsities at different o v erdensities. To this purpose, we compute
or each halo in selected samples the halo sparsities s 200, 500 and
 200, 2500 from their Spherical OverDensity estimated masses, as well 
s the values obtained assuming the NFW profile using the best-
tting concentration parameter c 200c , which we denote as s NFW 

200 , 500 
nd s NFW 

200 , 2500 , respectively. These can be inferred from the sparsity–
oncentration relation (Balm ̀es et al. 2014 ): 

 

3 
� 

� 

200 
= 

ln (1 + c 200 c x � 

) − c 200 c x � 
1 + c 200 c x � 

ln (1 + c 200 c ) − c 200 c 
1 + c 200 c 

, (3) 

here x � 

= r � 

/ r 200c with r � 

being the radius enclosing � times the
ritical density. Hence, for any value of � and given the value of
 200c for which the NFW-profile best fits that of the halo of interest,
e can solve equation ( 3 ) numerically to obtain x � 

and then derive
he value of the NFW halo sparsity given by: 

 

NFW 

200 ,� 

= 

200 

� 

x −3 
� 

. (4) 

t is worth emphasizing that such relation holds true only for
aloes whose density profile is well described by the NFW for-
ula. In such a case, the higher the concentration the smaller

he value of sparsity, and inversely the lower the concentration 
he higher the sparsity. Because of this, the mass ratio defined by
quation ( 1 ) provides information on the level of sparseness of the
ass distribution within haloes, which justifies being dubbed as halo 

parsity. Note that from equation ( 3 ) we can compute s 200, � 

for
MNRAS 513, 4951–4967 (2022) 
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Figure 1. Distribution of the relative deviations of individual halo sparsities with respect to the expected NFW value for δ200 , 500 = 1 − s NFW 

200 , 500 /s 200 , 500 (dashed 

lines) and δ200 , 2500 = 1 − s NFW 

200 , 2500 /s 200 , 2500 (solid lines) in the case of the merging (blue lines) and quiescent (orange lines) haloes at z = 0.0 (top-left panel), 
0.2 (top-right panel), 0.4 (bottom-left panel), and 0.6 (bottom-right panel), respectively. 
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ny � > 200, and this is sufficient to estimate the sparsity at any
ther pair of o v erdensities � 1 �= � 2 > 200 as given by s � 1 ,� 2 =
 200 ,� 1 /s 200 ,� 2 . Haloes whose mass profile deviates from the NFW
rediction will have sparsity values that differ from that given by
quation ( 3 ). 

This is emphasized in Fig. 1 , where we plot the distribution of the
elati ve de viations of indi vidual halo sparsities with respect to the
xpected NFW value for δ200 , 500 = 1 − s NFW 

200 , 500 /s 200 , 500 (dashed lines)
nd δ200 , 2500 = 1 − s NFW 

200 , 2500 /s 200 , 2500 (solid lines) in the case of the
erging (blue lines) and quiescent (orange lines) haloes at z = 0.0,

.2, 0.4, and 0.6, respectively. We can see that for quiescent haloes
he distributions are nearly Gaussian. More specifically, in the case
200, 500 , we can see that the distribution has a narrow scatter with a
eak that is centred at the origin at z = 0.6, and slightly shifts toward
ositi ve v alues at smaller redshifts with a maximal displacement at
 = 0. This corresponds to an average bias of the NFW-estimated
parsity s NFW 

200 , 500 of order ∼ 4 per cent at z = 0. A similar trend
ccurs for the distribution of δ200, 2500 , though with a larger scatter
nd a larger shift in the location of the peak of the distribution at
NRAS 513, 4951–4967 (2022) 
 = 0, which corresponds to an average bias of s NFW 

200 , 2500 of order
14 per cent at z = 0. Such systematic differences are indicative of

he limits of the NFW-profile in reproducing the halo mass profile
f haloes both in the outskirt regions and the inner ones. Moreo v er,
he redshift trend is consistent with the results of the analysis of
he mass profile of stacked haloes presented in (Child et al. 2018 ),
hich shows that the NFW-profile better reproduce the halo mass
istribution at z = 3 than at z = 0 (see top panels of their fig. 8). Very
ifferent is the case of the merging halo sample, for which we find the
istribution of δ200, 500 and δ200, 2500 to be highly non-Gaussian and
rregular. In particular, in the case of δ200, 500 , we find the distribution
o be characterized by a main peak located near the origin with a very
eavy tail up to relati ve dif ferences of order 20 per cent . The effect is
ven more dramatic for δ200, 2500 , in which case the distribution looses
he main peak and becomes nearly bimodal, while being shifted o v er
 positive range of values that extend up to relati ve v ariations up

40 per cent . Overall this suggests that sparsity provides a more re-
iable proxy of the halo mass profile than that inferred from the NFW

art/stac1241_f1.eps
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Figure 2. Evolution with scale factor a (redshift z) of the median sparsity 
s 200, 500 (top panels), s 500, 2500 (middle panels), and s 200, 2500 (bottom panels) 
for a sample of 10 4 randomly selected haloes from the MDPL2 halo catalogue 
at z = 0 and the sample of all haloes with a last major merger event at a LMM 

= 

0.67 (right-hand panels). The solid lines corresponds to the median sparsity 
computed from the mass accretion histories of the individual haloes, while 
the shaded area corresponds to the 68 per cent region around the median. 
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.2 Halo sparsity evolution 

ifferently from the previous analysis, we now investigate the 
volution of the halo mass profile as traced by halo sparsity, which
e reconstruct from the mass accretion histories of the haloes in the
DPL2 catalogue at z = 0. In Fig. 2 , we plot the median sparsity

volution of s 200, 500 (top panel), s 500, 2500 (middle panel), and s 200, 2500 

bottom panel) as function of the scale factor. In the left-hand panels,
e show the case of a sample of 10 4 randomly selected haloes,

hus behaving as quiescent haloes in the redshift range considered, 
hile in the right-hand panels, we plot the evolution of the sparsity
f all haloes in the z = 0 catalogue undergoing a major merger at
 LMM 

= 0.67. The shaded area corresponds to the 68 per cent sparsity
xcursion around the median, while the vertical dashed line marks 
he value of the scale factor of the last major merger. 

It is worth remarking that the sparsity provides us with an estimate
f the fraction of mass in a shell of radii R � 1 and R � 2 relative to
he mass enclosed in the inner radius R � 2 , i.e. equation ( 1 ) can be
ewritten s � 1 ,� 2 = �M/M � 2 + 1. As such s 200, 500 is a more sensitive
robe of the mass distribution in the external region of the halo,
hile s 500, 2500 and s 200, 2500 are more sensitive to the inner part of the
alo. 
As we can see from Fig. 2 , the evolution of the sparsity of merging
aloes matches that of the quiescent sample before the major merger
vent. In particular, during the quiescent phase of evolution, we notice 
hat s 200, 500 remains nearly constant, while s 500, 2500 and s 200, 2500 are 
ecreasing functions of the scale factor. This is consistent with the
icture that haloes grow from inside out, with the mass in the inner
egion (in our case M 2500c ) increasing relative to that in the external
hell ( �M = M � 1 − M 2500 c , with � 1 = 200 and 500 in units of
ritical density), thus ef fecti vely reducing the value of the sparsity.
his effect is compensated on s 200, 500 , thus resulting in a constant
volution. We can see that the onset of the major merger event
nduces a pulse-like response in the evolution of halo sparsities at the
ifferent o v erdensities with respect to the quiescent evolution. These
rends are consistent with the evolution of the median concentration 
uring major mergers found in Wang et al. ( 2020 ), in which the
oncentration rapidly drops to a minimum before bouncing again. 
ere, the evolution of the sparsity allows to follo w ho w the merger

lters the mass profile of the halo throughout the merging process. In
act, we may notice that the sparsities rapidly increase to a maximum,
uggesting the arri v al of the merger in the external region of the parent
alo, which increases the mass � M in the outer shell relative to the
nner mass. Then, the sparsities decrease to a minimum, indicating 
hat the merged mass has reached the inner region, after which
he sparsities increases to a second maximum that indicates that 
he merged mass has been redistributed outside the R 2500c radius. 
o we ver, note that in the case of s 200, 2500 and s 500, 2500 , the second
eak is more pronounced than the first one, while the opposite occurs
or s 200, 500 , which suggests that the accreted mass remains confined
ithin R 500c . Afterwards, a quiescent state of evolution is reco v ered.
In Fig. 3 , we plot the median sparsities of haloes in the MDPL2

atalogue at z = 0 that are characterized by different major merger
edshifts z LMM 

as function of the backward interval of time T (in units
f the dyanmical time) since the last major merger. Note that T used
n this plot differs by a minus sign from that given by equation ( 2 )
o conform to the definition by Wang et al. ( 2020 ). We can see that
fter the onset of the major merger (at T ≥ 0), the different curves
uperimpose on one another, indicating that the imprint of the major
erger on the profile of haloes is universal, producing the same

ulse-like feature on the evolution of the halo sparsity. Furthermore, 
ll haloes reco v er a quiescent evolution within two dynamical times,
.e. for T ≥ 2. Conversely, on smaller time-scale T < 2, haloes are still
erturbed by the major merger event. These result are consistent with
he findings of Wang et al. ( 2020 ), who have shown that the impact of
ergers on the median concentration of haloes lead to a time pattern

hat is universal and also dissipates within two dynamical times. 
ote that this distinct pattern due to the major merger is the result
f gravitational interactions only. Hence, it is possible that such a
eature may be sensitive to the underlying theory of gravity or the
hysics of dark matter particles. 
As we will see next, the universality of the pulse-like imprint of

he merger event on the evolution of the halo sparsity, as well as its
imited duration in time, have quite important consequences, since 
hese leave a distinct feature on the statistical distribution of sparsity
alues, which can be exploited to use sparsity measurements as a
ime proxy of major mergers in clusters. 

.3 Halo sparsity distribution 

e have seen that the sparsity of different haloes evolves following
he same pattern after the onset of the major merger, such that the
niversal imprint of the merger event is best highlighted in terms of
he backward interval time T . Hence, we aim to investigate the joint
MNRAS 513, 4951–4967 (2022) 
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Figure 3. Median sparsity histories as function of the backward time interval 
since the major merger events T (in units of dynamical time) for halo samples 
from the MDPL2 catalogue at z = 0 with different last major merger redshifts 
z LMM 

= 0.2, 0.4, 0.6, 0.8, 0.8, and 1 (curves from bottom to top). Note that 
the backward time interval used here differ by a minus sign from that given 
by equation ( 2 ) to be consistent with the definition by Wang et al. ( 2020 ). 
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tatistical distribution of halo sparsity values for haloes characterized
y different time T since their last major merger in the MDPL2
atalogues at different redshift. Here, we revert to the definition of T
iven by equation ( 2 ), where the time interval is measured relative
o the time the haloes are investigated, which is the redshift z of the
alo catalog. Hence, T = 0 for haloes undergoing a major merger at
 LMM 

= z and T < 0 for those with z LMM 

> z. 
For conciseness, here we only describe the features of the joint

istribution p ( s 200, 500 , T ) shown in Fig. 4 in the form of iso-
robability contours in the s 200, 500 − T plane at z = 0 (top-left
NRAS 513, 4951–4967 (2022) 
anel), 0.2 (top-right panel), 0.4 (bottom-left panel), and 0.6 (bottom-
ight panel). We find a similar structure of the distributions at other
edshift snapshots and for the halo sparsities s 200, 2500 and s 500, 2500 .
n each panel, the horizontal solid line marks the characteristic time
nterval | T | = 2. As shown by the analysis of the evolution of the
alo sparsity, haloes with | T | > 2 have recovered a quiescent state,
hile those with | T | < 2 are still undergoing the merging process.
he marginal conditional probability distributions p ( s 200, 500 | T < −2)
nd p ( s 200, 500 | T > −2) are shown in the inset plot. 

First, we may notice that the joint probability distribution has a
niversal structure, which is the same at different redshift snapshots.
oreo v er, it is characterized by two distinct re gions. The re gion with
 ≤−2, which corresponds to haloes that are several dynamical times
way since their last major merger event ( | T | ≥ 2), as such they are in
 quiescent state of evolution of the sparsity; and a region with −2 <
 < 0, corresponding to haloes that are still in the merging processes
 | T | < 2). In the former case, the probability density function (pdf)
as a rather regular structure that is independent of T , while in
he latter case the pdf has an altered structure with a pulse-like
eature shifted towards higher sparsity values. The presence of such a
eature is consistent with the evolution of the median sparsity inferred
rom the halo mass accretion histories previously discussed. This is
ecause among the haloes observed at a given redshift snapshot, those
hich are within two dynamical times from the major merger event

re perturbed, thus exhibiting sparsity values that are distributed
round the median shown in Fig. 3 . In contrast, those which are
ore than two dynamical times since their last major merger had

ime to redistributed the accreted mass and are in a quiescent state,
ausing a regular structure of the pdf. From the inset plots, we can
ee that these two regions identify two distinct population of haloes,
uiescent haloes with T ≤ −2 and merging (or perturbed) ones with
2 < T < 0 characterized by a stiff tail towards large sparsity values

nd that largely contributes to the o v erall scatter of the halo sparsity
f the entire halo ensemble. It is worth stressing that the choice
f T = 2 as threshold to differentiate between the quiescent haloes
nd the perturbed ones at a given redshift snapshot is not arbitrary,
ince it is the most conserv ati ve v alue of the dynamical time abo v e
hich haloes that have undergone a major merger reco v er a quiescent

volution of their halo mass profile as shown in Fig. 3 . 
Now, the fact that two populations of haloes have different

robability distribution functions suggests that measurements of
luster sparsity can be used to identify perturbed systems that have
ndergone a major merger. 

 I DENTI FYI NG  G A L A X Y  CLUSTER  M A J O R  

E R G E R S  

iven the universal structure of the probability distributions charac-
erizing merging haloes and quiescent ones, we can use the numerical
alo catalogues to calibrate their statistics at different redshifts and
est whether a cluster with a single or multiple sparsity measurements
as had a major merger in its recent mass assembly history. 

In the light of these observations, we first design a method to assess
hether a cluster has or has not been recently perturbed by a major
erger. To do this, we design a binary test, as defined in detection

heory (see e.g. Kay 1998 ), to differentiate between the different
ases. Formally, this translates into defining two hypotheses denoted
s H 0 , the null hypothesis, and H 1 , the alternate hypothesis. In our
ase, these are H 0 : The halo has not been recently perturbed and
 1 : The halo has undergone a recent major merger . Formally the

istinction between the two is given in terms of the backward time
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Figure 4. Iso-probability contours of the joint probability distribution in the s 200, 500 − T plane for the haloes from the MDPL2 catalogues at z = 0.0, 0.2, 0.4, 
and 0.6, respectively. The solid horizontal line marks the value T = −2. The inset plots show that marginal probability distribution for haloes with T > −2 (blue 
histograms) and T < −2 (beige histograms), respectively. 
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nterval T , {
H 0 : T ( a LMM 

| a( z)) < −2 
H 1 : T ( a LMM 

| a( z)) ≥ −2 
(5) 

f we consider the halo to no longer be perturbed after 2 τ dyn . In
ig. 4 , we have delimited these two regions using black horizontal 

ines. 
In the context of detection theory (see e.g. Kay 1998 ), one defines

ome test statistic, 

 

H 1 

≷ 

H 0 


 th , (6) 

rom the observed data such that when compared to a 
hreshold, 
 th , allowing us to distinguish between the two 
ypotheses. 

In the following, we will explore multiple ways of defining the 
est statistic and associated thresholds. This may appear cumber- 
ome, ho we ver, it is necessary to unambiguously define thresh-
lds according to probabilistic criteria rather than arbitrary ones, 
hile the variety of approaches we adopt allow us to check their

obustness. 
.1 Fr equentist appr oach 

e start with the simplest possible choice by using s 200, 500 as our
est statistic. Separating our data set into the realizations of the two
ypotheses, we estimate their respective likelihood functions, which 
e model using a generalized β

′ 
pdf, 

( x , α, β, p, q ) = 

p 

(
x 
q 

)αp−1 (
1 + 

(
x 
q 

)p )−α−β

q B ( α, β) 
, (7) 

here B ( α, β) is the Beta function and where x = s 200, 500 − 1.
rom our two samples we then fit this model using a standard least
quares method to obtain the set of best-fitting parameters under 
oth hypotheses, these are reproduced in Table 2 and particular fits
re shown in Fig. 5 for the halo catalogues at z = 0. In both cases,
e additionally report the 95 per cent confidence intervals estimated 
sing 1000 bootstrap iterations. 
The quality of the fits degrade towards the tails of the distributions,
ost notably under H 1 due to the fact we do not account for the

ulse feature. None the less, they still allow us to obtain an esti-
ate, ˜ � ( x), of the corresponding likelihood ratio (LR) test statistic
( x) = ρ( x| H 1 ) / ρ( x| H 0 ) . Under the Neyman–Pearson lemma (see 
MNRAS 513, 4951–4967 (2022) 
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Table 2. Best-fitting parameters for the distribution of sparsities at z = 0 
under both hypotheses. Here, we quote each parameter with its 95 per cent 
confidence interval estimated o v er 1000 bootstrap iterations. 

Parameter H 0 H 1 

α 1 . 4 + 0 . 1 −0 . 1 1 . 5 + 0 . 2 −0 . 2 

β 0 . 61 + 0 . 03 
−0 . 03 0 . 71 + 0 . 10 

−0 . 08 

p 7 . 7 + 0 . 3 −0 . 3 4 . 1 + 0 . 4 −0 . 3 

q 0 . 304 + 0 . 002 
−0 . 003 0 . 370 + 0 . 008 

−0 . 008 

Figure 5. Estimated probability distribution functions for H 0 (purple solid 
line) and H 1 (orange solid line) hypotheses at z = 0, along with best-fitting 
generalized beta prime distribution functions (dotted black lines). The shaded 
area corresponds to the 95 per cent confidence interval estimated o v er 1000 
bootstrap iterations. 

e  

e  

o

�

f  

f  

v  

f  

i  

s  

c  

h  

a

p

i  

a  

t  

r  

t  

p  

h  

s  

a
 

s  

Figure 6. Sparsity thresholds s th 200 , 500 as function of redshift for p-values = 

0.05 (purple solid line), 0.01 (orange solid line), and 0.005 (green solid line) 
computed using the Frequentist Likelihood-Ratio approach. 
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.g. Kay 1998 ), the true LR test statistic constitutes the most powerful
stimator for a given binary test. We can express this statistic in terms
f the fitted distribution, for z = 0 this reads as: 

˜ 
 ( x) ∝ x α1 p 1 −α0 p 0 

(1 + ( x/q 1 ) p 1 ) −α1 −β1 

(1 + ( x/q 0 ) p 0 ) −α0 −β0 
(8) 

= x −4 . 6 (1 + ( x/ 0 . 370) 4 . 1 ) −2 . 2 

(1 + ( x/ 0 . 304) 7 . 7 ) −2 . 0 
(9) 

rom which we can obtain an approximate expression, ˜ � ( x) ∝ x 1 . 8 ,
or large values, x 
 0.3. What one can observe is that for large
alues of sparsity the LR test statistic is a monotonously increasing
unction of x = s 200, 500 − 1, indicating that in this regime the sparsity
tself will have comparable differentiating power to the LR test. A
imilar dependence holds at z > 0. What this indicates is that we
an use 
 = s 200, 500 to efficiently differentiate between haloes that
ave undergone a recent major merger from an at-rest population. In
ddition to this result, one can estimate a simple p-value, 

 = P r ( 
 > s 200 , 500 | H 0 ) = 1 −
∫ s 200 , 500 −1 

0 
ρ( x | H 0 )d x (10) 

.e. the probability of finding a higher value of s 200, 500 in a halo
t equilibrium. And conversely, one can also estimate the value of
he threshold corresponding to a gi ven p-v alue, by inverting this
elation. In Fig. 6 , we have estimated the threshold corresponding
o three key p-values at increasingly higher redshifts. Here, each
oint is estimated using the sparsity distributions from the numerical
alo catalogues. This figure allows to quickly estimate the values of
parsity abo v e which a halo at some redshift z should be considered
s recently perturbed. 

It is worth noticing that these thresholds are derived from spar-
ity estimates from N -body halo masses. In contrast, sparsities of
NRAS 513, 4951–4967 (2022) 
bserved galaxy clusters are obtained from mass measurements
hat may be affected by systematic uncertainties that may differ
epending on the type of observations. The impact of mass biases is
educed in the mass ratio, but it could still be present. As an example,
sing results from hydro/ N -body simulations for an extreme model
f AGN feedback model, Corasaniti et al. ( 2018 ) have shown that
aryonic processes on average can bias the estimates of the sparsity
 200, 500 up to � 4 per cent and s 200, 2500 up to � 15 per cent at the low-
ass end. This being said, as long as the mass estimator is unbiased,
e expect our analysis to hold, albeit with a modification to the
tting parameters. In Section 6 , we present a preliminary analysis of

he impact of mass biasses on our approach, ho we v er, we will leav e
ore in-depth investigations into this topic, as well as modifications

hat could arise from non-gravitational physics, to upcoming work. 

.2 Bayesian approach 

n alternate way of tackling this problem is through the Bayesian
a v our of detection theory. In this case, instead of looking directly
t how likely the data x is described by a model characterized by the
odel parameters θ in terms of the likelihood function p( x | θ ), one

s interested in how likely is the model given the observed data, that
s the posterior function p( θ | x ). 

Bayes theorem allows us to relate these two quantities: 

 ( θ | x) = 

p ( x| θ) π ( θ) 

π ( x) 
, (11) 

here π ( θ) is the prior distribution for the parameter vector θ and 

( x) = 

∫ 
p( x| θ) π ( θ)d θ , (12) 

s a normalization factor, known as evidence. 
While this opens up the possibility of estimating the parameter

ector, which we will discuss in Section 4.4 , this approach also allows
ne to systematically define a test statistic known as the Bayes factor

 f = 

∫ 
V 1 

p( x | θ) π ( θ)d θ∫ 
V 0 

p( x | θ) π ( θ)d θ
, (13) 

ssociated to the binary test. Here, we have denoted V 1 and V 0 the
olumes of the parameter space respectively attributed to hypothesis
 1 and H 0 . 
In practice, to e v aluate this statistic, we first need to model

he likelihood. Again, we use the numerical halo catalogues as
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Figure 7. ROC curves associated with the binary tests studied in this work: 
the Frequentist sparsity test (S 1D, solid orange line), the Bayes Factor based 
on a single sparsity value (BF 1D, dashed green line) and using three values 
(BF 3D, dash–dotted magenta line), the Support Vector Machines with one 
sparsity value (SVM 1D, dotted purple line), and three sparsities (SVM 3D, 
dotted yellow line). What can be observed is that all 1D tests are equivalent 
at small false alarm rates and the only way to significantly increase the power 
of the test is to increase the amount of input data, i.e. adding a third mass 
measurement as in the BF 3D and SVM 3D cases. 
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alibrators. We find that the distribution of s 200, 500 for a given value
f the scale factor at the epoch of the last major merger, a LMM 

,
s well-described by a generalized β

′ 
pdf. In particular, we fit the 

et of parameters θ = [ α, β, p, q] � that depend solely on a LMM 

y sampling the posterior distribution using Monte Carlo Markov 
hains (MCMC) with a uniform prior for a LMM 

∼ U(0; a( z)). 3 This
s done using the EMCEE 4 library (F oreman-Macke y et al. 2013 ).
he resulting values of B f can then be treated in exactly the same

ashion as the Frequentist statistic. It is ho we ver important to note
hat the Bayes factor is often associated with a standard ‘rule of
humb’ interpretation (see e.g. Trotta 2007 ) making these statistic 
articularly interesting to handle. 
One way of comparing the efficiency of different tests is to 

raw their respective receiver operating characteristic (ROC) curves 
F a wcett 2006 ), which show the probability of having a true detec-
ion, P r ( 
 > 
 th | H 1 ), plotted against the probability of a false one,
 r ( 
 > 
 th | H 0 ) for the same threshold. In other words, this means
e are simply plotting the probability of finding a value of 
 that

s larger than the threshold under the alternate hypothesis against 
hat of finding a value of 
 larger than the same threshold under the
ull hypothesis. The simplest graphical interpretation of this type 
f figure is, the closer a curve gets to the top left corner the more
owerful the test is at differentiating between both cases. 
In Fig. 7 , we plot the ROC curves corresponding to all the tests

e have studied in the context of this work. These curves have been
 v aluated using a sub sample of 10 4 randomly selected haloes from
he MDPL2 catalogues at z = 0 with masses M 200 c > 10 13 h 

−1 M �.
et us focus on the comparison between the Frequentist direct 
 The upper bound is the scale factor at the epoch at which the halo is observed. 
 https:// emcee.readthedocs.io/en/ stable/ 

s  

e
(  

H  
parsity approach (S 1D) against the Bayes Factor obtained using 
 single sparsity measurement (BF 1D). We can see that both tests
av e v ery similar ROC curv es for low false alarm rates. This indicates
hat we do not gain any substantial power from the additional
omputational work done to estimate the Bayes factor using a single
alue of sparsity. 

While this may seem as the end of the line for the method based
n the Bayes factor, the latter does present the significant advantage 
f being easily expanded to include additional data. In our case, this
omes in the form of adding additional sparsity measurements at 
ifferent o v erdensities. Simply including a third mass measurement, 
ere we use M 2500c , gives us access to two additional sparsities from
he three possible pairs, s 200 , 500 , s 200 , 2500 and s 500, 2500 . This leads us
o defining each halo as a point in a 3D space with coordinates ⎧ ⎨ 

⎩ 

x = s 200 , 500 − 1 
y = s 200 , 2500 − 1 
z = s 500 , 2500 − 1 

(14) 

fter estimating the likelihood in this coordinate system, one 
uickly observes that a switching spherical-like coordinate system, 
 = [ r, ϑ, ϕ] � , allows for a much simpler description. The resulting
ikelihood model, 

 ( r ; θ , μ, C ) = 

f ( r; θ ) 

2 π
√ | C | exp 

[
−1 

2 
( α − μ) � C 

−1 ( α − μ) 

]
, (15) 

reats r as independent from the two angular coordinates that 
re placed within the two-vector α = [ ϑ, ϕ] � . Making the radial
oordinate independent allows us to constrain f ( r, θ ) simply from
he marginalized distribution. Doing so, we found that the latter is
est described by a Burr type XII (Burr 1942 ) distribution, 

 ( x, c, k, λ, σ ) = 

ck 

σ

(
x − λ

σ

)c−1 
[ 

1 + 

(
x − λ

σ

)2 
] −k−1 

, (16) 

ith additional displacement, λ, and scale, σ , parameters. In total, 
he likelihood function is described by nine parameters, three of 
hich are constrained by fitting the marginalized distribution of r 

ealizations assuming λ = 0 and 5, 2 in μ and 3 in C , are measured
hrough unbiased sample means and covariances. 

In a similar fashion, as in the single sparsity case, we e v aluate
hese parameters as functions of a LMM 

and thus reco v er a posterior
ikelihood for the epoch of the last major merger using MCMC,
gain applying a flat prior on a LMM 

. This posterior, in turn, allows us
o measure the the corresponding Bayes factor. We calculate these 
ayes factors for the same test sample used previously and e v aluate

he corresponding ROC curve (BF 3D in Fig. 7 ). As intended,
he additional mass measurement has for effect of increasing the 
etection power of the test, thus raising the ROC curve with respect
o the 1 sparsity tests. Increasing the true detection rate from 40
er cent to 50 per cent for a false positive rate of 10 per cent. We have
ested that the same trends hold valid at z > 0. 

.3 Support vector machines 

n alternative to the Frequentist–Bayesian duo is to use machine 
earning techniques designed for classification. While Convolutional 
eural Networks (see eg. Lecun, Bengio & Hinton 2015 , for a re vie w)

re very efficient and have been profusely used to classify large data
ets, both in terms of dimensionality and size, recent examples in
xtra-galactic astronomy include galaxy morphology classification 
e.g. Hocking et al. 2018 ; Martin et al. 2020 ; Cheng et al. 2021 ;
ayat et al. 2021 ; Cheng et al. 2021 ; Spindler, Geach & Smith 2021 )
MNRAS 513, 4951–4967 (2022) 
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distributions are bimodal at recent epoch, while lo w v alues produce both a 
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recent epochs, corresponding to a confusion region. This induces a degeneracy 
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etection of strong gravitational lenses (e.g. Jacobs et al. 2017 , 2019 ;
anusse et al. 2018 ; Ca ̃ nameras et al. 2020 ; He et al. 2020 ; Huang
t al. 2020 , 2021 ; Gentile et al. 2021 ; Stein et al. 2021 ) galaxy
erger detection ( ́Ciprijanovi ́c et al. 2021 ), and galaxy cluster merger

ime estimation (Koppula et al. 2021 ). They may not be the tool of
hoice when dealing with data sets of small dimensionality, like the
ase at hand. A simpler option for this problem is to use Support
ector Machines (SVM; see e.g. Cristianini & Shawe-Taylor 2000 )
s classifiers for the hypotheses defined in equation ( 5 ), using as
raining data the sparsities measured from the halo catalogues. 

A SVM works on the simple principle of finding the boundary
hat best separates the two hypotheses. In opposition to random
orests (see e.g. Breiman 2001 ), which can only define a set of
orizontal and vertical boundaries, albeit to arbitrary complexity, the
VM maps the data points to a new euclidean space and solves for

he plane best separating the two sub-classes. This definition of a
ew euclidean space allows for a non-linear boundary between the
lasses. For large data sets, ho we ver, the optimization of the non-
inear transformation can be slow to converge, and thus we restrict
urselves to a linear transformations. To do so, we make use of the
CIKIT-LEARN 

5 (Pedregosa et al. 2011 ) PYTHON package. The ‘user-
riendly’ design of this package allows for fast implementations with
ittle required knowledge of PYTHON and little input from the user,
iving this method an advantage o v er its Frequentist and Bayesian
ounterparts. 

In order to compare the ef fecti veness of the SVM tests, with one
nd three sparsities, against those previously presented, we again
lot the corresponding ROC curves 6 in Fig. 7 . What can be seen is
hat the SVM tests reach comparable differentiating power to both
he Bayesian and Frequentist test for one sparisty and is only slightly
ut performed by the Bayesian test using three sparsities. This shows
hat designing a statistical test based on the sparsity can be done
n a simple fashion without significant loss of differentiation power.

aking sparsity an all the more viable proxy to identify recent major
ergers. 

.4 Estimating cluster major merger epoch 

n the previous section, we hav e inv estigated the possibility of using
alo sparsity as a statistic to identify clusters that have had a recent
ajor merger. We will now expand the Bayesian formulation of the

inary test to estimate when this last major merger took place. This
an be achieved by using the posterior distributions, which we have
reviously computed to calculate the Bayes factor statistics. These
istributions allow us to define the most likely epoch for the last
ajor merger as well as the credible interval around this epoch. 
Beginning with the one sparsity estimate, in Fig. 8 , we plot the

esulting posterior distributions p ( a LMM 

| s 200, 500 ) obtained assuming
our dif ferent v alues of s 200, 500 = 1.2, 1.7, 2, and 3 at z = 0. As we
an see, in the case of large sparsity values ( s 200, 500 ≥ 1.7), we find a
imodal distribution in the posterior, caused by the pulse-like feature
n the structure of the joint distribution shown in Fig. 4 and which is
 consequence of universal imprint of the major merger on the halo
parsity evolution shown in Fig. 3 . In particular, we notice that the
igher the measured sparsity and the lower the likelihood of having
he last major merger to occur in the distant past. A consequence of
his pulse-like feature is that a considerable population of haloes
NRAS 513, 4951–4967 (2022) 
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 Note that the test data used for the ROC curves was excluded from the 
raining set. 
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ith a recent major mergers, characterized by −1/2 < T ( a LMM 

;
 ( z)) < −1/4, have sparsities in the same range as those in the
uiescent regime. This confusion region results in a peak of the
osterior distribution for the s 200, 500 = 1.2 case, which is located
n the minimum of the binomial distributions associated to the
alues of s 200, 500 ≥ 1.7. This suggests the presence of a de generac y,
uch that quiescent haloes may be erroneously identified as haloes
aving undergone a recent merger, or on the contrary haloes having
ndergone a recent merger are misidentified as quiescent haloes. 
The presence of this peak in the p ( a LMM 

| s 200, 500 ) posterior for
ow sparsity values biases the Bayesian estimation towards more
ecent major mergers when using a single sparsity measurement. As
 result the previously mentioned Bayes factors, which depend on
uch a posterior, will also be biased towards recent mergers resulting
n higher measured values. Moreo v er, this impacts our choice when
t comes to the estimation we use, indeed a maximum likelihood
stimation will be very sensitive to this peak. Therefore, we prefer
o use a median likelihood estimation that is significantly more
obust. The credible interval is then estimated iteratively around
he median as to encompass 68 per cent of the total probability.
he end result of this procedure is shown in Fig. 9 , where we plot

nferred posteriors along with the corresponding credible intervals
shaded areas) and median likelihood measurements (vertical lines)
btained assuming one (orange curves) and three sparsity (purple
urves) values from three haloes selected from the numerical halo
atalogue at z = 0. The black vertical dashed lines indicate the true
 LMM 

value of the haloes. We can clearly see that the inclusion of an
dditional mass measurement (or equi v alently two additional sparsity
stimates) allows to break the s 200, 500 de generac y between quiescent
nd merging haloes with low sparsity values. In such a case, the true
 LMM 

value is found to be within the 1 σ credible regions. Hence,
his enable us to also identify merging haloes that are located in the
onfusion region. 

 C O S M O L O G I C A L  I MPLI CATI ONS  

efore discussing practical applications on the use of large halo
parsities as tracers of major merger events in clusters, it is worth
ighlighting the impact that such systems can have on average

https://scikit-learn.org/stable/
art/stac1241_f8.eps
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Figure 9. Posterior distributions of the last major merger epoch for three selected haloes with different sparsity values from the z = 0 halo catalogue. The 
shaded areas corresponds to the 68 per cent credible interval around the median (coloured vertical line) assuming a single (orange) and three sparsity (purple) 
measurements. The black vertical dashed lines mark the true fiducial value of a LMM 

for each of the selected haloes. 
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Figure 10. Redshift evolution of the average halo sparsity 〈 s 200, 500 〉 (top 
panels), 〈 s 500, 2500 〉 (middle panels), and 〈 s 200, 2500 〉 (bottom panels). In the 
left-hand panels, we show the average sparsity estimated for the full halo 
samples (green curves), for haloes which are within two dynamical times from 

the last major merger event (blue curves) and for haloes which are at more 
than two dynamical times from it (orange curves). In the right-hand panels, we 
show the average sparsity estimate from the full halo samples (blue curves) 
and for selected samples from which we remo v ed outliers whose sparsity lies 
abo v e thresholds corresponding to p-values of p ≤ 0.01 (green curves) and p 
≤ 0.005 (orange curves). In the inset plots, we show the relative differences 
with respect to the mean sparsity estimated from the full catalogues. 
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parsity measurements that are used for cosmological parameter 
nference. 

Halo sparsity depends on the underlying cosmological model 
Balm ̀es et al. 2014 ; Ragagnin et al. 2021 ), and it has been shown
Corasaniti et al. 2018 , 2021 ) that the determination of the average
parsity of an ensemble of galaxy clusters estimated at different 
edshifts can provide cosmological constraints complementary to 
hose from standard probes. This is possible thanks to an integral 
elation between the average halo sparsity at a given redshift and the
alo mass function at the o v erdensities of interest, which allows
o predict the average sparsity for a given cosmological model 
Balm ̀es et al. 2014 ). Hence, the average is computed o v er the
ntire ensemble of haloes as accounted for by the mass functions. 
n principle, this implies that at a given redshift the mean sparsity
hould be computed o v er the available cluster sample without regard
o their state, since any selection might bias the e v aluation of
he mean. This can be seen in the left-hand panel of Fig. 10 ,
here we plot the average sparsity 〈 s 200, 500 〉 (top panel), 〈 s 500, 2500 〉

central panel), and 〈 s 200, 2500 〉 as function of redshift in the case
f haloes that are within two dynamical times since the last major
erger (blue curves), for those which are more than two dynamical 

imes since the last major merger (orange curves) and for the full
ample (green curves). As we can see removing the merging haloes 
nduces a ∼ 10 per cent bias on 〈 s 200, 500 〉 at z = 0, which decreases
o ∼ 4 per cent at z = 1, while in the same redshift range the
ias is at ∼ 20 per cent level for 〈 s 500, 2500 〉 and ∼ 30 per cent for
 s 200, 2500 〉 . 

Ho we ver, the dynamical time is not observable and in a realistic
ituation, one might have to face the reverse problem, which is that of
aving a number of outliers characterized by large sparsity values in 
 small cluster sample, potentially biasing the estimation of the mean 
ompared to that of a representative cluster ensemble. Which clusters 
hould be considered as outliers, and which should be remo v ed from
he cluster sample such that the estimation of the mean sparsity
ill remain representative of the halo ensemble average, say at sub-
er cent level? To assess this question, we can make use of the sparsity
hresholds defined in Section 4.1 based on the p-value statistics. As
n example in the right-hand panel of Fig. 10 , we plot the mean
parsities 〈 s 200, 500 〉 , 〈 s 500, 2500 〉 , and 〈 s 200, 2500 〉 as function of redshift
omputed using the full halo sample (blue curves), and a selected halo 
ample from which we hav e remo v ed haloes with sparsities abo v e
he sparsity thresholds, such as those shown in Fig. 6 , associated to
MNRAS 513, 4951–4967 (2022) 
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Figure 11. ROC curves estimated from the validation data set for sparsities 
estimated from the N -body halo masses (dashed lines), from the concentration 
parameter of the best-fitting NFW-profile (solid lines) and in the case of a 
conserv ati ve model for the mass bias induced by lensing observations (dash–
dotted lines) in the case of the single sparsity Bayesian (BF 1D, orange 
curves) and frequentist (S 1D, blue curves) estimators and the three sparsity 
Bayesian estimator (BF 3D, green curves). We can see that in all cases, 
S 1D and BF 1D tests of fer a similar detection po wer. Comparing the BF 
3D curves to the S 1D ones, it is clear that while adding an independent 
sparsity measurement increases the detection power, this is not the case when 
the sparsities are deduced from the concentration parameter, with the latter 
having the opposite effect. Finally, we can also see that strong mass biases 
have a strong negative impact on the efficiency of the detection of mergers. 
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-values of p ≤ 0.01 (green curves) and p ≤ 0.005 (orange curves),
espectively. We can see that removing outliers alter the estimated
ean sparsity 〈 s 200, 500 〉 at sub-per cent lev el o v er the range 0 < z <

, and in the case of 〈 s 500, 2500 〉 and 〈 s 200, 2500 〉 up to a few per-cent
evel only in the high-redshift range 1 � z < 2. 

 TOWA R D S  PRAC TICAL  APPLICATIONS  

e will now w ork tow ards applying the statistical analysis presented
n Section 4 to observational data. To this purpose, we have
pecifically developed the numerical code LAMMAS . 7 Given the mass
easurements M 200c , M 500c , and M 2500c of a galaxy cluster, the code

omputes the sparsity data vector D = { s 200 , 500 , s 200 , 2500 , s 500 , 2500 }
the last two values only if the estimate of M 2500c is available)
nd performs a computation of the frequentist statistics discussed in
ection 4.1 and the Bayesian computation presented in Section 4.2 .
he code computes the frequentist p-value only for s 200, 500 and it

s associated uncertainty. Bayesian statistics are measure for both
ne and three sparsities, these include the posterior distributions
( a LMM 

| D ) and their associated marginal statistics, along with the
ayes factor, B f , using the available data. We implement the statistical
istributions of merging and quiescent halo populations calibrated
n the halo catalogues from the Uchuu simulations (Ishiyama et al.
021 ) rather than MDPL2, thus benefiting from the higher mass
esolution and redshift co v erage of the Uchuu halo catalogues. A
escription of the code LAMMAS is given in Appendix A . In the
ollowing, we will first validate this code by presenting it with haloes
rom N -body catalogues that were not used for calibration. We will
hen quantify the robustness of our analysis to observational mass
iases using empirical models. In particular, we will focus on weak
ensing, HE and NFW-concentration derived galaxy cluster masses.
inally, we present a preliminary analysis of two galaxy clusters,
bell 383 and Abell 2345. 

.1 Validation on simulated haloes 

s we have calibrated LAMMAS using the Uchuu simulation suite
Ishiyama et al. 2021 ), we use a randomly selected sample of 10 4 

aloes from the previously described MDPL2 catalogues as valida-
ion data set. This choice has two main advantages, first, it naturally
uarantees the same haloes are not used in both the calibration
nd the validation; secondly, it allows to test the robustness of
he method to small changes in cosmology as the Uchuu suite is
un on the cosmology of Planck Collaboration ( 2016 ) compared to

DPL2, which is run using that of Planck Collaboration ( 2014a ).
urthermore, we choose to do this validation at z = 0.248 to ensure

hat our pipeline also performs well at redshifts z �= 0. 
We e v aluate the ef ficiency of the detection procedure in terms

f ROC curves shown in Fig. 11 and constructed using the same
ethod as those shown in Fig. 7 . We plot the case of the single

parsity frequentist (S 1D) and Bayesian (BF 1D) estimators, as
ell as the three sparsity Bayesian (BF 3D) estimator for sparsity
easurements inferred from N -body halo masses (dashed lines),

ensing masses (dash–dotted lines) and NFW-concentration derived
asses (solid lines). Comparing the dashed curves of Fig. 11 and

hose in Fig. 7 , we can see that for the validation data set considered
ere the efficiency of merger detection of the different test statistics
s comparable to that we have inferred for the MDPL2 halo sample. 
NRAS 513, 4951–4967 (2022) 
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We quantify the accuracy of the estimation procedure by introduc-
ng three metrics defined as: 

(i) the accuracy as given by the frequency at which the true value
 LMM 

of a halo is reco v ered within the 1 σ credible interval, αcc ; 
(ii) the estimated epoch of the last major merger, ˆ a LMM 

; 
(iii) the relative width of the 1 σ credible interval, σ/ ̂ a LMM 

. 

In Fig. 12 , we plot these metrics as function of the true scale factor
redshift) of the last major merger of the haloes in the validation
ample for the case of a single sparsity (orange curves) and three
parsity (blue curves) measurements, to which we will simply refer
s 1S and 3S, respectively. At first glance, it may appear from the top
anel as if the 1S estimator is more accurate at reco v ering the merger
poch than it’s 3S counterpart o v er a large interval 0.2 < a LMM 

<

.68. Ho we ver, this is simply due to the fact that for haloes which
re more than two dynamical times from their last major merger
he posterior distribution is nearly flat and the estimator returns the
ame estimated time, as can be seen from the plot in the central panel.
onsequently, the increased accuracy is simply due to wider credible

ntervals, as can be seen in the bottom panel. Hence, in this particular
egime, it is more prudent to extract an upper bound on ˆ a LMM 

from
he resulting posterior, rather than a credible interval. 

We can see that the trend is reversed for recent mergers occurring
t 0.68 < a LMM 

< 0.8, with the 3S estimator being much more
ccurate at reco v ering the scale factor of the last major merger and
ith restricted error margins (see blue curves in top and bottom
anels, respecti vely). Ne vertheless, from the middle panel, we may

https://gitlab.obspm.fr/trichardson/lammas
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Figure 12. Top: accuracy of the estimation of the epoch of the last major 
merger, αcc , as a function of the true value a LMM 

of the haloes in the 
validation sample for both the 1S (orange solid line) and 3S (blue solid line) 
estimators, respecti vely. Middle: median v alue of the estimated epoch of the 
last major merger, ˆ a LMM 

, as function of the true value for the 1S (orange 
curves) and 3S (blue curves) estimators, respectively. The shaded areas 
correspond to the 68 per cent interval around the median, while the dashed 
diagonal line gives the ideal value of the estimator ˆ a LMM 

= a LMM 

. Bottom: 
relative width of the 68 per cent interval around the median value of ˆ a LMM 

as a function of the true value a LMM 

for the 1S (orange curves) and 3S (blue 
curv es) estimators, respectiv ely. We refer the reader to the text for a detailed 
discussion of the various trends. 
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Table 3. Sparsity bias and scatter obtained from the weak lensing mass bias 
estimates by Becker & Kravtsov ( 2011 ). 

n gal b WL 
200,500 σWL 

200,500 

10 0.04 ± 0.02 0.51 ± 0.03 
z = 0.25 20 0.01 ± 0.01 0.40 ± 0.02 

40 0.03 ± 0.01 0.35 ± 0.02 
10 0.07 ± 0.07 0.76 ± 0.03 

z = 0.5 20 0.02 ± 0.02 0.58 ± 0.04 
40 0.03 ± 0.01 0.49 ± 0.03 
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otice that both the 1S and 3S estimators have an area of confusion
round the dip of the pulse feature in the ̂  a LMM 

plot. In both cases, we
ee that the estimator disfa v ours very recent merger at a LMM 

≈ 0.8
n fa v our of placing them in the second bump of pulse, thus causing
he median value and the 68 per cent region of ˆ a LMM 

to be lower than
he true value of the last major merger epoch. An effect, that should
e kept in mind when using the pipeline. 

.2 Systematic bias 

he statistical methodology we have developed here relies on sparsity 
stimates from N -body halo masses. Ho we ver, these masses are
ot directly comparable to those inferred from galaxy cluster mass 
easurements, since the latter involve systematic uncertainties that 
ay bias the cluster mass estimates compared to that from dark
atter-only simulations. Hence, before applying the sparsity test 

o real observations, we check the robustness of our approach 
gainst observational mass biases. More specifically, we will review 

onserv ati ve estimates of these biases for various mass estimation
echniques and attempt to quantify the effect that these have on the
parsity. 

.2.1 Weak lensing mass bias 

 well-known source of systematic error in weak lensing mass 
stimates comes from fitting the observed tangential shear profile 
f a cluster with a spherically symmetric NFW inferred shear 
rofile. In such a case, deviations from a spherically symmetric mass
istribution within the cluster, as well as projection effects induce 
 systematic error on the estimated cluster mass that may vary at
ifferent radii, consequently biasing the evaluation of the sparsity. 
Becker & Kravtsov ( 2011 ) hav e inv estigated the impact of this

ffect on weak lensing estimated masses. They modelled the observed 
ass at o v erdensity � as: 

 

WL 
� 

= M � 

exp ( β� 

) exp ( σ� 

X) , (17) 

here M � 

is the unbiased mass and β� 

is a deterministic bias terms,
hile the third factor is a stochastic term with σ� 

quantifying 
he spread of a lognormal distribution and X ∼ N (0 , 1). Under
he pessimistic assumption of independent scatter on both mass 

easurements, the resulting bias on the sparsity then reads as: 

 

WL 
� 1 ,� 2 

= s � 1 ,� 2 

(
b WL 

� 1 ,� 2 
+ 1 

)
exp 

(
σ WL 

� 1 ,� 2 
X 

)
, (18) 

here b WL 
� 1 ,� 2 

= exp ( β� 1 − β� 2 ) − 1 and σ WL 
� 1 ,� 2 

= 

√ 

σ 2 
� 1 

+ σ 2 
� 2 

, 

ith the errors being propagated from the errors quoted on the
ass biases. Becker & Kravtsov ( 2011 ) have estimated the mass

ias model parameters at � 1 = 200 and � 2 = 500, using the values
uoted in their Tables 3 and 4 we compute the sparsity bias b WL 

200 , 500 
nd the scatter σ WL 

200 , 500 , which we quote in Table 3 , for different
edshifts and galaxy number densities, n gal , in units of galaxies per
rcmin −2 . Notice that the original mass bias estimates have been
btained assuming an intrinsic shape noise σ e = 0.3. 
We may notice that although the deterministic sparsity bias is 

maller than that on individual mass estimates the scatter can be large.
n order to e v aluate the impact of such biasses on the identification
MNRAS 513, 4951–4967 (2022) 
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M

Table 4. Sparsity bias from the hydrostatic mass bias estimated of Biffi et al. 
( 2016 ) for different categories of simulated clusters. 

b HE 
200 , 500 b HE 

500 , 2500 b HE 
200 , 2500 

All 0.003 ± 0.032 − 0.037 ± 0.025 − 0.033 ± 0.034 
CC − 0.009 ± 0.031 − 0.151 ± 0.038 − 0.162 ± 0.041 
NCC 0.019 ± 0.046 0.005 ± 0.027 0.023 ± 0.041 
Regular 0.032 ± 0.089 0.025 ± 0.037 0.057 ± 0.082 
Disturbed − 0.017 ± 0.077 − 0.080 ± 0.086 − 0.098 ± 0.052 

Figure 13. AUC as function of the scatter on the measured sparsity for WL 

mass estimates. A random classifier has an AUC = 0.5. The vertical and 
horizontal lines denote AUC = 0.6 and the corresponding scatter σWL 

200 , 500 = 

0 . 2, denoting the point, σWL 
200 , 500 > 0 . 2, beyond which the detector can be 

considered inef fecti ve at detecting recent mergers. 
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f merging clusters using sparsity estimates, we use the values of the
ias parameters quoted in Table 3 to generate a population of biased
parsities using equation ( 18 ) with the constraint that s WL 

200 , 500 > 1
or our validation sample at z = 0.25. We then performed the
requentist test for a single sparsity measurements (the Bayesian
stimator has a detection power similar to that of the frequentist
ne) and e v aluated the area under the ROC curve (AUC) as function
f the scatter σ WL 

200 , 500 to quantify the efficiency of the estimator at
etecting recent major merger events. This is shown in Fig. 13 . Notice
hat a classifier should have values of AUC > 0.5 (F a wcett 2006 ).
ence, we can see that the scatter can greatly reduce the detection
ower of the sparsity estimator and render the method inef fecti ve at
etecting recent mergers for σ WL 

200 , 500 > 0 . 2. In contrast, the estimator
s valuable classifier for smaller values of the scatter. 

.2.2 Hydrostatic mass bias 

easurements of galaxy cluster masses from X-ray observations rely
n the hypothesis that the intra-cluster gas is in HE. Deviations from
his condition can induce a radially dependent bias on the cluster

asses (see e.g. Biffi et al. 2016 ; Eckert et al. 2019 ; Ettori & Eckert
022 ), thus affecting the estimation of the cluster’s sparsity. The
ydrostatic mass bias has been studied in Biffi et al. ( 2016 ), who
ave realized cosmological zoom N -body/hydro simulations of 29
lusters to e v aluate the bias of masses at o v erdensities � = 200, 500,
nd 2500 (in units of the critical density) for Cool Core (CC) and
o Cool Core (NCC) clusters, as defined with respect to the entropy

n the core of their sample, as well as for regular and disturbed
lusters defined by the offset of the centre of mass and the fraction
f substructures. 
Following the evaluation presented in Corasaniti et al. ( 2018 ), we

se the hydrostatic mass bias estimates given in table 1 of Biffi et al.
NRAS 513, 4951–4967 (2022) 
 2016 ) to estimate the bias on cluster sparsities, these are quoted in
able 4 . Overall, we can see that the hydrostatic mass bias does not
ignificantly affect the estimated sparsity, with a bias of the order
f few per cent and in most cases compatible with a vanishing bias
ith only a few exceptions. This is consistent with the results of

he recent analysis based on observed X-ray clusters presented in
ttori & Eckert ( 2022 ), which yield sparsity biasses at the per cent

evel and consistent with having no bias at all. Ho we v er, we hav e
een in the case of the WL mass bias that even though the effect
n the measured sparsity remains small, the scatter around the true
parsity can severely affect the efficiency of the detector at identifying
ecent mergers. Unfortunately, the limited sample from Biffi et al.
 2016 ) does not allow to compute the hydrostatic mass bias scatter
f the sparsity. If the latter behaves in the same manner as in the WL
ase, then we can expect the estimator to respond to the increasing
catter as in Fig. 13 . Consequently, as long as the scatter remains
mall, σ HE 

� 1 ,� 2 
< 0 . 1, then the efficiency of the estimator will remain

naffected. 

.2.3 Concentration mass bias 

e have seen in Section 3.1 that sparsities deduced from the
oncentration parameter of a NFW profile fitted to the halo density
rofile are biased compared to those measured using N -body masses.
n particular, as seen in Fig. 1 , concentration-deduced sparsities
end to underestimate their N -body counterparts. Hence, they are

ore likely to be associated with relaxed clusters than systems in a
erturbed state characterized by higher values. A notable exception
s the case of haloes undergoing recent mergers which are associated
o lower concentration values, or equivalently higher sparsity, even
hough the N -body estimated sparsity is low. This effect is most likely
ue to poor fit agreement (Balm ̀es et al. 2014 ), and systematically
ncreases the population of perturbed haloes abo v e the detection
hreshold. The concurrences of these two effects leads to an apparent
ncrease in detection power for the 1S estimators when using NFW-
oncentration estimated masses, as can be seen for the solid lines in
ig. 11 . 
In contrast, when looking at the 3S case in Fig. 11 , there is a

lear decrease in the detection power for the concentration-based
parsity estimates. This is due to the differences in the pulse patterns
educed from concentration compared to the direct measurement
f the sparsity, which results in a shape of the pulse at inner radii
hat is significantly different from that obtained using the N -body

asses. Similarly to the 1S estimator, the sparsities measured using
he NFW concentration are on average shifted towards smaller values.
s such, the effect of using concentration-based estimates results in

n o v erestimation of the likelihood that a halo has not undergone a
ecent merger. 

Keeping the abo v e discussions in mind, we now present example
pplications to two well-studied galaxy clusters. 

.3 Abell 383 

bell 383 is a cluster at z = 0.187 that has been observed in X-
ay (B ̈ohringer et al. 2004 ; Vikhlinin et al. 2006 ) and optical bands
Miyazaki et al. 2002 ; Postman et al. 2012 ) with numerous studies
evoted to measurements of the cluster mass from gravitational
ensing analyses (e.g. Okabe & Smith 2016 ; Umetsu et al. 2016 ;
lein et al. 2019 ). The cluster appears to be a relaxed system with
E masses M 500 c = (3 . 10 ± 0 . 32) · 10 14 M � and M 2500 c = (1 . 68 ±
 . 15) · 10 14 M � from Chandra X-ray observations (Vikhlinin et al.
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006 ), corresponding to the halo sparsity s 500, 2500 = 1.84 ± 0.25 
hat is close to the median of the halo sparsity distribution. We
ompute the merger test statistics of Abell 383 using the lensing 
asses estimates from the latest version of the literature catalogues 

f lensing clusters (LC 

2 Sereno 2015 ). In particular, we use the
ass estimates obtained from the analysis of the latest profile data 

f (Klein et al. 2019 ): M 2500 c = (2 . 221 ± 0 . 439) · 10 14 M �, M 500 c =
5 . 82 ± 1 . 15) · 10 14 M �, and M 200 c = (8 . 55 ± 1 . 7) · 10 14 M �. These
i ve the follo wing set of sparsity values: s 200, 500 = 1.47 ± 0.41,
 200, 2500 = 3.85 ± 1.08, and s 500, 2500 = 2.62 ± 0.73. We obtain a
-value p = 0.21 and Bayes Factor B f = 0.84, incorporating errors on
he measurement of s 200, 500 yields a higher p-value, p = 0.40, which
an be interpreted as an ef fecti ve sparsity of s eff 

200 , 500 = 1 . 40. These
esults disfa v our the hypothesis that the cluster has gone through a
ajor merger in its recent history. 

.4 Abell 2345 

bell 2345 is a cluster at z = 0.179 that has been identified as a
erturbed system by a variety of studies that hav e inv estigated the
istribution of the galaxy members in optical bands (Dahle et al. 
002 ; Boschin, Barrena & Girardi 2010 ), as well as the properties
f the gas through radio and X-ray observ ations (e.g. Giov annini,
ordi & Feretti 1999 ; Bonafede et al. 2009 ; Lovisari et al. 2017 ;
olovich et al. 2019 ; Stuardi et al. 2021 ). The detection of radio

elics and the disturbed morphology of the gas emission indicate that 
he cluster is dynamically disturbed. Furthermore, the analysis by 
oschin et al. ( 2010 ) suggests that the system is composed of three

ub-clusters. Dahle et al. ( 2002 ) have conducted a weak lensing study
n a small field of view centred on the main sub-cluster and found
hat the density distribution is roughly peaked on the bright central 
alaxy. This is also confirmed by the study of Cypriano et al. ( 2004 ),
o we ver, the analysis by Okabe et al. ( 2010 ) on a larger field of view
as indeed shown that Abell 2345 has a complex structure. The shear
ata have been re-analysed to infer lensing masses that are reported 
n latest version the LC 

2 -catalogue (Sereno 2015 ): M 200 c = (28 . 44 ±
0 . 76) · 10 14 M �, M 500 c = (6 . 52 ± 2 . 47) · 10 14 M �, and M 2500 c =
0 . 32 ± 0 . 12) · 10 14 M �. These mass estimates give the following set
f sparsity values: s 200, 500 = 4.36 ± 2.33, s 200, 2500 = 87.51 ± 46.83, 
nd s 500, 2500 = 20.06 ± 10.74. Using only the s 200, 500 estimate result
n a very small p-value, p = 4.6 · 10 −5 . Incorporating errors on the
easurement of s 200, 500 yields a higher p-value, p = 7.5 · 10 −4 ,
hich can be interpreted as an ef fecti ve sparsity of s eff 

200 , 500 = 2 . 76,
ignificantly lower than the measured value, however, both strongly 
a v our the signature of a major merger event, which is confirmed by
he combined analysis of the three sparsity measurements for which 
e find a divergent Bayes factor. In Fig. 14 , we plot the marginal
osterior for the single sparsity s 200, 500 (orange solid line) and for the
nsemble of sparsity estimates (purple solid line). In the former case 
ith obtain a median redshift z LMM 

= 0 . 30 + 0 . 03 
−0 . 06 , while in the latter

ase we find z LMM 

= 0.39 ± 0.02, which suggests that a major merger
vent occurred t LMM 

= 2.1 ± 0.2 Gyr ago. One should, ho we ver, note
hat in light of the discussions presented abo v e, this result could be
ssociated to a more recent merger event which, as can be seen in
ig. 12 , are artificially disfa v oured by our method. 

 C O N C L U S I O N S  

n this work, we have investigated the properties of the mass profile of
assive dark matter haloes hosting galaxy clusters. We have focused 

n haloes undergoing major merger events with the intent of finding 
bservational proxies of the halo mass distribution that can provide 
ints of recent mergers in galaxy clusters. To this purpose, we have
erformed a thorough analysis of N -body halo catalogues from the
ultiDark-Planck2 simulation. 
We have shown that halo sparsity provides a good proxy of the

alo mass profile, especially in the case of merging haloes whose
ensity profile significantly deviates from the NFW formula. We have 
ound that major mergers leave a characteristic universal imprint on 
he evolution of the halo sparsity. This manifests as a rapid pulse
esponse to the major merger event with a shape that is independent
f the time at which the major merger occurs. The onset of the
erger systematically increases the value of the sparsity, suggesting 

hat mass in the inner part of the halo is displaced relative to the mass
n the external region. Following the pulse, the value of the sparsity, a
uiescent evolution of the halo mass distribution is reco v ered within
nly ∼2 dynamical times, which is consistent with the findings of
he concentration analysis by Wang et al. ( 2020 ). 

The universal imprint of major mergers on the evolution of 
alo sparsity implies the universality of the distribution of halo 
parsities of merging and quiescent haloes, respectively. That is 
o say that at any given redshift it is possible to distinctly char-
cterize the distribution of merging and quiescent haloes. This 
s because the distribution of sparsity values of haloes that have
ndergone their last major merger within | T | � 2 dynamical times
iffers from that of quiescent haloes that had their last major
erger at earlier epochs, | T | � 2. The former constitutes a sub-

ample of the whole halo population that largely contributes to 
he scatter of the halo sparsity distribution with their large sparsity
alues. 

The characterization of these distributions enable us to devise 
tatistical tests to e v aluate whether a cluster at a given redshift and
ith given sparsity estimates has gone through a major merger in

ts recent history and eventually at which epoch. To this purpose,
e hav e dev eloped different metrics based on a standard binary

requentist test, Bayes factors, and SVMs. We have shown that having 
ccess to cluster mass estimates at three different o v erdensities,
llowing to obtain three sparsity estimates, provides more robust 
onclusions. In the light of these results, we have developed a
MNRAS 513, 4951–4967 (2022) 
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umerical code that can be used to investigate the presence of
ajor mergers in observed clusters. As an example case, we have

onsidered Abell 2345, a known perturbed clusters as well as Abell
83 a known quiescent cluster. 
In the future, we plan to expand this work in se veral ne w directions.

n the one hand, it will be interesting to assess the impact of baryons
n halo sparsity estimates especially for merging haloes. This should
e possible through the analysis of N -body/hydro simulations of
lusters. On the other hand, it may also be useful to investigate
hether the universality of the imprint of major mergers on the

volution of halo sparsity depends with the underlying cosmological
odel. The analysis of N -body halo catalogues from simulations of

on-standard cosmological scenarios such as the RayGalGroupSims
uite (Corasaniti et al. 2018 ; Rasera et al. 2021 ) may allow us to
ddress this point. 

It is important to stress that the study presented here focuses on
he statistical relation between halo sparsity and the epoch of last

ajor merger defined as the time when the parent halo merges
ith a smaller mass halo that has at least one-third of its mass.
his is different from the collision time, or the central passage

ime of two massive haloes, which occur on a much shorter time-
cale. Hence, the methodology presented here cannot be applied to
ullet-like clusters that have just gone through a collision, since

he distribution of the collisionless dark matter component in the
olliding clusters has not been disrupted and their merger has yet to be
chiev ed. Ov erall, our results open the way to timing major merger in
erturbed galaxy clusters through measurements of dark matter halo
parsity. 
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PPENDI X  A :  L A M M A S  C O D E  

e have developed a specialized analysis pipeline LAMMAS that 
mplements the steps detailed throughout this work. This PYTHON 

ibrary, based on the EMCEE (F oreman-Macke y et al. 2013 ) library,
s designed to estimate the posterior distributions and test statistics 
resented in this work to allow one to estimate whether a cluster with
iven sparsity measurements has gone through a major merger and 
ventually when such event has occurred. 

As an input, the user specifies the mass measurements of the galaxy 
luster under investigation, M 200c and M 500c , which are mandatory, 
nd M 2500c , which is optional. In addition, the user is required
o input the redshift of the cluster and the assumed cosmology,
lthough for the time being the cosmology must be set to that of
he numerical simulation used in the calibration, namely the Planck 
osmology of the Uchuu simulations. From this information, the code 
hen carries out a MCMC estimation of the posterior distribution 
sing one and three sparsities if M 2500c has been specified. This
s done using a Metropolis Hastings algorithm o v er a total of 10 5 

teps by default. The likelihood functions used in these estimations 
re those of equations ( 7 and 15 ), respectively for one and three
parsity estimates. The redshift dependence of the parameters of 
hese distributions is taken into account by interpolating tabulated 
easurements calibrated using simulation data. 
Priors are taken into account during the posterior estimation. By 

efault, the program uses a uniform prior in a LMM 

as used throughout
his work, but the user can instead choose to use uniform priors in
 LMM 

or t LMM 

, all being distinct from one another. At the time of
riting more complex prior selection has not been implemented. 
The resulting output takes the form of a PYTHON dictionary 

ontaining posterior distributions, median likelihoods, and corre- 
ponding credible intervals but also the p -value corresponding to the
easurement of s 200, 500 and Bayes factors corresponding to the one 

nd three sparsity estimates. 
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