
HAL Id: hal-03500332
https://hal.science/hal-03500332

Submitted on 22 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy Efficient, Real-time and Reliable Task
Deployment on NoC-based Multicores with DVFS

Lei Mo, Qi Zhou, Angeliki Kritikakou, Ji Liu

To cite this version:
Lei Mo, Qi Zhou, Angeliki Kritikakou, Ji Liu. Energy Efficient, Real-time and Reliable Task Deploy-
ment on NoC-based Multicores with DVFS. DATE 2022 - IEEE/ACM Design, Automation and Test
in Europe, Mar 2022, Antwerp, Belgium. pp.1-6. �hal-03500332�

https://hal.science/hal-03500332
https://hal.archives-ouvertes.fr


Energy Efficient, Real-time and Reliable Task
Deployment on NoC-based Multicores with DVFS

Lei Mo∗, Qi Zhou†, Angeliki Kritikakou‡, and Ji Liu§
∗School of Automation, Southeast University, Nanjing 210096, China, Email: lmo@seu.edu.cn

†School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China, Email: 220184505@seu.edu.cn
‡Univ Rennes, INRIA, CNRS, IRISA, Rennes 35042, France, Email: angeliki.kritikakou@irisa.fr
§Big Data Laboratory, Baidu Research, Beijing 100085, China, Email: liuji04@baidu.com

Abstract—Task deployment plays an important role in the
overall system performance, especially for complex architectures,
including several cores with Dynamic Voltage and Frequency Scal-
ing (DVFS) and Network-on-Chips (NoC). Task deployment affects
not only the energy consumption but also the real-time response
and reliability of the system. In this work, a task deployment
approach is proposed to optimize the overall system energy con-
sumption, including computation of the cores and communication
of the NoC, under task reliability and real-time constraints. More
precisely, the task deployment approach combines task allocation
and scheduling, frequency assignment, task duplication, and multi-
path data routing. The task deployment problem is formulated
using mixed-integer non-linear programming. To find the optimal
solution, the original problem is equivalently transformed to
mixed-integer linear programming, and solved by state-of-the-
art solvers. Furthermore, a decomposition-based heuristic, with
low computational complexity, is proposed to deal with scalability.
Finally, extended simulations evaluate the proposed methods.

I. INTRODUCTION

Multicore architectures integrate multiple processors on a
single chip, leading to platforms with low supply frequency,
high data throughput and better energy efficiency [1]. With
the development of nanoscale technologies, various processors
communicate via the Network-on-Chips (NoC), instead of tradi-
tional, non-scalable, data buses [2]. The NoC uses its underlying
micro-network components, i.e., routers, for the communication
among the processors. The routers are usually connected by a
mesh network, one of the most effective NoC topologies, due
to its regularity, high bandwidth and short interconnections [3].

The inter-processor communication cost (time and energy)
over NoC is not negligible compared to the cost of computation,
occurring at the processors [4]. Furthermore, the communication
cost depends on both task mapping and routing path decision.
When dependent tasks are allocated and executed on different
processors, data must be transmitted. Furthermore, multiple
routing paths for the data transmission can exist in NoC,
such as in the mesh network [2]. To improve the overall
system performance, it is necessary to consider inter-processor
communication, task mapping and routing path selection as an
integral task deployment process.

Meanwhile, critical applications have the real-time and re-
liability constraints [5], whereas system energy consumption
is essential. Although energy efficiency, real-time and reliable
task execution are both important design objectives, they are
usually conflicting. Enhancing real-time execution and reliabil-
ity often requires more energy consumption. Dynamic Voltage
and Frequency Scaling (DVFS) [6] has been introduced into

TABLE I
CLASSIFICATION OF REPRESENTATIVE TASK DEPLOYMENT APPROACHES

Ref. Task Multicore platform Solution
All. Sch. Dup. VF. Reli. Com. MP. Opt. Heur.

[6]
√ √ √ √

[8]
√ √ √ √ √ √

[10]
√ √ √ √ √

[11]
√ √ √ √ √ √

[4]
√ √ √ √

[12]
√ √ √ √

[3]
√ √ √ √ √

[13]
√ √ √ √ √

[2]
√ √ √ √ √ √

[5]
√ √ √ √ √ √ √

[14]
√ √ √ √ √ √

Our
√ √ √ √ √ √ √ √ √

modern multicore platforms to improve the energy efficiency,
as it adjusts the time and the energy required to execute the
tasks. However, DVFS has a negative impact on task execution
and reliability. Lower frequencies lead to longer execution times
and increased transient fault rates [7]. To increase the reliability,
task duplication is applied [8]. However, task duplication has
a significant impact both on energy and time; more tasks are
executed, thus, more energy and time is required for the task
computation and their communication over the NoC. Therefore,
task duplication and frequency assignment should be also con-
sidered during the deployment process [9].

The task deployment problem has already been studied in
embedded systems. Table I categories representative papers
from the literature, performing task allocation (All.), scheduling
(Sch.) and duplication (Dup.) on multicores with DVFS (VF.),
considering multi-path routing (MP.), task reliability (Reli.) and
communication cost (Com.). The solutions are given by optimal
(Opt.) and heuristic (Heur.) algorithms. Several approaches exist
to map dependent/independent tasks on the multi-core/single-
core embedded platforms under multiple constraints, such as
energy, real-time, and reliability [6], [8], [10], [11]. These
works consider processors typically connected with a high-
speed data bus. Thus, the communication cost between any two
processors is usually ignored, as it’s much smaller compared
to task execution cost. However, for the platforms based on
NoC, the communication cost becomes important. To reduce
the communication cost on NoC-based platforms, the common
methods include mapping tasks to processors [4], [12] and
adjusting the operating voltage of the routers [3], [13]. However,
task reliability is not taken into account, especially when DVFS
is available. Existing approaches, to enhance NoC reliability,



include spare processors [2] and task duplication [5], [14].
However, no DVFS is considered [5], [14].

Compared with the state-of-the-art, we propose a novel task
deployment process that includes simultaneous optimization
of task allocation and scheduling, frequency assignment, task
duplication and path selection, in order to balance the energy
consumption of NoC-based multicore platforms, while meeting
the system requirements regarding real-time execution and
reliability. The main contributions of this work are:
1) An MINLP formulation for energy efficient task deployment

problem on NoC-based multicores. The original problem
is equivalently converted to an MILP problem, by adding
auxiliary variables and constraints, to be optimally solved.

2) A decomposition-based heuristic to solve the above problem,
which divides the original problem into three subproblems,
having a simpler structure with less constraints and variables.

3) Extensive experimental results to demonstrate the advantages
of the proposed approach, and evaluate the impact of pa-
rameters on task deployment. Compared with the optimal
method, the proposed heuristic has negligible computation
time, with an average cost of 26.5% in energy savings.

Next, Section II introduces the system model and the problem
formulation. Section III designs the heuristic method. Sec-
tion IV presents the evaluation and Section V the conclusion.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

1) Task Set: The task set consists of M periodic tasks
{τ1, . . . , τM}, released at time 0, sharing a common schedul-
ing horizon H . Each task τi is described by a tuple
{Ci, Di, pij , sij}, where Ci is the Worst Case Execution Cycle
(WCEC), Di is the relative deadline, and pij is the (i, j)th

element of task dependency matrix p = [pij ]M×M . If tasks τi
and τj are dependent, and τi is a predecessor of τj , pij = 1,
else, pij = 0. When τi finishes, it will generate a set of data
with sizes sij for its successor τj (pij = 1).

2) Platform: The target platform consists of N processors
{θ1, . . . θN} and N routers (R), connected through a 2D-mesh
network, as a 2 × 2 example shown in Fig. 1(a). Each router
communicate with the neighbor routers through a pair of links.
Data can be transmitted through multiple paths.

The processors support DVFS and have the same Instruction
Set Architecture (ISA). A processor has L different Volt-
age/Frequency (V/F) levels {(v1, f1), . . . , (vL, fL)}. A typical
power model [13] is considered: the processor power with
(vl, fl) is Pl = P sl + P dl . The static power is P sl =
Lg(vlK1e

K2vleK3vb + |vb|Ib). The dynamic power is P dl =
Cev

2
l fl. Ce is the average switched capacitance. Lg is the num-

ber of logic gates. K1, K2 and K3 are parameters depending
on the processor type. vb and Ib are the body-bias voltage and
body junction leakage current. The computation energy of task
τi is ecompi = Plt

comp
i , where tcompi its computation time.

The NoC topology is described by a directed graph G(V, E),
where the vertexes represent each processor θk ∈ V , while
the edge lij ∈ E represents a direct communication link
between the routers of processors θi and θj . Based on the
NoC communication model and the Manhattan distance between

𝜃$(0,0)

R1

𝜃%(0,1)

R2

𝜃&(1,0)

R3

𝜃*(1,1)

R4

(a) Platform

𝜃! 𝜃" 𝜃#

𝜃$ 𝜃% 𝜃&

𝜃' 𝜃' 𝜃(
𝑤)*

Energy-oriented
path

Time-oriented
path

(b) Multi-path routing

𝝉𝟏

𝝉𝟐

𝝉𝟑

𝝉𝟒

𝝉𝟓

𝝉𝟔

𝑠$%

𝑠*%

𝐿$

𝐿%

𝐿&

(c) Task duplication

Fig. 1. An example of NoC-based multicore system.

the source and destination processors, a positive weight wij is
associated with the edge lij . The goal of the task deployment is
energy reduction under real-time constraints, we consider both
energy-oriented and time-oriented paths as available options to
transmit data, as shown in Fig. 1(b). Note that, the path with
minimal energy can be different from the path with minimal
latency [4]. Our approach explores these different paths.

For the energy (time)-oriented path, the weight wij represents
the energy (time) required for transmitting and receiving a
unit of data between processors θi and θj . Hence, the aim of
energy (time)-oriented routing is to find the shortest path, e.g.,
according to Dijkstra’s algorithm. Based on the graph G(V, E),
we obtain an energy matrix e = [eβγkρ]N×N×N×P and a time
matrix t = [tβγρ]N×N×P , where eβγkρ represents the energy
consumed at processor θk, if a unit of data is routed from θβ to
θγ through the ρth path, while tβγρ denotes the time required
to transmit a unit of data from θβ to θγ through the ρth path.
When two dependent tasks are mapped on the same processor,
the communication cost (time and energy) is zero [12]. The
communication energy of a router, including the communica-
tions between this router and its neighbor routers and associated
processor, is incorporated into the energy consumption of the
processor for convenience.

3) Reliability: This work focuses on transient faults and
adopts the Poisson fault probability model [8]. If a processor
uses (vl, fl) to execute the task τi with Ci cycles, the task reli-

ability is ril = e
−λ×10

d(fmax−fl)
fmax−fmin ×Cifl , where λ is the maximum

failure, d is a constant that indicates the sensitivity of the failure
rate corresponding to frequency scaling, fmax = max∀l{fl}
and fmin = min∀l{fl}. When the reliability of task τi is lower
than its threshold Rth, to enhance the task reliability, task τi is
duplicated (see (4) and (5)), considering that it is unlikely to
have faults occurring concurrently in both copies [7].

Note that the task duplication affects the task model, and
thus, the computation and communication cost. For instance,
tasks τ1, τ2 and τ3 are the original tasks, and tasks τ4, τ5 and
τ6 are their copies in Fig. 1(c). By task duplication, the task
dependencies change, e.g., due to the dependency of τ1 and τ2,
τ4 and τ2 become dependent and τ4 generates data to τ2.

B. Problem Formulation

The goal is to deploy tasks to balance the energy consumption
of the overall system under real-time and reliability constraints.
To achieve that, the following decisions are taken: 1) task
frequency assignment, 2) task duplication, 3) path selection, 4)
task allocation and 5) task scheduling. To formulate the task
deployment problem, we introduce the following variables: 1)
binary variable yil = 1 if task τi is executed with frequency



fl, otherwise, yil = 0; 2) binary variable hi = 1 if task τi
exists, otherwise, hi = 0; 3) binary variable cβγρ = 1 if data
is transmitted from θβ to θγ through the ρth path, otherwise,
cβγρ = 0; 4) binary variable xik = 1 if task τi is allocated to
processor θk, otherwise, xik = 0; 5) binary variable uij = 1
if task τi proceeds τj , otherwise, uij = 0; 6) continuous
variable tsi represents the start time of task τi. For the sake
of paper presentation, let N = {1, . . . , N}, M = {1, . . . ,M},
M′ = {1, . . . , 2M}, L = {1, . . . , L} and P = {1, 2}.

1) Task Allocation Constraints: Each task is executed on a
single processor [6], without task migration:∑

k∈N
xik = 1, ∀i ∈M′. (1)

2) Path Selection Constraints: One data routing path is
selected between two processors [2]:∑

ρ∈P
cβγρ = 1, ∀β 6= γ ∈ N . (2)

3) Frequency Assignment Constraints: The task is executed
with one V/F level [10]:∑

l∈L
yil = 1, ∀i ∈M′. (3)

4) Task Reliability Constraints: Let τi and τi+M (∀i ∈ M)
denote the original and duplicated tasks, respectively, where
τi and τi+M have the same execution cycles. Taking ril and
yil into account, the reliability of task τi (∀i ∈ M), without
duplication, is ri =

∑
l yilril. Note that whether a duplicated

task τi+M exists, it dependents on the task reliability ri. To
indicate that, we introduce a binary variable hi. Since the
original tasks always exist, hi = 1 (∀i ∈ M). If ri ≥ Rth,
there is no need to duplicate task τi (hi+M = 0); otherwise,
task τi is duplicated (hi+M = 1). We alternatively rewrite the
above comparison in a linearly manner by the following lemma.

Lemma 2.1: 1 Assume that b is a binary variable, while x is a
variable bounded by 0 ≤ x ≤ s. The comparison: 1) x ≥ s1 ⇒
b = 0; 2) x < s1 ⇒ b = 1 can be described by x−(s1−σ)

s ≤
1 − b ≤ x

s1
, where s1 ≤ 1 is a constant, and σ is a positive

small enough value.
Based on Lemma 2.1, let σ = min∀i,l{|ril − Rth|}. The

relationship between ri and hi+M can be described as:

ri − (Rth − σ)
max∀i,l{ril}

≤ 1− hi+M ≤
ri
Rth

, ∀i ∈M. (4)

By duplicating the task τi (∀i ∈ M), its reliability is given
by r′i = 1 − (1 − hiri)(1 − hi+Mri+M ). Therefore, to satisfy
the reliability constraint, we have

r′i ≥ Rth, ∀i ∈M. (5)

5) Task Sequence Constraint: A task τi cannot start ex-
ecution until the input data from all its predecessors has
arrived. When a task completes execution, its output data
is available for transmission to all its successors. A router
propagates the received task data, from other routers, towards
its processor in sequence, and thus, the time spent for re-
ceiving the data required for the task execution is tcommi =∑
j

∑
β

∑
γ

∑
ρ pjihihjxiβxjγcβγρtβγρ.

1Due to the page limit, the proofs of the lemmas are omitted.

Let tsi and tei denote the start time and the end time of task
τi, respectively, where 0 ≤ tsi ≤ tei ≤ H . The task execution
time tcompi = tei − tsi = hi

∑
l yil

Ci
fl

. For the dependent tasks τi
and τj , their start time and end time are bounded by

tsj + (1− pij)H ≥ tsi + pijt
comp
i + tcommj , ∀i 6= j ∈M′. (6)

If pij = 1, τi precedes τj and τj is the closest task of τi, we
get tsj ≥ tei + tcompj , else, (6) is always satisfied.

6) Task Non-Overlapping Constraint: When independent
tasks τi and τj (i.e., pij = 0), are allocated to the same
processor, their execution sequence must be determined, since
the processor executes only one task at a time instance:

tei ≤ tsj+(2−xik−xjk)H+(1−uij)H, ∀i 6= j ∈M′, ∀k ∈ N .
(7)

If τi and τj are assigned to the same processor (e.g., xik =
xjk = 1), (7) is meaningful, else, (7) is always true. With xik =
xjk = 1, if uij = 1 (i.e., τi precedes τj), we have tei ≤ tsj , else
(i.e., uij = 0), (7) is always satisfied.

7) Real-Time Constraints: Since task τi should be finished
within the scheduling horizon H and its execution time should
be smaller than the relative deadline Di, we have

tcompi ≤ Di, ∀i ∈M′, (8)

tei ≤ H, ∀i ∈M′. (9)

8) Objective Function: Regarding the communication en-
ergy, if dependent tasks τi and τj are allocated to different
processors, e.g., θβ and θγ , the energy consumed on pro-
cessor θk to transmit task data, with size sij from θβ to
θγ , through the ρth path, is ecommijβγkρ = pijsijxiβxjγeβγkρ.
On this basis, taking task duplication hi into account, the
communication energy consumed by processor θk is Ecommk =∑
i

∑
j

∑
β

∑
γ

∑
ρ hihje

comm
ijβγkρ.

Regarding the computation energy, to execute task τi with
(vl, fl), the required energy is ecompi = hi

∑
l yil

Ci
fl
Pl. Taking

task allocation xik into account, the computation energy con-
sumed by processor θk is Ecompk =

∑
i xike

comp
i .

To balance the energy consumption of the processors [15],
the task deployment problem is formulated as follows:

P1 : min
x,y,h,c,u,ts

(max
∀k
{Ecommk + Ecompk }) (10)

s.t. (1)− (8).

9) Problem Linearization: Since the nonlinear items hiyil,
xikhiyil and hihjxiβxjγ are included in the constraints (5)–
(8), problem (10) is an MINLP, which is difficult to solve
directly. To simplify the structure of the problem, we propose
a linearization method to deal with nonlinear items.

Lemma 2.2: Assume that x, y and z are the binary variables.
The nonlinear item z = xy can be replaced by the following
constraints: z − x ≤ 0, z − y ≤ 0 and x+ y − z ≤ 1.

The objective function with the constraints completes the
MILP formulation, which can be optimally solved by the
existing methods, such as branch-and-bound or Gurobi solver.
However, significantly large amount of CPU time and resources
is required for the optimal solution, especially with large prob-
lem sizes. This limitation reduces the applicability of complex,
but more realistic, task deployments approaches in real systems.



Algorithm 1 Frequency Assignment and Task Duplication
1: Input: (vl, fl) (∀l ∈ L), Ci, Di (∀i ∈ M′);
2: Output: yil and hi;
3: Initialize: S[i] = −1 (∀i ∈ M′), hi = 1, hi+M = −1 (∀i ∈ M);
4: for ∀i ∈ M do
5: eMinMaxComp =∞;
6: for ∀l ∈ L do
7: if Cifl > Di then
8: Continue;
9: else

10: eMaxComp = max∀i{
Ci
fS[i]

PS[i]} (S[i] 6= −1);

11: if eMaxComp < eMinMaxComp then
12: eMinMaxComp = eMaxComp;
13: S[i] = l;
14: else
15: Continue;
16: end if
17: end if
18: end for
19: Calculate yil according to S[i] = l;
20: Calculate hi+M according to (4);
21: Calculate y(i+M)l according to (5);
22: end for

III. HEURISTIC ALGORITHM

Therefore, to improve the scalability of the proposed task
deployment approach, we propose a novel heuristic to efficiently
solve problem (10), which contains the following three phases.

1) Frequency Assignment and Task Duplication: The pro-
cessors have the same ISA and V/F levels. Therefore, if a
frequency is assigned to each task, and then, the tasks are
allocated to the processors or different paths are selected for data
transmission, the decision regarding the frequency assignment
is still valid. In addition, as task duplication hi is determined by
frequency assignment yil, according to (4), yil and hi should
be still jointly optimized. Since yil and hi mainly influence
the time tcompi and the energy ecompi of task computation, to
balance the computation energy, the frequency assignment and
task duplication problem is formulated as:

P2 : min
y,h

(max
∀i
{ecompi }) (11)

s.t. (3), (4), (5), (8).

Minimizing the maximum energy consumption of each task
execution helps to balance the energy consumption of the pro-
cessors during task allocation occurring in phase 2. Since task
allocation xik and path selection cβγρ are currently unknown,
the communication cost (time and energy) is not considered
in (11). Note that P2 is an INLP problem, as the binary variables
yil and hi are coupled nonlinearly in (5) and (8). To solve
this problem, a heuristic is proposed (described in Algorithm 1)
based on the Greedy Algorithm (GA) [16]. The steps are:
a. An index S[i] is introduced for frequency assignment per

task τi (∀i ∈M′), and it is initialized as S[i] = −1 (Line 3).
If (vl, fl) is used to execute task τi, then S[i] = l.

b. Algorithm 1 follows the sequence {τ1, . . . , τM} to itera-
tively assign the frequencies {f1, . . . , fL} for each task τi,
with the aim to minimize the increase of energy consump-
tion among the tasks that have already been assigned a fre-
quency, i.e., min(max∀i{ecompi }) (S[i] 6= −1) (Line 10). If
the real-time constraint (8) cannot be satisfied, the frequency
assignment yil = 1 is excluded (Line 7).

c. When the frequency assignment yil regarding the original
task τi is known, the existence of the duplicated task hi+M

Algorithm 2 Task Allocation and Scheduling
1: Input: yil and hi;
2: Output: xik , uij and tsi ;
3: Initialize: O[i] = −1 (∀i ∈ M′);
4: Sort tasks according to their in-degree and out-degree;
5: for ∀i ∈ M′ (hi = 1) do
6: MinMaxEng =∞;
7: for ∀k ∈ N do
8: Calculate Ecommk and Ecompk ;
9: MaxEng = max∀k{Ecommk + Ecompk };

10: if MaxEng < MinMaxEng then
11: MinMaxEng = MaxEng;
12: O[i] = k;
13: else
14: Continue;
15: end if
16: end for
17: Calculate xik according to O[i] = k;
18: Calculate uij and tsi according to xik , tcommi and tcompi ;
19: end for

can be computed through (4). A similar method is used to
assign a frequency to the duplicated tasks. The main dif-
ference is that, when assigning frequency to the duplicated
tasks, the selected frequency should satisfy the reliability
constraint (5) while providing the minimum energy increase.

2) Task Allocation and Scheduling: With the frequency as-
signment yil and task duplication hi, the computation time
and energy of task τi are tcompi = hi

∑
l yil

Ci
fl

and ecompi =

hi
∑
l yil

Ci
fl
Pl, respectively. The next step is to determine the

task allocation xik, task sequence uij and task start time tsi .
To balance the energy consumption of the processors under the
task sequence and the task non-overlapping constraints, the task
allocation and scheduling problem is given by:

P3 : min
x,u,ts

(max
∀k
{Ecommk + Ecompk }) (12)

s.t. (1), (6), (7).

Note that the communication energy Ecommk and commu-
nication time tcommi are influenced by the path selection
cβγρ. However, cβγρ is unknown at the current step. To for-
mulate the problem (12), we fix the values of Ecommk and
tcommi to the average communication time of task τi and
average communication energy of processor θk, respectively,
i.e., tcommi = M1(max∀β,γ,ρ{tβγρ}+min∀β,γ,ρ{tβγρ})/2 and
Ecommk = M2(max∀β,γ{eβγk1} + min∀β,γ{eβγk2})/2. M1 is
the number of predecessors of τi, while M2 is the number
of original and duplicated tasks. Once the path selection cβγρ
is determined, the value of tcommi and Ecommk is updated
accordingly. Based on the structure of MINLP problem (12),
we design Algorithm 2:
a. A task allocation index O[i] is introduced for each task τi

(hi = 1) and it is initialized as O[i] = −1. If task τi is
allocated to processor θk, we have O[i] = k.

b. The in- and out-degrees of all tasks are calculated and the
tasks are divided into layers. For instance, in Fig. 1(c), tasks
(τ1, τ4), (τ2, τ5) and (τ3, τ6) are assigned to the first (L1),
the second (L2) and the third (L3) layers, respectively. Tasks
in the same layer are sorted in a descending order based on
their execution cycles. If the tasks in same layer have same
execution cycles, they are ordered randomly.

c. Algorithm 2 follows the sequence provided in the previ-
ous step to perform task allocation. With this sequence,



Algorithm 3 Path selection
1: Input: yil, hi, xik , uij and tsi ;
2: Output: cβγρ and tsi ;
3: Initialize: Q[β][γ] = −1 (∀β, γ ∈ N );
4: for ∀(β, γ) ∈ N do
5: MinMaxCost =∞;
6: for ∀ρ ∈ P do
7: Q[β][γ] = ρ;
8: Calculate tsi , tcommi and tei (xiγ = 1);
9: tMax = max∀i{tei};

10: if tMax > H then
11: Continue;
12: else
13: Calculate Ecommk ;
14: MinMaxCost = max∀k{Ecommk + Ecompk };
15: if MaxCost < MinMaxCost then
16: MinMaxCost = MaxCost;
17: flag = ρ;
18: else
19: Continue;
20: end if
21: end if
22: end for
23: Q[β][γ] = flag;
24: end for

the task sequence constraint (6) and task non-overlapping
constraint (7) are handled at the same time.

d. Algorithm 2 iteratively allocates a task τi (hi = 1) to a
processor θk in order to balance the energy consumption of
processors, i.e., minimize the maximum computation and
communication energy of the processors (Lines 8–15).

3) Multi-path Selection: The final phase determines the
path selection cβγρ. Note that cβγρ does not influence the
computation energy Ecompk and time T compi , only the com-
munication energy Ecommk and time T commi . To balance the
energy consumption of the processors, while meeting the real-
time constraints, the path selection problem is formulated as:

P4 : min
c

(max
∀k
{Ecompk + Ecommk }) (13)

s.t. (2), (9).

To solve the above ILP problem, we propose Algorithm 3.
a. A path selection index Q[β][γ] is used for each processor

pair (θβ , θγ), and initialized as Q[β][γ] = −1. Q[β][γ] = ρ
is the data transmission from θβ to θγ , through the ρth path.

b. The routing path is determined iteratively for each pair
of processors (θβ , θγ). The aim is to find a path for θβ
and θγ , that causes the minimum increase of communica-
tion and computation energy among these processors, i.e.,
min(max∀k{Ecompk +Ecommk }) (Lines 13–20). During this
process, the real-time constraint (9) should be satisfied.

IV. EVALUATION

The evaluation is performed considering a 4 × 4 2D-mesh
NoC. The modeling of the energy consumed by processors and
routers is based on [3]. The following parameters are considered
in our experiments: the number of processors (N ), the number
of the tasks (M ), the number of V/F levels (L).

Fig. 2(a) compares the energy consumption and the feasi-
bility, considering multi-path routing (described by (10)) and
single-path routing. Compared to multi-path routing, the path
selection cβγρ is fixed in single-path routing. Both task de-
ployment problems are optimally solved by Gurobi. We set
N = 16, M = 20, L = 6 and H = α

∑
i∈C(t

comp
i,ave + tcommi,ave ),

where C is the set of tasks belonging to the critical path.
tcompi,ave = (max∀l{Cifl Pl} + min∀l{Cifl Pl})/2 and tcommi,ave =
M1(max∀β,γ,ρ{tβγρ} + min∀β,γ,ρ{tβγρ})/2 are the average
computation time and communication time of task τi, respec-
tively. Fig. 2(a) shows that with small α, e.g., α = 0.1 or
α = 0.2, the problem is infeasible, since the constraints are
hard to satisfy. The problem feasibility increases with α; the
larger the value of α, the smaller the energy consumption. This
is because the feasibility region of the problem enlarges with α,
and the task deployment is a minimization problem. Fig. 2(a)
also shows that under the same value of α, multi-path routing
has a higher problem feasibility than single-path routing. Multi-
path routing achieves a lower energy consumption because the
path selection cβγρ is considered in the optimization. Thus, it
can find a better path selection, further improving the energy
efficiency, compared with single-path routing.

Fig. 2(b) shows the influence of processor parameters on task
allocation decision xik. We introduce Mmax = max∀k{Mk},
where Mk is the number of tasks allocated to processor θk, and
µ = ecommk /ecompk , where ecommk = max∀β,γ,k,ρ{eβγkρ} and
ecompk = max∀i,l{Cifl Pl} are the processor parameters regarding
communication and computation energy. The larger the value of
µ, the more energy is consumed in data transmission than task
execution. Fig. 2(b) shows that Mmax increases with µ; when
tasks have a large communication energy, the dependent tasks
are allocated to the same processor to reduce the cost.

Fig. 2(c) explores the influence of processor parameters
on task duplication decision hi, where Md represents the
number of duplicated tasks for M original tasks, and ε =
max∀l{Plfl }/min∀l{Plfl } is an index that represents the gap re-
garding task execution energy. Note that tcompi =

∑
l∈L yil

Ci
fl
Pl

is the energy required to execute task τi. The larger the value of
ε, the more energy is consumed because of task execution with
high frequency, compared to task execution with low frequency.
Fig. 2(c) shows that Md increases with ε. When ε is small,
the execution of one task (original task) with high frequency
is more energy efficient than executing two tasks (original
and duplicated tasks) with low frequency. With ε increasing,
executing two tasks with low frequency becomes more efficient
than executing one task with high frequency.

Fig. 2(d) and Fig. 2(e) compare the energy consumption of
the proposed task deployment scheme, with the goal of Bal-
ancing the Energy consumption (BE), and the task deployment
scheme with the goal of Minimizing the Energy consumption
(ME), i.e., min

∑
k∈N E

all
k , where Eallk = Ecommk + Ecompk

is the total energy of processor θk. To evaluate the per-
formances of these schemes, we introduce an index φ =
max∀k{Eallk }/min∀k{Eallk }, where Eallk 6= 0. The smaller the
value of φ, the more balance is achieved regarding energy
consumption of all processors. Fig. 2(d) and Fig. 2(e) show that
the total energy consumption of ME is lower than BE (average
13.62%). However, the value of φ for BE is smaller than ME.
This is because ME allocates the tasks to the same processors
to reduce communication energy. Therefore, some processors
will consume more energy than others. However, with BE this
trend can be avoided in order to achieve energy balance.

Fig. 2(f) and Fig. 2(g) compare the solutions of problem (10)
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Fig. 2. System performance with different parameters varying.

achieved by the proposed heuristic and the optimal solution,
obtained by the Gurobi solver. From Fig. 2(f), we observe that
the algorithm computation time increases with task number
M , as more variables and constraints are involved. On the
contrary, the proposed heuristic has a negligible computation
time, since it divides the problem into three subproblems, i.e.,
P2, P3 and P4, which are solved in sequence. From Fig. 2(g),
we observe that the solution of the heuristic has a higher, but
still acceptable, energy consumption (average 26.05%) than the
optimal solution, since it only provides a feasible solution.

Fig. 2(h) shows the feasibility in solving the task deployment
problem (10) for the optimal and the heuristic methods. The
experiments have been repeated na = 30 times with different
task graphs. The used metric is the problem feasible ratio
δ = nf/na, where nf is the number of experiments with
feasible solutions. Fig. 2(h) shows that δ increases with α.
The constraints are relaxed with α, thus the feasible region of
problem is enlarged. The optimal feasibility is higher than the
heuristic, since it optimizes the variables concurrently, whereas
the heuristic optimizes the variables step by step.

V. CONCLUSION

This work proposes a task deployment process for NoC-based
multicore platforms with DVFS, that balances the overall energy
consumption, under reliability and real-time constraints. The
deployment process is formulated as an MINLP problem and
equivalently transformed to an MILP problem. Our formulation
jointly optimizes frequency assignment, task allocation, task
scheduling, task duplication and path selection. Moreover, a
novel heuristic method is proposed to enhance scalability,
achieving good solutions with low computation time.
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