
HAL Id: hal-03500279
https://hal.science/hal-03500279v1

Submitted on 22 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary Matrix Completion on Graphs: Application to
Collaborative Filtering

Divyanshu Talwar, Aanchal Mongia, Emilie Chouzenoux, Angshul Majumdar

To cite this version:
Divyanshu Talwar, Aanchal Mongia, Emilie Chouzenoux, Angshul Majumdar. Binary Matrix Com-
pletion on Graphs: Application to Collaborative Filtering. Digital Signal Processing, 2022, 122,
pp.103350. �10.1016/j.dsp.2021.103350�. �hal-03500279�

https://hal.science/hal-03500279v1
https://hal.archives-ouvertes.fr


Binary Matrix Completion on Graphs: Application to Collaborative Filtering 

Divyanshu Talwar1, Aanchal Mongia1, Emilie Chouzenoux2, and Angshul Majumdar1 

divyanshu15028@iiitd.ac.in, aanchalm@iiitd.ac.in, emilie.chouzenoux@centralesupelec.fr, and angshul@iiitd.ac.in  

1Indraprastha Institute of Information Technology, Delhi, India 

2CVN, CentraleSupélec, Inria Saclay, Gif-sur-Yvette, France 

Abstract – This work addresses the problem of completing a partially observed matrix where the entries are either 

ones or zeroes. This is typically called one-bit matrix completion or binary matrix completion. In this problem, the 

association among the rows and among the columns can be modeled through graph Laplacians. Since the Laplacians 

cannot be computed from the incomplete matrix, they must be simultaneously estimated while completing the matrix. 

We model the problem as graph regularized binary matrix completion where the graphs need to be learnt from the 

data. We proposed an algorithm based on an alternating minimization scheme, taking advantage of an efficient 

proximity-based inner solver. The algorithm is applied to the problem of collaborative filtering. Experiments on 

benchmark datasets with state-of-the-art techniques in collaborative filtering show that the proposed method improves 

over the rest by a considerable margin. 

Index Terms — matrix completion, graph signal processing, collaborative filtering, recommender system 

1. Introduction 

Consider the problem of completing a partially observed matrix where the matrix is known to be of low rank. This is 

called matrix completion. In the general problem, the entries in the matrix can range from minus infinity to plus 

infinity. Our interest lies in the specific case where the entries are binary; this has been called one-bit matrix 

completion [1] or binary matrix completion [2]. One bit matrix completion is an extreme case of quantized matrix 

completion [3].  

The problem of matrix completion arises in many areas of signal processing and machine learning. There are two 

broad approaches to solve it. Traditionally, the low-rank matrix was factored into a thin and a fat matrix. Those 

matrices were then recovered by matrix factorization [4, 5] or its deep version [6]. Another approach is via nuclear 

norm minimization [7, 8] where the matrix is directly recovered by promoting a low-rank solution. Since rank 

minimization is known to be NP-hard, its convex surrogate (nuclear norm) is minimized instead.     

mailto:divyanshu15028@iiitd.ac.in
mailto:aanchalm@iiitd.ac.in
mailto:emilie.chouzenoux@centralesupelec.fr
mailto:angshul@iiitd.ac.in


Matrix completion finds applications in several signal processing problems such as seismic data interpolation [9], 

array signal processing [10, 11], etc. Applied machine learning problems such as collaborative filtering [12], clustering 

[13], classification [14], etc. have also been modeled as matrix completion. In most applied machine learning 

problems, the entries are binary. For example, in collaborative filtering, the matrix gathers information about whether 

a user likes a product or not. In such scenarios, binary matrix completion is a more appropriate choice.   

In typical signal processing applications such as [9-11], there is no relationship among the rows or among the columns. 

In contrast, in machine learning applications like [12-14], the relationship is known. For example, classification, the 

labels are known [14]. In drug-target interaction, the structures of the drug molecules and tissue structure are known 

[15, 16]. In collaborative filtering, the similarity between the users and the items can also be pre-computed and 

represented by a graph [17, 18].   

The aforesaid studies [15-18] solve the general matrix completion problem on graphs where the entries in the matrix 

are unconstrained (i.e. they are real numbers). However, for the said problems, the entries are actually binary, 

representing interactions between users and items [12, 17, 18], or drugs and targets [15, 16. Thus, ideally one would 

like to solve them via binary matrix completion on graphs.  To the best of our knowledge, it has not been attempted 

before. In this work, we propose to address the problem of binary matrix completion on graphs. We will make a 

particular focus on solving the collaborative filtering problem. 

Let us point out that a major difference between prior matrix completion techniques on graphs [17, 18] and our 

proposal. In the aforesaid studies, the graph is assumed to be known; ‘by known’, we mean that the graph has been 

computed once from the partially observed data matrix and is fixed input for the said studies. In contrast, in this work, 

we will learn the graph jointly with performing the binary matrix completion task. Our method can then be viewed as 

a marriage of graph learning [19] with matrix completion. Note that the work [19] proposes formulations for learning 

graphs from data; it is nothing to do with matrix completion. The intuitive understanding behind our proposal is given 

at the beginning of section 3. 

2. Background 

The problem of collaborative filtering can be expressed in as a matrix completion problem, 

( )Y R X N= +             (1) 

Hereabove, the matrix X is the rating matrix; we assume that users are along the rows and items along the columns. R 



is the so-called restriction operator which passes the value of the available ratings from X to Y. Y is the partially filled 

matrix of observed ratings. The noise in the system, represented by N, is usually assumed to be i.i.d. normally 

distributed. The problem is to retrieve X given Y and R. In standard matrix completion, the entries of X are assumed 

to be real. However, in practical collaborative filtering, X is a binary matrix representing user’s choice on items; the 

user either likes (1) or does not like (0). Therefore, this problem should be treated as a binary matrix completion 

problem [1].   

In the latent factor model [20], it is assumed that the user’s choice is determined by certain hidden/latent factors. The 

items possess these factors to a certain extent. If there is a match between the user’s propensity towards the factors 

and the intensity with which these factors are present in the item, the user ‘likes’ the item (represented by 1); on the 

other hand, if there is a mismatch in the expectations of the user and what the item offers, the user ‘dislikes’ the item 

(represented by 0). This phenomenon is modeled as an inner product between the user’s and item’s latent factors. 

When all the users and items are considered, one can express the rating matrix in the following form:   

X UV=            (2) 

where U denotes the users’ latent factor matrix (with users on its rows) and V denotes the items’ latent factor matrix 

(with items on its columns). Matrix U is tall while V is fat, thus modeling the low-rank nature of X, adjusted by the 

setting of the number of latent factors, corresponding to the number of columns for U, or rows for V matrices. For 

collaborative filtering, the matrix factorization formulation is embedded in (1) giving rise to:  

( )Y R UV N= +            (3) 

The solution to the matrix factorization problem (3) can be formulated [9]: 

( )2 2 2

,
min ( )

F F FU V
Y R UV U V− + +         (4) 

The first term is the data fidelity term arising out of the Gaussian nature of noise. The ridge type regularizations, 

weighted by λ>0, applied on both latent factor matrices prevent over-fitting.  

A more direct approach to solve the original problem (1) is to directly solve for the rating matrix X. This is achieved 

by minimizing a least-squares term penalized by a nuclear norm [21]: 

2

*
min ( )

FX
Y R X X− +            (5) 

The nuclear norm, with weight λ>0 is a convex surrogate of the rank penalty [12]. Formulation (5) is convex, but it 

presents a limited performance in applications to collaborative filtering [9].   



In neighborhood-based models of collaborative filtering, the matrix is completed by linear interpolation. The similarity 

between the user’s [22] or item’s [23] is used as interpolation weights. The similarity is computed from the data, i.e. 

for computing the similarity between the users, the ratings of the users on different items are used. Studies like [18] 

proposed combining the similarity scores of [22, 23] into the matrix factorization framework (3). They encode the 

similarity information in graph Laplacians, by including those into penalty terms:  

( ) ( )( )2

,
min ( ) T T

U VFU V
Y R UV Tr U L U Tr VL V− + +        (6) 

Here λ is a positive regularization parameter, LU and LV are the graph Laplacians for the user and item latent factor 

matrices respectively. In [17] a similar idea was proposed for the completion problem formulation (5), leading to the 

resolution of: 

( ) ( )( )2

*
min ( ) T T

U VFX
Y R X X Tr XL X Tr X L X − + + +       (7) 

depending on two positive penalty weights λ and µ. Note that the aforementioned works assumed the knowledge of 

the involved graph Laplacians matrices.  

This section on relevant background only refers to studies that are pertinent for understanding our proposal. For a 

thorough review of matrix completion techniques in collaborative filtering, one can peruse [24].  

3. Proposed Binary Matrix Completion on Graphs 

The graph regularization incorporated in both (6) and (7) has been shown to improve the results by a large margin 

[17,18]. However, there are two shortcomings of these studies. First, they treat the matrix X to be with real-valued 

entries, whereas those are actually binary in applications such as collaborative filtering [1]. Second, the similarities 

(and hence the Laplacians) between the users and items are computed once from the incomplete data. Ideally, they 

should have been estimated iteratively while completing the matrix. This second point solicits further explanation. 

Consider three users whose actual ratings are as follows: 

U1: [1 0 0 1 0 1 1 0]

U2: [1 1 1 1 1 0 0 0]

U3: [0 0 0 1 0 0 1 0]

  

These ratings are not fully observed, say the partially observed ratings are: 

U1: [1 x x 1 x x 1 x]

U2: [1 x x 1 x x x 0]

U3: [0 x x x x 0 x 0]

 



Going by the previous studies [15, 16] the similarity between U1 and U3 computed from the partially observed ratings 

will be low (Hamming distance: 3) and the similarity between U1 and U2 will be higher (Hamming distance: 1). 

However, when the similarities are computed from the filled rating vectors, one can see that the similarity between 

U1 and U3 is higher (Hamming distance: 2) compared to the similarity between U1 and U2 (Hamming distance: 5). 

This toy example shows the importance of computing the similarities (thereby the graph Laplacians) from the 

completed matrix, rather than from the partially observed one. Since the completed matrix is obviously not available, 

the best possible action is to learn the graph jointly with the resolution of the matrix completion task, following an 

iterative and alternating scheme.  

Such iterative schemes have been used in prior matrix completion studies, for example in [25] prior information was 

assumed to be encoded into matrix completion via known subspaces of the matrix. In such a scenario, the problem 

turned out to be a weighted matrix completion. In reality, such subspaces cannot be exactly known, the authors argue 

that they can only be partially known. To address this issue the paper showed how the subspaces can be iteratively 

estimated from the data and used for matrix completion. Our work is of the same essence; had the prior information 

about user and item graphs be exactly known, our problem would be graph regularized matrix completion. Such is not 

the case; hence we have to resort to estimating the graphs from the data iteratively and use it for matrix completion. 

3.1. Formulation 

For the sake of clarity, we repeat the equation for graph regularized matrix completion (7) 

( ) ( )( )2

*
min ( ) T T

U VFX
Y R X X Tr XL X Tr X L X − + + +  

For binary matrix completion, the values in X can only be 0 or 1. This is expressed as: 

( ) ( )( )  
2

*
min ( ) ,  s.t. 0,1T T

U VFX
Y R X X Tr XL X Tr X L X X − + + +      (8) 

Solving (8) with the said discrete constraints is difficult. Therefore, we propose a convex relaxation of the problem 

(8), that allows entries of X to lie between 0 and 1. The problem then reads: 

( ) ( )( )  
2

*
min ( ) ,  s.t. 0,1T T

U VFX
Y R X X Tr XL X Tr X L X X − + + +      (9) 

The formulation (9) assumes the graph Laplacians LU and LV to be known and fixed, but, as we have argued, this is 

not the case in practice and we need to learn them from the data X. Following [19], we formulate the following joint 

problem for simultaneous matrix completion and graph learning: 



( )

( ) ( )  

2

* 1,1 1,1, ,

2 2

, ,

min ( ) ( ) ( )

( , ) log( ( , )) 1 ( , ) log( ( , )) 1  s.t. 0,1

U V

U U V VFX W W

U U V V

i j i j

Y R X X W Z X W Z X

W i j W i j W i j W i j X

 

 

− + + +

+ − + −      (10) 

Let us introduce some useful notations. For every pair of row indexes (i,j) of X, we denote ( , )
i j

x x→ → the i-th and j-th 

rows, and we define the entry (i,j) of ( )UZ X  as
2

2
( )( , )

i jUZ X i j x x→ →= − . Similarly, for every pair of column indexes 

(i,j) of X, we denote ( , )
i j

x x  the i-th and j-th columns of this matrix and set 
2

2
( )( , )

i jVZ X i j x x = − . Thus, as 

emphasized in [19], we have that ( )1,1

T

U U UW Z Trace XL X= and ( )1,1

T

V V VW Z Trace X L X= , by using the 

standard Laplacian operators definition U U UL W=  − where U  is a diagonal matrix with i-th diagonal term 

equals to ( , ) ( , ),  U U

j

i i W i j = and V V VL W=  −  with ( , ) ( , ). V V

j

i i W j i = Thus, the first line of (10) is the 

same as that of (9). The terms in the second line can be viewed as entropy-like regularization on both graph weights, 

which allow learning the graph structures in a regularized manner. Due to the coupling between variables X and (WU, 

WV), Problem (10) is nonconvex, and we will proceed in an alternative manner for its resolution. In every iteration, 

the variables WU and WV, related to the graph Laplacian are first updated, by minimizing the loss function in (10) with 

respect to those variables. The updates are given in [19], 

2

2

2

2

2

2

( , ) exp

( , ) exp

i i

U

i i

V

x x
W i j

x x
W i j





→ →

 

 −
 = −
  
 

 −
 

= −
 
 
 

                (11) 

Then, we perform the minimization of the function with respect to variable X, which amounts to solving the convex 

minimization problem (9). To this aim, we propose to make use of the efficient parallel proximal algorithm, called 

PPXA, proposed in [26]. In this approach, 5 terms, X1, X2, X3, X4, X5, with the same size as X, are produced, associated 

to the resolution of 5 sub-problems, corresponding to the computation of the proximity operators for the 5 terms 

involved in the loss function in (9). For a given iteration k, this leads to: 



( )

( )( )
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( )
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with θ=5 (i.e. the number of sub-problems solved in parallel). The variable 
1

ˆ kX requires solving a least-squares 

problem, which we solve using conjugate gradient. The variable 
2

ˆ kX is a nuclear norm minimization that is obtained 

by singular value shrinkage [27]. 
3

ˆ kX is solved by simple max and min thresholding. 
4

ˆ kX and
5

ˆ kX are solved by the 

Sylvester equation. Once the 5 sub-problems are solved (in parallel), the next iterate is computed as the average of the 

variables, 

( )1
1 2 3 4 5

ˆ ˆ ˆ ˆ ˆk k k k k kX X X X X X


= + + + +          (12) 

Each of the proxy variables are finally updated as follows, 

1 1ˆ ˆ ˆ2k k k k k

i i iX X X X X− −= + − −          (13) 

The above PPXA iterations are guaranteed to converge to the solution of the convex problem (10). In practice, we 

alternate the graph weight update (11) with only one iteration of this method, initialized with the previous X value 

(associated with the past graph weight matrices). This leads to Algorithm 1, where we denoted R the matrix such that 

RX = R(X). Moreover, the maximum and minimum operations should be performed elementwise. An empirical 

threshold of 0.5 is used, in the final output X, to reach a binary matrix. We have not used the exact binarization 

constraint in this work; following prior works [29, 30] we have followed an iterative hard thresholding approach. The 

exact solution to the binarization constraints would require a recently developed class of techniques called 

mathematical programming with equilibrium constraints [31]. Even though our solution is mathematically optimal, as 

we will see in the results, it gives very good results in practice.    

 

  



Algorithm 1: Binary Matrix Completion with Graph Learning 
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One can notice that our algorithm involves solving one least squares problem, one singular value decomposition, one 

sorting and multiplication with two Sylvesters equations. The complexity of solving the least square problem via 

conjugate gradient is O(n) since the iterations are run for a fixed number of iterations (usually 20) only. The complexity 

of SVD is O(n3). For the sorting operation, the worst case complexity is O(n2); but can be done faster in O(n3/2logn) 

[32]. Using Bartel-Stewart algorithm the cost of solving the sylvester’s equation is O(n3). One can therefore see that 

the dominating cost of our proposed algorithm is of O(n3).  

4. Experimental Validation 

4.1. Simulation Experiments 

In the first set of experiments, we simulate a synthetic matrix completion problem. A low-rank matrix of size 100 x 

100 of rank ‘r’ is created by the product of two random matrices of sizes 100 x r and r x 100. The elements of this 

matrix are thresholded to simulate a low-rank binary matrix. A random mask sampling X% of the values. Even though 



the objective is to complete the partially observed matrix, our specific goal is to show that our estimated Graph 

Laplacian (iteratively computed) is close to the true Laplacian (computed from the fully observed matrix). 

For each configuration (of sampling proportion and rank) we generate 100 different matrices and masks and employ 

our algorithm to complete the matrix. The normalized mean squared error (NMSE) between the actual Laplacian 

(computed from the fully observed matrix) and estimated Laplacian is reported, defined as:  

2

2

−
=

actual estimated F

actual F

L L
NMSE

L
 

The means and the standard deviations are reported in Table 1.  

Table 1. Mean and Standard Deviations for Different Ranks and Sampling Proportions 

Sampling Proportion Rank = 5  

(mean ±std) 

Rank = 10  

(mean ±std) 

Rank = 15  

(mean ±std) 

Rank = 20  

(mean ±std) 

20% 0.28 ±0.16 0.33 ±0.19 0.35 ±0.22 0.53 ±0.29 

40% 0.19 ±0.13 0.23 ±0.15 0.29 ±0.16 0.41 ±0.21 

60% 0.13 ±0.10 0.17 ±0.11 0.23 ±0.13 0.28 ±0.15 

80% 0.08 ±0.04 0.11 ±0.05 0.16 ±0.09 0.21 ±0.10 

These results are as expected. When the estimated matrix is close to the actual ground truth, the graph Laplacian is 

estimated correctly, while when the estimated matrix and the ground truth differ, the true graph Laplacian and the 

estimated one also differ. According to the theoretical recovery guarantees in low-rank matrix completion [28], the 

number of observed samples (m) required should be  

 
1.2 log   m C n r n   

where n is the number of elements in the matrix and r is the rank. Another way to interpret this minimum sampling 

requirement is to say that when the number of samples is large and the rank is small, the quality of the recovery will 

be good, but when the number of samples is small and the rank is large, the recovery will deteriorate. This is what is 

happening in our case. When the estimated matrix is properly recovered, the Laplacian is close to the ground truth and 

vice versa. 

The concept of the requirement of iteratively updating the graph Laplacians has been discussed at the beginning of 

section 3. Here we empirically validate it. We show the plot NMSE between the ground truth graph Laplacian and the 

estimated graph Laplacians with iterations. Results are shown for two cases, rank = 5, sampling proportion = 80% and 



rank = 20, sampling proportion = 20%. We have taken two extreme cases – the best and the worst scenarios. In both 

cases, we see from the following plot that the error reduces with iterations.  

 

Fig. 1. Error vs Iterations. 

4.2. Collaborative Filtering 

We carry our evaluation on movie recommendations. Experiments are carried out on three popular datasets Movielens 

100K, Movielens 1M, Movielens, and 10M. All of them are freely available from  

https://grouplens.org/datasets/movielens/.  

1. movie-100K: 100,000 ratings for 1682 movies by 943 users; 

2. movie-1M: 1 million ratings for 3900 movies by 6040 users; 

3. movie-10M: 10 million ratings for 10681 movies by 71567 users. 

For these datasets, the splits between training and test sets are already pre-defined. The protocol is to carry out 5 fold 

cross-validation on these sets. The first two datasets (100K and 1M) can be handled on a personal computer, but the 

10M dataset is too large. Therefore, we use a divide and conquer strategy, as it was described in [28] in the context of 

matrix completion. Our implementations were run on an Intel i7 processor with 16 GB RAM running a 64 bit Windows 

10. We have compared our work with binary matrix completion (BMC) [1] and matrix completion graph (MCG) [17]. 

We have also compared against two recent techniques, namely neural graph collaborative filtering (NGCF) [33] and 

Markov random field (MRF) [34].  

For evaluation metrics we have used area under the curve (AUC), area under the precision recall curve (AUPR), 

Normalized Discounted Cumulative Gain (NDCG) and Hit Rate. These are the latest metrics used for evaluating 

collaborative filtering algorithms, for definitions please refer to [35].  



Our work needs specification of the three parameters µ, λ and σ. For all the datasets the same set of parameters were 

found to yield uniformly good results. The values used were µ=.1, λ=.1 and σ=10. For the benchmark studies, the 

parametric values were taken from the corresponding papers.  

Table 2. Results on Movie-100K 

Algorithm AUC AUPR NDCG@10 Hit Rate 

BMC .6827 ± .0025 .1597 ± .0013 .6436 ± .1575 .7086 ± .0030 

MCG .7198 ± .0034 .7405 ± .0045 .7984 ± .1032 .6226 ±.0042 

NGCF .7333 ± .0109 .7057 ± .0097 .8796 ± .1048 .7098 ± .0109 

MRF .7629 ± .0135 .7708 ± .0159 .9291 ± .1083 .7137 ± .0145 

Proposed .7616 ± .0042 .7815 ± .0048 1.000 ± .0000 .7117 ± .0037 

Table 3. Results on Movie-1M 

Algorithm AUC AUPR NDCG@10 Hit Rate 

BMC .7193 ± .0007 .1275 ± .0001 .8077 ± .1801 .7478 ± .0012 

MCG .6993 ± .0018 .7369 ± .0023 .7762 ± .2058 .6784 ± .0009 

NGCF .7342 ± .0126 .7008 ± .0094 .8891 ± .1304 .7298 ± .0097 

MRF .7587 ± .0151 .7887 ± .0101 .9525 ± .1510 .7396 ± .0123 

Proposed .7711 ± .0016 .7984 ± .0019 1.000 ± .0000 .7320 ± .0012 

Table 4. Results on Movie-10M 

Algorithm AUC AUPR NDCG@10 Hit Rate 

BMC .7039 ± .0010 .1385 ± .0004 .6247 ± .2608 .7412 ± .0010 

MCG .6617 ± .0011 .7166 ± .0019 .9149 ± .1452 .6740 ± .0017 

NGCF .7313 ± .0087 .7015 ± .0086 .9593 ± .2432 .7336 ± .0092 

MRF .7446 ± .0109 .7598 ± .0163 .9804 ± .3397 .7415 ± .0131 

Proposed .7568 ± .0039 .7961 ± .0030 .9983 ± .0025 .7382 ± .0024 

The results are shown in Tables 2, 3 and 4. We report the average mean and standard deviation for 5-fold cross-

validation. From these results, we find that the matrix completion-based techniques are more robust than others. BMC, 

MCG and our proposed algorithm have far smaller standard deviations compared to NGCF and MRF. For all three 

datasets, our proposed technique yields the best results in terms of AUC, AUPR and NDCG. In terms of Hit Rate, we 

are doing slightly worse than BMC. We show the empirical convergence plot of our algorithm, depicting the evolution 

of the loss function in (10) along iterations. The results are shown on semi-log scale. One can notice that our algorithm 

reaches stability in very few iterations. The plots are shown for 100K and 1M. It is not possible to show convergence 

plots for the largest dataset, since it is solved in a piecemeal fashion using the divide-and-conquer approach [28].  



  

   (a)       (b) 

Fig. 2 – Convergence plot on semi-log scale. 1a. Movielens-100K. 1b. Movielens-1M 

4.3. Ablation Study  

In the final set of experiments we empirically look at the effects of different penalties in the optimization problem. 

There are three main penalties in our proposed optimization problem – a) Nuclear norm, b) User graph update, and 

c) Item graph update. Based on these penalties we can have four realistic scenarios.  

1. Keeping user and item graph terms but omitting the nuclear norm term.  

2. Assuming the item and user graphs to be constant and not updating them.  

3. Assuming no item information is available, therefore omitting the item graph terms.  

4. Assuming no user information is available, therefore omitting the user graph terms.  

The results of these four different scenarios are shown for all the three datasets in the following Table 5. We only 

show the results in terms of AUC.  

Table 5. AUC results for ablation studies 

Dataset w/o nuclear norm w/o graph update w/o item graph w/o user graph with all penalties 

Movie-100K .7213 ± .0158 .7410 ± .0098 .7303 ± .0095 .7311 ± .0090 .7616 ± .0042 

Movie-1M .7286 ± .0115 .7451 ± .0072 .7325 ± .0066 .7317 ± .0075 .7711 ± .0016 

Movie-10M .7199 ± .0161 .7357 ± .0083 .7286 ± .0088 .7290 ± .0085 .7568 ± .0039 

We observe that omitting the nuclear norm (column 2) has a pronounced effect on the result; the AUC falls 

considerably if this is omitted. This is expected since the entire concept of low-rank matrix completion hinges on this 

particular penalty. Without the graph update (column 3) the algorithm assumes that the user and item graphs are fixed. 

These graphs are computed from partially observed entries; hence as argued, are not very accurate. This is reflected 



in the drop in AUC. Completely ignoring the item or user graphs (columns 4 and 5) also deteriorate the results; in fact, 

the deterioration is worse than not updating the graphs. This is expected since we are completely ignoring the prior 

information about items and users; this was not the case in column 3.  

 

5. Conclusion 

This work proposes binary matrix completion on graphs. The difference with prior graph regularized matrix 

completion studies is that we can learn the graph from the data, while prior studies assumed the graph to be fixed and 

given (computed from partially observed matrix). By iteratively learning the graph while completing the matrix 

improves the quality of the graph Laplacian and overall matrix completion. Experiments on collaborative filtering 

showed that the proposed approach yields better results than binary matrix completion (without graphs) and matrix 

completion with fixed graphs. Our algorithm yields better overall results than state-of-the-art algorithms in 

collaborative filtering. 

In this work our goal was to recover a binary matrix, however our binarization constraint was only approaximate. In 

the future we would like to improve upon this. We will look into well known approaches like algebraic techniques for 

semidefinite optimization [36, 37] as well as into new approaches being developed in recent times [38, 39].  

An interesting practical aspect of recommendations today is for video streaming services. The algorithms that are 

developed for the static scenario (addressed in this work) do not always translate to data streams. However, in recent 

times with the advent of smart TVs and OTT platforms recommendations for video streams is of increasing 

importance. We would like to explore how the IoT aspects can be incorporated into recommendation systems in the 

future. Some literature on related area already exists [40, 41]; we would like to build upon them.  
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