Divyanshu Talwar 
email: divyanshu15028@iiitd.ac.in
  
Aanchal Mongia 
email: aanchalm@iiitd.ac.in
  
Emilie Chouzenoux 
email: emilie.chouzenoux@centralesupelec.fr
  
Angshul Majumdar 
email: angshul@iiitd.ac.in
  
Binary Matrix Completion on Graphs: Application to Collaborative Filtering

Keywords: matrix completion, graph signal processing, collaborative filtering, recommender system 1

This work addresses the problem of completing a partially observed matrix where the entries are either ones or zeroes. This is typically called one-bit matrix completion or binary matrix completion. In this problem, the association among the rows and among the columns can be modeled through graph Laplacians. Since the Laplacians cannot be computed from the incomplete matrix, they must be simultaneously estimated while completing the matrix.

We model the problem as graph regularized binary matrix completion where the graphs need to be learnt from the data. We proposed an algorithm based on an alternating minimization scheme, taking advantage of an efficient proximity-based inner solver. The algorithm is applied to the problem of collaborative filtering. Experiments on benchmark datasets with state-of-the-art techniques in collaborative filtering show that the proposed method improves over the rest by a considerable margin.

Introduction

Consider the problem of completing a partially observed matrix where the matrix is known to be of low rank. This is called matrix completion. In the general problem, the entries in the matrix can range from minus infinity to plus infinity. Our interest lies in the specific case where the entries are binary; this has been called one-bit matrix completion [START_REF] Davenport | 1-Bit matrix completion[END_REF] or binary matrix completion [START_REF] Liu | Binary Matrix Completion with Nonconvex Regularizers[END_REF]. One bit matrix completion is an extreme case of quantized matrix completion [START_REF] Bhaskar | Quantized matrix completion for low rank matrices[END_REF].

The problem of matrix completion arises in many areas of signal processing and machine learning. There are two broad approaches to solve it. Traditionally, the low-rank matrix was factored into a thin and a fat matrix. Those matrices were then recovered by matrix factorization [START_REF] Schachtner | Towards unique solutions of non-negative matrix factorization problems by a determinant criterion[END_REF][START_REF] Fan | Matrix completion by deep matrix factorization[END_REF] or its deep version [START_REF] Sun | Guaranteed Matrix Completion via Non-Convex Factorization[END_REF]. Another approach is via nuclear norm minimization [START_REF] Recht | A Simpler Approach to Matrix Completion[END_REF][START_REF] Majidian | Matrix completion with weighted constraint for haplotype estimation[END_REF] where the matrix is directly recovered by promoting a low-rank solution. Since rank minimization is known to be NP-hard, its convex surrogate (nuclear norm) is minimized instead.

Matrix completion finds applications in several signal processing problems such as seismic data interpolation [START_REF] Kumar | Efficient matrix completion for seismic data reconstruction[END_REF], array signal processing [START_REF] Liu | Coprime array-based DOA estimation in unknown nonuniform noise environment[END_REF][START_REF] Hamza | Sparse array design for maximizing the signal-to-interference-plus-noise-ratio by matrix completion[END_REF], etc. Applied machine learning problems such as collaborative filtering [START_REF] Abernethy | A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization[END_REF], clustering [START_REF] Fan | Sparse subspace clustering for data with missing entries and high-rank matrix completion[END_REF], classification [START_REF] Liu | Manifold regularized matrix completion for multi-label learning with ADMM[END_REF], etc. have also been modeled as matrix completion. In most applied machine learning problems, the entries are binary. For example, in collaborative filtering, the matrix gathers information about whether a user likes a product or not. In such scenarios, binary matrix completion is a more appropriate choice.

In typical signal processing applications such as [START_REF] Kumar | Efficient matrix completion for seismic data reconstruction[END_REF][START_REF] Liu | Coprime array-based DOA estimation in unknown nonuniform noise environment[END_REF][START_REF] Hamza | Sparse array design for maximizing the signal-to-interference-plus-noise-ratio by matrix completion[END_REF], there is no relationship among the rows or among the columns.

In contrast, in machine learning applications like [START_REF] Abernethy | A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization[END_REF][START_REF] Fan | Sparse subspace clustering for data with missing entries and high-rank matrix completion[END_REF][START_REF] Liu | Manifold regularized matrix completion for multi-label learning with ADMM[END_REF], the relationship is known. For example, classification, the labels are known [START_REF] Liu | Manifold regularized matrix completion for multi-label learning with ADMM[END_REF]. In drug-target interaction, the structures of the drug molecules and tissue structure are known [START_REF] Mongia | Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization[END_REF][START_REF] Ezzat | Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization[END_REF]. In collaborative filtering, the similarity between the users and the items can also be pre-computed and represented by a graph [START_REF] Mongia | Matrix completion on multiple graphs: Application in collaborative filtering[END_REF][START_REF] Gu | Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs[END_REF].

The aforesaid studies [START_REF] Mongia | Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization[END_REF][START_REF] Ezzat | Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization[END_REF][START_REF] Mongia | Matrix completion on multiple graphs: Application in collaborative filtering[END_REF][START_REF] Gu | Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs[END_REF] solve the general matrix completion problem on graphs where the entries in the matrix are unconstrained (i.e. they are real numbers). However, for the said problems, the entries are actually binary, representing interactions between users and items [START_REF] Abernethy | A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization[END_REF][START_REF] Mongia | Matrix completion on multiple graphs: Application in collaborative filtering[END_REF][START_REF] Gu | Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs[END_REF], or drugs and targets [15, 16. Thus, ideally one would like to solve them via binary matrix completion on graphs. To the best of our knowledge, it has not been attempted before. In this work, we propose to address the problem of binary matrix completion on graphs. We will make a particular focus on solving the collaborative filtering problem.

Let us point out that a major difference between prior matrix completion techniques on graphs [START_REF] Mongia | Matrix completion on multiple graphs: Application in collaborative filtering[END_REF][START_REF] Gu | Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs[END_REF] and our proposal. In the aforesaid studies, the graph is assumed to be known; 'by known', we mean that the graph has been computed once from the partially observed data matrix and is fixed input for the said studies. In contrast, in this work, we will learn the graph jointly with performing the binary matrix completion task. Our method can then be viewed as a marriage of graph learning [START_REF] Kalafolias | How to learn a graph from smooth signals[END_REF] with matrix completion. Note that the work [START_REF] Kalafolias | How to learn a graph from smooth signals[END_REF] proposes formulations for learning graphs from data; it is nothing to do with matrix completion. The intuitive understanding behind our proposal is given at the beginning of section 3.

Background

The problem of collaborative filtering can be expressed in as a matrix completion problem,

() Y R X N =+ (1)
Hereabove, the matrix X is the rating matrix; we assume that users are along the rows and items along the columns. R is the so-called restriction operator which passes the value of the available ratings from X to Y. Y is the partially filled matrix of observed ratings. The noise in the system, represented by N, is usually assumed to be i.i.d. normally distributed. The problem is to retrieve X given Y and R. In standard matrix completion, the entries of X are assumed to be real. However, in practical collaborative filtering, X is a binary matrix representing user's choice on items; the user either likes (1) or does not like (0). Therefore, this problem should be treated as a binary matrix completion problem [START_REF] Davenport | 1-Bit matrix completion[END_REF].

In the latent factor model [START_REF] Hofmann | Latent class models for collaborative filtering[END_REF], it is assumed that the user's choice is determined by certain hidden/latent factors. The items possess these factors to a certain extent. If there is a match between the user's propensity towards the factors and the intensity with which these factors are present in the item, the user 'likes' the item (represented by 1); on the other hand, if there is a mismatch in the expectations of the user and what the item offers, the user 'dislikes' the item (represented by 0). This phenomenon is modeled as an inner product between the user's and item's latent factors.

When all the users and items are considered, one can express the rating matrix in the following form:

X UV = (2) 
where U denotes the users' latent factor matrix (with users on its rows) and V denotes the items' latent factor matrix (with items on its columns). Matrix U is tall while V is fat, thus modeling the low-rank nature of X, adjusted by the setting of the number of latent factors, corresponding to the number of columns for U, or rows for V matrices. For collaborative filtering, the matrix factorization formulation is embedded in (1) giving rise to:

() Y R UV N =+ (3)
The solution to the matrix factorization problem (3) can be formulated [START_REF] Kumar | Efficient matrix completion for seismic data reconstruction[END_REF]:

( ) 2 2 2 , min ( ) F F F UV Y R UV U V  - + + (4) 
The first term is the data fidelity term arising out of the Gaussian nature of noise. The ridge type regularizations, weighted by λ>0, applied on both latent factor matrices prevent over-fitting.

A more direct approach to solve the original problem (1) is to directly solve for the rating matrix X. This is achieved by minimizing a least-squares term penalized by a nuclear norm [START_REF] Shamir | Collaborative filtering with the trace norm[END_REF]:

2 * min ( ) F X Y R X X  -+ (5) 
The nuclear norm, with weight λ>0 is a convex surrogate of the rank penalty [START_REF] Abernethy | A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization[END_REF]. Formulation [START_REF] Fan | Matrix completion by deep matrix factorization[END_REF] is convex, but it presents a limited performance in applications to collaborative filtering [START_REF] Kumar | Efficient matrix completion for seismic data reconstruction[END_REF].

In neighborhood-based models of collaborative filtering, the matrix is completed by linear interpolation. The similarity between the user's [START_REF] Breese | Empirical analysis of predictive algorithms for collaborative filtering[END_REF] or item's [START_REF] Sarwar | Item-based collaborative filtering recommendation algorithms[END_REF] is used as interpolation weights. The similarity is computed from the data, i.e.

for computing the similarity between the users, the ratings of the users on different items are used. Studies like [START_REF] Gu | Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs[END_REF] proposed combining the similarity scores of [START_REF] Breese | Empirical analysis of predictive algorithms for collaborative filtering[END_REF][START_REF] Sarwar | Item-based collaborative filtering recommendation algorithms[END_REF] into the matrix factorization framework [START_REF] Bhaskar | Quantized matrix completion for low rank matrices[END_REF]. They encode the similarity information in graph Laplacians, by including those into penalty terms:

( ) ( ) ( ) 2 , min ( ) 
TT UV F UV Y R UV Tr U L U Tr VL V  - + + (6) 
Here λ is a positive regularization parameter, LU and LV are the graph Laplacians for the user and item latent factor matrices respectively. In [START_REF] Mongia | Matrix completion on multiple graphs: Application in collaborative filtering[END_REF] a similar idea was proposed for the completion problem formulation ( 5), leading to the resolution of:

( ) ( ) ( ) 2 * min ( ) TT UV F X Y R X X Tr XL X Tr X L X  - + + + (7) 
depending on two positive penalty weights λ and µ. Note that the aforementioned works assumed the knowledge of the involved graph Laplacians matrices.

This section on relevant background only refers to studies that are pertinent for understanding our proposal. For a thorough review of matrix completion techniques in collaborative filtering, one can peruse [START_REF] Ramlatchan | A survey of matrix completion methods for recommendation systems[END_REF].

Proposed Binary Matrix Completion on Graphs

The graph regularization incorporated in both ( 6) and [START_REF] Recht | A Simpler Approach to Matrix Completion[END_REF] has been shown to improve the results by a large margin [START_REF] Mongia | Matrix completion on multiple graphs: Application in collaborative filtering[END_REF][START_REF] Gu | Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs[END_REF]. However, there are two shortcomings of these studies. First, they treat the matrix X to be with real-valued entries, whereas those are actually binary in applications such as collaborative filtering [START_REF] Davenport | 1-Bit matrix completion[END_REF]. Second, the similarities (and hence the Laplacians) between the users and items are computed once from the incomplete data. Ideally, they should have been estimated iteratively while completing the matrix. This second point solicits further explanation.

Consider three users whose actual ratings are as follows:

U1: [1 0 0 1 0 1 1 0] U2: [1 1 1 1 1 0 0 0] U3: [0 0 0 1 0 0 1 0]
These ratings are not fully observed, say the partially observed ratings are:

U1: [1 x x 1 x x 1 x] U2: [1 x x 1 x x x 0] U3: [0 x x x x 0 x 0]
Going by the previous studies [START_REF] Mongia | Drug-target interaction prediction using Multi Graph Regularized Nuclear Norm Minimization[END_REF][START_REF] Ezzat | Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization[END_REF] the similarity between U1 and U3 computed from the partially observed ratings will be low (Hamming distance: 3) and the similarity between U1 and U2 will be higher (Hamming distance: 1).

However, when the similarities are computed from the filled rating vectors, one can see that the similarity between U1 and U3 is higher (Hamming distance: 2) compared to the similarity between U1 and U2 (Hamming distance: 5).

This toy example shows the importance of computing the similarities (thereby the graph Laplacians) from the completed matrix, rather than from the partially observed one. Since the completed matrix is obviously not available, the best possible action is to learn the graph jointly with the resolution of the matrix completion task, following an iterative and alternating scheme.

Such iterative schemes have been used in prior matrix completion studies, for example in [START_REF] Eftekhari | Weighted Matrix Completion and Recovery With Prior Subspace Information[END_REF] prior information was assumed to be encoded into matrix completion via known subspaces of the matrix. In such a scenario, the problem turned out to be a weighted matrix completion. In reality, such subspaces cannot be exactly known, the authors argue that they can only be partially known. To address this issue the paper showed how the subspaces can be iteratively estimated from the data and used for matrix completion. Our work is of the same essence; had the prior information about user and item graphs be exactly known, our problem would be graph regularized matrix completion. Such is not the case; hence we have to resort to estimating the graphs from the data iteratively and use it for matrix completion.

Formulation

For the sake of clarity, we repeat the equation for graph regularized matrix completion (7)

( ) ( ) ( ) 2 * min ( ) TT UV F X Y R X X Tr XL X Tr X L X  - + + +
For binary matrix completion, the values in X can only be 0 or 1. This is expressed as:

( ) ( ) ( )   2 * min ( ) , s.t. 0,1 TT UV F X Y R X X Tr XL X Tr X L X X  - + + +  (8) 
Solving [START_REF] Majidian | Matrix completion with weighted constraint for haplotype estimation[END_REF] with the said discrete constraints is difficult. Therefore, we propose a convex relaxation of the problem [START_REF] Majidian | Matrix completion with weighted constraint for haplotype estimation[END_REF], that allows entries of X to lie between 0 and 1. The problem then reads:

( ) ( ) ( )   2 * min ( ) , s.t. 0,1 TT UV F X Y R X X Tr XL X Tr X L X X  - + + +  (9) 
The formulation (9) assumes the graph Laplacians LU and LV to be known and fixed, but, as we have argued, this is not the case in practice and we need to learn them from the data X. Following [START_REF] Kalafolias | How to learn a graph from smooth signals[END_REF], we formulate the following joint problem for simultaneous matrix completion and graph learning:

( ) ( ) ( )   2 * 1,1 1,1 ,, 22 ,, min ( ) ( ) ( ) 
( , ) log( ( , )) 1 ( , ) log( ( , )) 1 s.t. 0,1 UV U U V V F X W W U U V V i j i j Y R X X W Z X W Z X W i j W i j W i j W i j X    - + + + + -+ -   (10) 
Let us introduce some useful notations. For every pair of row indexes (i,j) of X, we denote ( , ) ij xx →→ the i-th and j-th rows, and we define the entry (i,j) of ()

U ZX as 2 2 ( )( , ) ij U Z X i j x x →→ =-
. Similarly, for every pair of column indexes (i,j) of X, we denote ( , ) ij xx  the i-th and j-th columns of this matrix and set

2 2 ( )( , ) ij V Z X i j x x  =-
. Thus, as emphasized in [START_REF] Kalafolias | How to learn a graph from smooth signals[END_REF], we have that ( )

1,1 T U U U W Z Trace XL X = and
( )  is a diagonal matrix with i-th diagonal term equals to

1,1 T V V V W Z Trace X L X = ,
( , ) ( , ) 
,

UU j i i W i j =  and V V V LW =  - with ( , ) ( , ) 
.

VV j i i W j i = 
Thus, the first line of ( 10) is the same as that of [START_REF] Kumar | Efficient matrix completion for seismic data reconstruction[END_REF]. The terms in the second line can be viewed as entropy-like regularization on both graph weights, which allow learning the graph structures in a regularized manner. Due to the coupling between variables X and (WU, WV), Problem ( 10) is nonconvex, and we will proceed in an alternative manner for its resolution. In every iteration, the variables WU and WV, related to the graph Laplacian are first updated, by minimizing the loss function in [START_REF] Liu | Coprime array-based DOA estimation in unknown nonuniform noise environment[END_REF] with respect to those variables. The updates are given in [START_REF] Kalafolias | How to learn a graph from smooth signals[END_REF],

2 2 2 2 2 2 ( , ) exp ( , ) exp ii U ii V xx W i j xx W i j   →→   -  =-     -  =-   (11)
Then, we perform the minimization of the function with respect to variable X, which amounts to solving the convex minimization problem [START_REF] Kumar | Efficient matrix completion for seismic data reconstruction[END_REF]. To this aim, we propose to make use of the efficient parallel proximal algorithm, called PPXA, proposed in [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF]. In this approach, 5 terms, X1, X2, X3, X4, X5, with the same size as X, are produced, associated to the resolution of 5 sub-problems, corresponding to the computation of the proximity operators for the 5 terms involved in the loss function in [START_REF] Kumar | Efficient matrix completion for seismic data reconstruction[END_REF]. For a given iteration k, this leads to: 

( ) ( ) ( ) ( ) ( ) 2 
F F X kk F X kk k T k U F X k T k V F X X Y R X X X X X X X XX X Tr XL X X X X Tr X L X X X   - - - - - = - + - = + - = = + - = + -
with θ=5 (i.e. the number of sub-problems solved in parallel). The variable 1 ˆk X requires solving a least-squares problem, which we solve using conjugate gradient. The variable 2 ˆk X is a nuclear norm minimization that is obtained by singular value shrinkage [START_REF] Majumdar | Some empirical advances in matrix completion[END_REF].

3 ˆk X is solved by simple max and min thresholding. ( )

1 1 2 3 4 5 ˆˆˆˆk k k k k k X X X X X X  = + + + + (12) 
Each of the proxy variables are finally updated as follows, 11 ˆˆ2

k k k k k i i i X X X X X -- = + - - (13) 
The above PPXA iterations are guaranteed to converge to the solution of the convex problem [START_REF] Liu | Coprime array-based DOA estimation in unknown nonuniform noise environment[END_REF]. In practice, we alternate the graph weight update [START_REF] Hamza | Sparse array design for maximizing the signal-to-interference-plus-noise-ratio by matrix completion[END_REF] with only one iteration of this method, initialized with the previous X value (associated with the past graph weight matrices). This leads to Algorithm 1, where we denoted R the matrix such that RX = R(X). Moreover, the maximum and minimum operations should be performed elementwise. An threshold of 0.5 is used, in the final output X, to reach a binary matrix. We have not used the exact binarization constraint in this work; following prior works [START_REF] Beck | Sparsity constrained nonlinear optimization: Optimality conditions and algorithms[END_REF][START_REF] Yuan | Truncated power method for sparse eigenvalue problems[END_REF] we have followed an iterative hard thresholding approach. The exact solution to the binarization constraints would require a recently developed class of techniques called mathematical programming with equilibrium constraints [START_REF] Yuan | An exact penalty method for binary optimization based on MPEC formulation[END_REF]. Even though our solution is mathematically optimal, as we will see in the results, it gives very good results in practice. 

ˆLSQR R R , R , ˆ   -→ -→ - - - = =  -  =-     -  =-   = + + = kk ii kk UU kk ii kk VV k T k T k X X X X X X Y k xx W i j L xx W i j L X I X Y X US ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 
 = =   - = =+ =+  =   = = + - -  T T k kk k k k V k k k U kk n n k k k k k m m m V U V SVD X S signum XX X L I X X X L I XX m X X X X X
One can notice that our algorithm involves solving one least squares problem, one singular value decomposition, one sorting and multiplication with two Sylvesters equations. The complexity of solving the least square problem via conjugate gradient is O(n) since the iterations are run for a fixed number of iterations (usually 20) only. The complexity of SVD is O(n 3 ). For the sorting operation, the worst case complexity is O(n 2 ); but can be done faster in O(n 3/2 logn) [START_REF] Kavitha | Matrix Sort-A Parallelizable Sorting Algorithm[END_REF]. Using Bartel-Stewart algorithm the cost of solving the sylvester's equation is O(n 3 ). One can therefore see that the dominating cost of our proposed algorithm is of O(n 3 ).

Experimental Validation

Simulation Experiments

In the first set of experiments, we simulate a synthetic matrix completion problem. A low-rank matrix of size 100 x 100 of rank 'r' is created by the product of two random matrices of sizes 100 x r and r x 100. The elements of this matrix are thresholded to simulate a low-rank binary matrix. A random mask sampling X% of the values. Even though the objective is to complete the partially observed matrix, our specific goal is to show that our estimated Graph Laplacian (iteratively computed) is close to the true Laplacian (computed from the fully observed matrix).

For each configuration (of sampling proportion and rank) we generate 100 different matrices and masks and employ our algorithm to complete the matrix. The normalized mean squared error (NMSE) between the actual Laplacian (computed from the fully observed matrix) and estimated Laplacian is reported, defined as:

2 2 - = actual estimated F actual F LL NMSE L
The means and the standard deviations are reported in Table 1. These results are as expected. When the estimated matrix is close to the actual ground truth, the graph Laplacian is estimated correctly, while when the estimated matrix and the ground truth differ, the true graph Laplacian and the estimated one also differ. According to the theoretical recovery guarantees in low-rank matrix completion [START_REF] Mackey | Distributed matrix completion and robust factorization[END_REF], the number of observed samples (m) required should be

1.2 log     m C n r n
where n is the number of elements in the matrix and r is the rank. Another way to interpret this minimum sampling requirement is to say that when the number of samples is large and the rank is small, the quality of the recovery will be good, but when the number of samples is small and the rank is large, the recovery will deteriorate. This is what is happening in our case. When the estimated matrix is properly recovered, the Laplacian is close to the ground truth and vice versa.

The concept of the requirement of iteratively updating the graph Laplacians has been discussed at the beginning of section 3. Here we empirically validate it. We show the plot NMSE between the ground truth graph Laplacian and the estimated graph Laplacians with iterations. Results are shown for two cases, rank = 5, sampling proportion = 80% and rank = 20, sampling proportion = 20%. We have taken two extreme casesthe best and the worst scenarios. In both cases, we see from the following plot that the error reduces with iterations. 

Collaborative Filtering

We carry our evaluation on movie recommendations. Experiments are carried out on three popular datasets Movielens 100K, Movielens 1M, Movielens, and 10M. All of them are freely available from https://grouplens.org/datasets/movielens/.

1. movie-100K: 100,000 ratings for 1682 movies by 943 users; 2. movie-1M: 1 million ratings for 3900 movies by 6040 users; 3. movie-10M: 10 million ratings for 10681 movies by 71567 users.

For these datasets, the splits between training and test sets are already pre-defined. The protocol is to carry out 5 fold cross-validation on these sets. The first two datasets (100K and 1M) can be handled on a personal computer, but the 10M dataset is too large. Therefore, we use a divide and conquer strategy, as it was described in [START_REF] Mackey | Distributed matrix completion and robust factorization[END_REF] in the context of matrix completion. Our implementations were run on an Intel i7 processor with 16 GB RAM running a 64 bit Windows 10. We have compared our work with binary matrix completion (BMC) [START_REF] Davenport | 1-Bit matrix completion[END_REF] and matrix completion graph (MCG) [START_REF] Mongia | Matrix completion on multiple graphs: Application in collaborative filtering[END_REF].

We have also compared against two recent techniques, namely neural graph collaborative filtering (NGCF) [START_REF] Wang | Neural graph collaborative filtering[END_REF] and Markov random field (MRF) [START_REF] Steck | Markov Random Fields for Collaborative Filtering[END_REF].

For evaluation metrics we have used area under the curve (AUC), area under the precision recall curve (AUPR), Normalized Discounted Cumulative Gain (NDCG) and Hit Rate. These are the latest metrics used for evaluating collaborative filtering algorithms, for definitions please refer to [START_REF] Zhang | Quaternion collaborative filtering for recommendation[END_REF].

Our work needs specification of the three parameters µ, λ and σ. For all the datasets the same set of parameters were found to yield uniformly good results. The values used were µ=.1, λ=.1 and σ=10. For the benchmark studies, the parametric values were taken from the corresponding papers. The results are shown in Tables 2, 3 and 4. We report the average mean and standard deviation for 5-fold crossvalidation. From these results, we find that the matrix completion-based techniques are more robust than others. BMC, MCG and our proposed algorithm have far smaller standard deviations compared to NGCF and MRF. For all three datasets, our proposed technique yields the best results in terms of AUC, AUPR and NDCG. In terms of Hit Rate, we are doing slightly worse than BMC. We show the empirical convergence plot of our algorithm, depicting the evolution of the loss function in [START_REF] Liu | Coprime array-based DOA estimation in unknown nonuniform noise environment[END_REF] along iterations. The results are shown on semi-log scale. One can notice that our algorithm reaches stability in very few iterations. The plots are shown for 100K and 1M. It is not possible to show convergence plots for the largest dataset, since it is solved in a piecemeal fashion using the divide-and-conquer approach [START_REF] Mackey | Distributed matrix completion and robust factorization[END_REF]. 1. Keeping user and item graph terms but omitting the nuclear norm term.

2. Assuming the item and user graphs to be constant and not updating them.

3. Assuming no item information is available, therefore omitting the item graph terms.

4. Assuming no user information is available, therefore omitting the user graph terms.

The results of these four different scenarios are shown for all the three datasets in the following Table 5. We only show the results in terms of AUC. We observe that omitting the nuclear norm (column 2) has a pronounced effect on the result; the AUC falls considerably if this is omitted. This is expected since the entire concept of low-rank matrix completion hinges on this particular penalty. Without the graph update (column 3) the algorithm assumes that the user and item graphs are fixed.

These graphs are computed from partially observed entries; hence as argued, are not very accurate. This is reflected in the drop in AUC. Completely ignoring the item or user graphs (columns 4 and 5) also deteriorate the results; in fact, the deterioration is worse than not updating the graphs. This is expected since we are completely ignoring the prior information about items and users; this was not the case in column 3.

Conclusion

This work proposes binary matrix completion on graphs. The difference with prior graph regularized matrix completion studies is that we can learn the graph from the data, while prior studies assumed the graph to be fixed and given (computed from partially observed matrix). By iteratively learning the graph while completing the matrix improves the quality of the graph Laplacian and overall matrix completion. Experiments on collaborative filtering showed that the proposed approach yields better results than binary matrix completion (without graphs) and matrix completion with fixed graphs. Our algorithm yields better overall results than state-of-the-art algorithms in collaborative filtering.

In this work our goal was to recover a binary matrix, however our binarization constraint was only approaximate. In the future we would like to improve upon this. We will look into well known approaches like algebraic techniques for semidefinite optimization [START_REF] Dattorro | Convex optimization & Euclidean distance geometry[END_REF][START_REF] Parrilo | Algebraic techniques and semidefinite optimization[END_REF] as well as into new approaches being developed in recent times [START_REF] Li | Simple and Fast Algorithm for Binary Integer and Online Linear Programming[END_REF][START_REF] Elloumi | Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation[END_REF].

An interesting practical aspect of recommendations today is for video streaming services. The algorithms that are developed for the static scenario (addressed in this work) do not always translate to data streams. However, in recent times with the advent of smart TVs and OTT platforms recommendations for video streams is of increasing importance. We would like to explore how the IoT aspects can be incorporated into recommendation systems in the future. Some literature on related area already exists [START_REF] Liu | QoS-Guarantee Resource Allocation for Multibeam Satellite Industrial Internet of Things With NOMA[END_REF][START_REF] Liu | Rate and Energy Efficiency Improvements for 5G-Based IoT With Simultaneous Transfer[END_REF]; we would like to build upon them.

  by the Sylvester equation. Once the 5 sub-problems are solved (in parallel), the next iterate is computed as the average of the variables,

Fig. 1 .

 1 Fig. 1. Error vs Iterations.

Fig. 2 -

 2 Fig. 2 -Convergence plot on semi-log scale. 1a. Movielens-100K. 1b. Movielens-1M

Table 1 .

 1 Mean and Standard Deviations for Different Ranks and Sampling Proportions

	Sampling Proportion Rank = 5	Rank = 10	Rank = 15	Rank = 20
		(mean ±std)	(mean ±std)	(mean ±std)	(mean ±std)
	20%	0.28 ±0.16	0.33 ±0.19	0.35 ±0.22	0.53 ±0.29
	40%	0.19 ±0.13	0.23 ±0.15	0.29 ±0.16	0.41 ±0.21
	60%	0.13 ±0.10	0.17 ±0.11	0.23 ±0.13	0.28 ±0.15
	80%	0.08 ±0.04	0.11 ±0.05	0.16 ±0.09	0.21 ±0.10

Table 2

 2 

		. Results on Movie-100K	
	Algorithm	AUC	AUPR	NDCG@10	Hit Rate
	BMC	.6827 ± .0025	.1597 ± .0013	.6436 ± .1575	.7086 ± .0030
	MCG	.7198 ± .0034	.7405 ± .0045	.7984 ± .1032	.6226 ±.0042
	NGCF	.7333 ± .0109	.7057 ± .0097	.8796 ± .1048	.7098 ± .0109
	MRF	.7629 ± .0135	.7708 ± .0159	.9291 ± .1083	.7137 ± .0145
	Proposed	.7616 ± .0042	.7815 ± .0048	1.000 ± .0000 .7117 ± .0037
		Table 3. Results on Movie-1M		
	Algorithm	AUC	AUPR	NDCG@10	Hit Rate
	BMC	.7193 ± .0007	.1275 ± .0001	.8077 ± .1801	.7478 ± .0012
	MCG	.6993 ± .0018	.7369 ± .0023	.7762 ± .2058	.6784 ± .0009
	NGCF	.7342 ± .0126	.7008 ± .0094	.8891 ± .1304	.7298 ± .0097
	MRF	.7587 ± .0151	.7887 ± .0101	.9525 ± .1510	.7396 ± .0123
	Proposed	.7711 ± .0016	.7984 ± .0019	1.000 ± .0000	.7320 ± .0012
		Table 4. Results on Movie-10M	
	Algorithm	AUC	AUPR	NDCG@10	Hit Rate
	BMC	.7039 ± .0010	.1385 ± .0004	.6247 ± .2608	.7412 ± .0010
	MCG	.6617 ± .0011	.7166 ± .0019	.9149 ± .1452	.6740 ± .0017
	NGCF	.7313 ± .0087	.7015 ± .0086	.9593 ± .2432	.7336 ± .0092
	MRF	.7446 ± .0109	.7598 ± .0163	.9804 ± .3397	.7415 ± .0131
	Proposed	.7568 ± .0039	.7961 ± .0030	.9983 ± .0025	.7382 ± .0024

Table 5

 5 

			. AUC results for ablation studies		
	Dataset	w/o nuclear norm	w/o graph update	w/o item graph	w/o user graph	with all penalties
	Movie-100K	.7213 ± .0158	.7410 ± .0098	.7303 ± .0095	.7311 ± .0090	.7616 ± .0042
	Movie-1M	.7286 ± .0115	.7451 ± .0072	.7325 ± .0066	.7317 ± .0075	.7711 ± .0016
	Movie-10M	.7199 ± .0161	.7357 ± .0083	.7286 ± .0088	.7290 ± .0085	.7568 ± .0039
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