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Abstract

We show that the geometry-of-numbers method used by A. Bounemoura to obtain filling
times for linear flow on the torus satisfying Diophantine conditions may be extended to the case
of linear flow with truncated Diophantine conditions, and we use these methods to recover the
optimal estimate first obtained by M. Berti, L. Biasco, and P. Bolle in 2003. We also briefly
review the dynamics of linear flow on the torus, previous results, optimality, and applications
of these estimates.
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1 Introduction

Linear flow on the n-torus Tn occurs routinely in integrable and nearly integrable Hamiltonian
systems, as well as in other mathematical settings. When the direction of such flow satisfies
Diophantine conditions (as happens for example on KAM tori), for given δ > 0 it can be shown
that each orbit of the flow becomes δ-dense on the torus after a time T that may be estimated
in terms of δ and the Diophantine parameters. In fact, this “filling” occurs even when the flow
only satisfies truncated Diophantine conditions (i.e., satisfies Diophantine conditions only up to a
certain critical order N∗). The first crude estimates of the filling time1 T were found in the late
1980s by one of us (HSD) in the context of an application to physics [9]. Since then, estimates have
been refined and improved by a number of authors, and in 2003 the optimal estimate was proved for
the more general case (truncated Diophantine conditions) by M. Berti, L. Biasco, and P. Bolle [1].
In this paper, we give a new proof of this estimate by modifying the geometry-of-numbers method
used by A. Bounemoura [2] to get filling times for the less general case (untruncated Diophantine
conditions). Bounemoura’s method is in turn based on techniques developed earlier with one of us
(SF) in [3].

In addition to our proof, we provide background material and an overview of the filling-time
problem and how it has evolved. We hope this will make the subject accessible to a wider audience
and draw attention to its many contributors and surprising number of applications.

1In earlier work, we used the term “ergodization time” rather than “filling time.”
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The remainder of this paper is organized as follows. In §2, we set out our notation and ter-
minology, defining the filling property for linear flow on Tn and Diophantine sets of vectors both
with and without truncation. In §3, we state our basic problem and main result (Theorem 1) along
with corollaries for comparison with other results. We next look at properties of Diophantine sets
and discuss the dynamics of linear flow in §4. Section 5 serves as a short review by surveying past
results on filling times, their optimality, and their use in applications. In §6 we prove Theorem 1 by
means of a proposition adapted from [3] to treat the case of truncated Diophantine conditions, and
we briefly discuss our new proposition and overall proof. Finally, to make the paper self contained,
basic elements from geometry of numbers are presented in an appendix at the end.

2 Notation and Terminology

For integer dimension n ≥ 2 and x = (x1, . . . , xn) ∈ Rn, k = (k1, . . . , kn) ∈ Zn, we use the Euclidean
norms ‖x‖ = (x21 + · · · + x2n)1/2 and ‖k‖ = (k21 + · · · + k2n)1/2. We denote by Tn ≡ Rn/Zn the flat
n-torus, on which we use modular (mod Zn) arithmetic (i.e., mod 1 arithmetic in each coordinate).
For α ∈ Sn−1 = {α ∈ Rn

∣∣ ‖α‖ = 1}, t ∈ R, and θ ∈ Tn, we use the unconventional but convenient
notation αt : Tn → Tn, αt(θ) = θ+ tα to denote linear flow on Tn with unit speed and direction
vector α. In this paper we consider Zn to be included in Rn, so when we say that a set of integer
vectors is linearly independent, or we indicate the span of a set of integer vectors, these have their
ordinary meanings in Rn.

Our key concept is what we call the filling property of linear flow on Tn, defined as follows.

Filling Tn to within δ after time T . Given δ ∈ (0, 12), we say αt fills Tn to within δ after time
T if, for any starting point θ ∈ Tn, the orbit segment {αt(θ), 0 ≤ t ≤ T} forms a δ-dense subset of
Tn. (This means that every closed ball of radius δ in Tn contains a point of the orbit segment.)

It is not difficult to see that the filling property and filling time T are independent of the starting
point θ. For more details about this fact, see the introductory parts of [2] or [10].

Diophantine vectors. The filling property of the flow αt depends strongly on the Diophantine
properties of the direction vector α. We use the following sets.

For dimension n ≥ 2 and parameters τ > n−1, γ > 0, we define Dn(τ, γ), the set of Diophantine
vectors in Rn by
Dn(τ, γ) =

{
α ∈ Rn

∣∣ |k · α| ≥ γ‖k‖−τ for any k ∈ Zn\{0}
}

.
With n, τ, γ as above, we adjoin the parameter N ≥ 1 and define the set of truncated Diophan-

tine vectors by
Dn(τ, γ,N) =

{
α ∈ Rn

∣∣ |k · α| ≥ γ‖k‖−τ for any k ∈ Zn with 0 < ‖k‖ ≤ N
}

.
Finally, we attach the superscript 1 to these sets to indicate the restriction to vectors of unit

length. In other words, D1
n(τ, γ) = Sn−1 ∩ Dn(τ, γ) and D1

n(τ, γ,N) = Sn−1 ∩ Dn(τ, γ,N). We
loosely refer to α in Dn(τ, γ) or Dn(τ, γ,N) as frequency vectors, and α in D1

n(τ, γ) or D1
n(τ, γ,N)

as direction vectors.
The parameter N is called the truncation order, or simply the cutoff. We provide more details

about Diophantine sets and the significance of the cutoff below in §4.2. For now, we note that, as
discussed in §4.2 (i) below, D1

n(τ, γ) and thus also its supersets are nonempty for τ > n − 1 and
sufficiently small γ ∈ (0, 1).
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3 Basic Problem and Main Result

Using the notation and terminology above, our basic problem is relatively simple to state. For fixed
δ ∈ (0, 12), we seek the largest set S ⊂ Sn−1 of direction vectors α whose corresponding flows αt fill
Tn quickly, i.e., within a time T depending only (and if possible optimally) on δ and the parameters
determining S.

In §5.1 below, we give an overview of previous results on this problem. For now, we repeat that
the optimal estimate for the largest set S = Dn(τ, γ,N∗) was obtained in 2003 in [1]. Our contri-
bution in the present paper is to show that geometry-of-numbers methods used by A. Bounemoura
[2] to get optimal estimates for Dn(τ, γ) may be used to recover the results of [1] for the larger set
Dn(τ, γ,N∗). More specifically, we have the following

Theorem 1 For integer dimension n ≥ 2, let τ > n − 1, γ ∈ (0, 1) be such that D1
n(τ, γ) is

nonempty. Choose δ ∈ (0, 12) and set N∗ = (1 + n2n!)/δ. Then given any direction vector α ∈

D1
n(τ, γ,N∗), the flow αt fills Tn to within δ after time T <

C(n, τ)

γδτ
, where C(n, τ) = (1+n2n!)τ+1.

We call N∗ the critical truncation order or critical cutoff. From the definitions of Diophantine
sets, for fixed n, τ , γ, and any N ≥ N∗ ≥ 1, we have the inclusions D1

n(τ, γ) ⊆ D1
n(τ, γ,N) ⊆

D1
n(τ, γ,N∗). These immediately give the following corollaries of Theorem 1.

Corollary 1 For integer dimension n ≥ 2, let τ > n − 1, γ ∈ (0, 1) be such that D1
n(τ, γ) is

nonempty. Then given δ ∈ (0, 12) and any direction vector α ∈ D1
n(τ, γ), the flow αt fills Tn to

within δ after time T <
C(n, τ)

γδτ
, where C(n, τ) = (1 + n2n!)τ+1.

Corollary 2 For integer dimension n ≥ 2, let τ > n − 1, γ ∈ (0, 1) be such that D1
n(τ, γ) is

nonempty. Then given δ ∈ (0, 12), a cutoff N ≥ N∗ = (1 + n2n!)/δ, and a direction vector α ∈

D1
n(τ, γ,N), the flow αt fills Tn to within δ after time T <

C(n, τ)

γδτ
, where C(n, τ) = (1+n2n!)τ+1.

Although these corollaries are simply weaker versions of Theorem 1 (since their hypotheses are
more restrictive), we state them here for their potential use in applications, and for comparison
with other results, as discussed further below in §5.2.

4 Diophantine Sets and the Dynamics of Linear Flow

In this section, we provide some background for the reader who may be unfamiliar with the con-
nection between Diophantine sets and the filling property for linear flow on Tn. The presentation
is elementary and informal, and many facts are stated without proof. For further details, we
recommend the texts [5] and [15].

4.1 Resonance

To see the connection between Diophantine sets and linear flow, we need some terminology pertain-
ing to the phenomenon of resonance as it arises in small divisor theory of dynamical systems. For
background and more details, see Appendix 3 of [15], where what we call resonant multiplicity is
instead called resonant dimension, and note that our situation is simplified substantially by the lack
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of variables I in an action-like base space (where resonance is usually studied) and a “frequency
map” I 7→ α to our frequency vectors α.

We say that the frequency vector α ∈ Rn is resonant if there is a k ∈ Zn\{0} such that k ·α = 0.
We denote the set of resonant frequency vectors by R, and its complement, the set of nonresonant
frequency vectors, by N . It is not hard to see that both R and N are dense in Rn, while R is of
Lebesgue measure 0 and N is of full measure.

Given k ∈ Zn\{0}, the simple resonance (or resonance of multiplicity 1) determined by k is
the hyperplane through the origin Rk = {α ∈ Rn

∣∣ k · α = 0}. More generally, α ∈ Rn belongs to
a resonance of multiplicity m ∈ {1, . . . , n − 1} if it belongs to m independent simple resonances
Rk(1) , . . . ,Rk(m) , in other words if α ∈

⋂m
j=1Rk(j) where {k(1), . . . , k(m)} is linearly independent.

Multiple resonances are nested in the sense that whenever a frequency vector belongs to a resonance
of multiplicity m, it also belongs to resonances of lesser multiplicity l ∈ {1, . . . ,m− 1}.

For any simple resonance Rk, there are precisely two nonzero integer vectors (−k′ and k′ ∈
span{k}) of smallest norm ‖k′‖ such that Rk = Rk′ = R−k′ ; this smallest norm ‖k′‖ is called the
order of the simple resonance.

We connect simple resonances with Diophantine sets as follows. From the definition of Dn(τ, γ),
we see that for each k ∈ Zn\{0}, the set Zk = {α ∈ Rn

∣∣ |k ·α| < γ‖k‖−τ} is excluded from Dn(τ, γ)
(for simplicity, we suppress dependence of Zk on parameters n, γ, τ). Geometrically, Zk is an open
“hyperslab” centered on Rk, of half-thickness γ‖k‖−τ−1. In other words, Zk is the set of points α
between the two affine hyperplanes k · α = ±γ‖k‖−τ . The thickest such hyperslab containing the
simple resonance Rk is Zk′ , where k′ is one of the two shortest integer vectors determining Rk (i.e.,
‖k′‖ is the order of Rk). We call this thickest hyperslab Zk′ the resonant zone around Rk.

4.2 The structure of Diophantine and truncated Diophantine sets

In this subsection, we discuss the parameter values for which the Diophantine sets (truncated or
not) are nonempty, the resonance properties of vectors in them, and the geometry and topology of
these sets.

(i) Diophantine sets are nonempty for τ > n− 1 and small γ
By writing the set of Diophantine frequency vectors in the form Dn(τ, γ) = Rn \

⋃
06=k∈Zn Zk, it

becomes a simple exercise to estimate (crudely) its relative Lebesgue measure, as we now outline.
Denoting the closed unit ball in Rn by B and Lebesgue measure by µ, we readily see that µ

(
B ∩

Dn(τ, γ)
)
≥ µ(B) −

∑
06=k∈Zn µ(Zk ∩ B) ≥ µ(B) − γ an

∑
0 6=k∈Zn ‖k‖−τ−1 where an > 0 is an

appropriate constant. Now the series
∑

06=k∈Zn ‖k‖−τ−1 converges precisely for τ > n − 1; in this

case we set b(n, τ) = an
∑

06=k∈Zn ‖k‖−τ−1, and we have µ
(
B ∩ Dn(τ, γ)

)
≥ µ(B)− γ b(n, τ). This

shows that, for any τ > n− 1 and for sufficiently small γ, the measure µ
(
B ∩ Dn(τ, γ)

)
is positive

and thus Dn(τ, γ) is nonempty. We can also see that for τ > n − 1, the relative measure of the
complement of Dn(τ, γ) is O(γ) as γ → 0+. A similar argument gives an analogous result for
D1
n(τ, γ) as a subset of Sn−1. Of course, the truncated Diophantine sets are nonempty under the

same conditions, since Dn(τ, γ,N) ⊃ Dn(τ, γ) and D1
n(τ, γ,N) ⊃ D1

n(τ, γ).

(ii) Resonance properties of vectors in Diophantine sets
Not only do Dn(τ, γ) and D1

n(τ, γ) contain no resonant vectors (since
⋃

06=k∈Zn Rk ⊂
⋃

06=k∈Zn Zk)
but the exclusion of resonant zones Zk′ around each resonance Rk means that remaining vectors are
“far from resonance,” or “highly nonresonant,” with the distance of exclusion diminishing with the
order of resonance. By contrast, although Dn(τ, γ,N∗) and D1

n(τ, γ,N∗) maintain these exclusions
up to order N∗, beyond this order, no resonances are excluded; the truncated Diophantine sets
contain infinitely many vectors resonant at orders higher than N∗.
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(iii) Geometry and topology of Diophantine sets
First, we know that Dn(τ, γ) is a closed subset of Rn, since its complement

⋃
06=k∈Zn Zk is open.

Second, Dn(τ, γ) has a simple radial structure: Given any α ∈ Dn(τ, γ) and any r ≥ 1, it follows
immediately from the definition of Dn(τ, γ) that rα ∈ Dn(τ, γ). This shows that Dn(τ, γ) is a
collection of closed half lines directed outward from the origin in Rn. The endpoints of the half
lines cannot be closer than distance γ to the origin, since the thickest resonant zones (Zk′ with
‖k′‖ = 1) contain the open ball of radius γ. Finally, the complement of Dn(τ, γ) contains the dense
set R (the resonant points), so Dn(τ, γ) has empty interior. Since Dn(τ, γ) is closed with empty
interior, it is nowhere dense.

The authors H.K. Broer, G.B. Huitema, and M.B. Sevryuk go further in their description of the
Diophantine sets. In §1.5.2 of [5], they show that the set D1

n(τ, γ) = Dn(τ, γ) ∩ Sn−1 is the union
of a countable set and a Cantor set, and they call Dn(τ, γ) (which they denote by Rn

γ ) a “Cantor
bundle of closed half-lines.” Many authors refer informally to both D1

n(τ, γ) and Dn(τ, γ) as Cantor
sets or Cantor-like sets.

The topology of the truncated Diophantine sets is quite different. We may write Dn(τ, γ,N) =
Rn \

⋃
0<‖k‖≤N Zk, which emphasizes the construction of Dn(τ, γ,N) by the removal from Rn of

finitely many hyperslabs Zk. In fact, the relation between Dn(τ, γ) and Dn(τ, γ,N) is analogous
to the relation between the Cantor ternary set in R and the finite collection of closed subintervals
obtained at the Nth step of its construction. While Dn(τ, γ) has the complicated topology of
a Cantor-like set, its approximating superset Dn(τ, γ,N) has a simple structure: it consists of
finitely many closed connected components, each having nonempty interior and boundary formed
by (portions of) hyperplanes. The sets of direction vectors D1

n(τ, γ) and D1
n(τ, γ,N) inherit a very

similar relationship, since they are simply the intersections of Dn(τ, γ) and Dn(τ, γ,N) with Sn−1.
The difference between the Diophantine and truncated Diophantine sets has significant practical

consequences. In order to decide whether a vector α belongs to the Cantor-like sets Dn(τ, γ) or
D1
n(τ, γ) we must check infinitely many inequalities, in other words we must specify α with infinite

precision. To see whether α belongs to Dn(τ, γ,N) or D1
n(τ, γ,N), we need check only finitely

many inequalities; this is roughly analogous to determining if a real number belongs to a closed
subinterval of R.

A conversation one of us (HSD) had years ago with a theoretical physicist serves to illustrate
this last point. The physicist wished to apply a theorem from dynamical systems to a mathematical
model of particle accelerator dynamics using realistic data, but the hypotheses of the theorem in-
cluded Diophantine conditions on the frequency vector. “I can’t check infinitely many inequalities,”
said the physicist, to which HSD replied “You only need to check them up to a certain order.” The
physicist then asked “But what is that ‘certain order’ precisely? And can I be sure that the theo-
rem still applies rigorously when I do that?” We observe that a result like our Theorem 1 responds
positively to the physicist’s questions.

4.3 The dynamics of linear flow on Tn

Although linear flow on Rn is very simple, it is not entirely trivial on Tn because the torus is
compact and in some sense “multiply periodic.” On Tn, there is a basic distinction between the
dynamics of linear flow arising from nonresonant versus resonant frequency vectors. If α ∈ N , the
linear flow αt is minimally ergodic2 on Tn. If α ∈ R, the flow is not ergodic on Tn; in fact, if
α ∈ Rn is resonant with multiplicity m, then αt foliates Tn into invariant “subtori” of dimension
n−m, and αt is minimally ergodic on each subtorus instead.

2“Minimally ergodic” is short for “minimal and ergodic,” where minimal means that every orbit of the flow is
dense in Tn.
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Nevertheless, for fixed δ > 0, resonant flow may quickly fill Tn to within δ, provided α is resonant
at high order, because the subtorus on which αt is invariant may itself be δ-dense in Tn. This is
most readily seen in the lowest dimension n = 2, where all resonances are simple and resonant
α generate periodic orbits invariant on subtori of dimension 1 (topological circles). To consider
specific examples, for (0, 0) 6= (a, b) ∈ R2 we denote the normalization of (a, b) by N(a, b) [i.e.,
N(a, b) = (a, b)/

√
a2 + b2 ]. Now let q ∈ Z+ and consider the direction vector α = N(q, 1) which is

resonant at order
√
q2 + 1. The corresponding flow αt is not ergodic on T2, yet fills T2 to within

δ = 1/(2
√
q2 + 1) after time T =

√
q2 + 1, which is no doubt the shortest possible filling time for

this δ. On the other hand, ergodicity does not by itself ensure rapid filling. For any q ∈ Z+, the
flow βt of the nonresonant direction vector β = N(q,

√
2) is ergodic on T2, but for fixed δ ∈ (0, 12),

the filling time becomes arbitrarily long with increasing q.
Clearly, the filling property does not coincide with ergodicity on Tn. Ergodicity is an asymptotic

phenomenon realized over infinite time intervals, ensuring that filling occurs for every δ > 0. The
filling property, as defined in §2 and as used in applications, is realized over finite time intervals
for fixed δ > 0. This in a nutshell is why non-ergodic, high-order resonant flow may also fill Tn
quickly, and why the set D1

n(τ, γ,N∗) is a better approximation than D1
n(τ, γ) to the largest set S

of direction vectors whose flows quickly fill the torus. (It is also one reason we now prefer “filling
time” over the term “ergodization time” used in our earliest discussions [9, 10].)

5 Previous Results, Optimality, and Applications

In this section, we place filling-time results in context by briefly discussing their origins and devel-
opment, their optimality, and their various uses.

5.1 Previous results on filling times

Some preliminary remarks are pertinent here. We point out that the results discussed below are
not always precisely comparable without slight adjustments; this is usually because of variations in
the definition of filling (e.g., the filling radius δ is sometimes replaced by a filling diameter ∆ = 2δ),
or in the definition of Diophantine sets (e.g., different norms are used). We won’t detail these
minor variations in the discussion below. Speaking more broadly, now that filling-time results are
relatively mature, we think it’s important to highlight various authors’ contributions, especially
since a number of advances appear in papers where filling times were used as a tool in the proof of
other results, and so haven’t always received the attention they deserve by themselves.

We now briefly describe previous results in chronological order.

Result (i). Although the filling-time problem is clearly related to earlier results in ergodic theory
and uniform distribution, to our knowledge, the first explicit definitions and treatments as outlined
above in §2 and §3 were given in the thesis [9] (presenting a mathematical theory of charged
particle motions in crystals) and subsequent article [10]. Here Fourier series methods are used first
to show that if α ∈ Dn(τ, γ), then αt fills Tn to within δ after time T ≤ Kγ−1δ−(τ+n/2) where
K = K(n, τ) is a suitable constant. For the truncated Diophantine case, it is also shown that there
is an N? = N?(δ, n, τ) such that if N > N? and α ∈ Dn(τ, γ,N), then αt fills Tn to within δ after
a time which is T (above) multiplied by a messy factor involving N , N?, n, and τ . These results
may be compared (unfavorably) to our Corollaries 1 and 2 in §3. See Theorems 1 and 2 of [10] for
details.

Result (ii). A few years later, in [7], L. Chierchia and G. Gallavotti made use of a filling-time
estimate in their treatment of “Arnold diffusion,” a kind of instability occurring in Hamiltonian
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dynamical systems (see their brief discussion following Eq. (8.26) on p. 62 of [7]). Though the
authors do not write down the proof in [7], during a later discussion with one of us (HSD), Gallavotti
explained that he had not been aware of previous results, but had used his own simple Fourier series
techniques to get the filling time T ≤ T0γ−1δ−(τ+n) (with suitable T0 = T0(τ, n)) for α ∈ Dn(τ, γ),
using only the special case n = 2 in [7]. We mention this because it seemed remarkable that the
problem arose independently in a different application than Result (i), yet the solution involved
Fourier series and gave a similar estimate, namely a power law of the form T ∼ δ−(τ+bn) with b ≥ 0.

Result (iii). Next, in the article [12], by L. Dumas, F. Golse and one of us (HSD), we used
filling-time estimates to understand features of the kinetic theory and mean free path for a Lorentz
gas in a periodic array of obstacles. For dimensions n ≥ 3, we used the estimates in [10], but for
n = 2, we wrote down a proof based on continued fractions developed earlier while working on [9]
and mentioned in Remark 3.2 of [10]. We show that if α ∈ D2(τ, γ), then αt fills T2 to within δ
after time T ≤ C ′γ−1δ−τ with C ′ = 3τ 2(τ+1)/2. The proof also shows that the same filling time
holds whenever N ≥ N∗ = 3/δ and α ∈ D2(τ, γ,N). As we explain in §5.2 below, these results in
the special case n = 2 are optimal in terms of their power-law dependence on δ.

Result (iv). In the course of their detailed treatment of the periodic Lorentz gas problem [4],
J. Bourgain, F. Golse, and B. Wennberg obtained the filling-time estimate T ≤ C ′′γ−1δ−τ (with
suitable C ′′ = C ′′(τ, n)) for α ∈ Dn(τ, γ), any n ≥ 2, using Fourier series methods and combinatorial
arguments (see Theorem D of [4], which may be compared with our Corollary 1 in §3). Again, as
explained below, this estimate is optimal in terms of its power-law dependence on δ.

Result (v). In 2003, M. Berti, L. Biasco, and P. Bolle presented a new approach to the Arnold
diffusion problem in which they also developed their own filling-time estimates implying both
Result (iv) and our present Theorem 1. (Of course the authors’ own constant—call it C ′′′—stands
in place of our C in Theorem 1 and the C ′′ of Result (iv).) See Theorems 4.1 and 4.2 of [1] and
their proofs in Appendix B. We should say that these results are already the best to date in terms
of optimality and the size of the set of frequency vectors to which they apply. We briefly discuss
the proof and its relation to our own proof below in §6.

Result (vi). In 2016, A. Bounemoura [2] recovered the optimal power-law estimate (as above in
Results (iv) and (v)) for α ∈ Dn(τ, γ) using geometry-of-numbers methods developed earlier with
one of us (SF) in [3] and extended further in the present paper. In fact, Bounemoura gives the
filling time for α ∈ Dn(τ, γ) as simply T ∼ δ−τ , but one can obtain the constants from his Theorem
1, which is more general. Applying his theorem in the case α ∈ Dn(τ, γ) gives T ≤ C ′′′′γ−1δ−τ with
C ′′′′ = 2τ (n2n!)τ+1. This is closely related to our Corollary 1 in §3, as it should be.

5.2 Optimality

In terms of the most important parameter δ, all filling-time estimates so far have the form of a
power law T ∼ δ−(τ+bn) with b ≥ 0. As explained in Remark 8 of [12] (where R is used in place of
δ), the use of these estimates in kinetic theory shows that we cannot have b < 0. In other words
b ≥ 0, thus the optimal (shortest possible) estimate of this form is T ∼ δ−τ .

To summarize, the optimal δ-dependence was first achieved in the special case n = 2, both
for α ∈ D1

2(τ, γ) and α ∈ D1
2(τ, γ,N∗) with N∗ = 3/δ (Result (iii) above). It was then obtained

for α ∈ D1
n(τ, γ), any n ≥ 2 (Result (iv)). Finally, [1] extended the optimal δ-dependence to

α ∈ D1
n(τ, γ,N∗) or Dn(τ, γ,N∗), any n ≥ 2 (Result (v)).

We also believe that the δ-dependence of the critical cutoff in the form N∗ ∼ δ−1 is optimal.
This is because, for certain α resonant at order less than O(δ−1), the flow αt fills subtori leaving
gaps in Tn larger than δ; in other words the flow fails to fill Tn to within δ. A detailed proof of
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the optimality of N∗ along these lines would involve carefully chosen sequences δj → 0+ and {α(j)}
with α(j) resonant at orders near δ−1j .

Finally, we say a few words about optimality with respect to parameters other than δ. We do
not believe that any of the above constants C, C ′, C ′′, C ′′′, C ′′′′ in §5.1 are optimal. (These depend
parametrically on τ and n and appear respectively in our Theorem 1 and Results (iii), (iv), (v), (vi)
above.) Without belaboring the point, this is because these constants arise in chains of inequalities
where no special effort was made to ensure sharpness. If for some reason a sharp or nearly sharp
constant of this type is needed, we believe it would be best to estimate it numerically for the desired
dimension n. However, we note the following possible future improvement of order constants in our
Theorem 1. As discussed at the end of the appendix below, it is conjectured that the current bound
n! in the Main Duality Result of Successive Minima could be improved to Kn (suitable K > 0). If
this were achieved, our constant C = (1 + n2n!)τ+1 could be replaced by (1 + Kn3)τ+1, and our
critical cutoff N∗ = (1 + n2n!)/δ by (1 +Kn3)/δ. (Bounemoura’s constant C ′′′′ could be similarly
improved.)

5.3 Applications

Since their introduction, filling-time estimates have had a number of applications in dynamical
systems and mathematical physics. Most—but not all—of these applications have connections
with nearly integrable Hamiltonian systems (including KAM and/or Nekhoroshev theory), since
Diophantine linear flows on tori occur as a matter of course in such systems. In this subsection,
we list four areas of application in chronological order, citing a few references and giving a short
sketch of each. We make no attempt to be comprehensive in our list or references, but rather seek
to give the reader a bird’s-eye view of how the estimates have been used.

(i) Non-channeling directions in crystals. In their original application, filling-time estimates
were used in a mathematical theory describing the motion of high-energy charged particles as they
impinge upon crystals in various directions. In this setting, direction vectors in a set like D1

3(τ, γ,N)
correspond to so-called non-channeling motions, where a specialized Nekhoroshev theory is used to
show that particles undergo rectilinear motion until they experience close encounters with crystal
nuclei. The filling-time estimates give an upper bound on the time (and depth) of close encounter,
with ramifications in the physics of ion implantation in crystals. The use of truncated Diophantine
conditions is key here. For details, see [9] or [11].

(ii) Arnold diffusion. In the mid 1960s, V.I. Arnold described a mechanism by which a slow,
large-scale instability may occur in nearly integrable Hamiltonian systems with more than two
degrees of freedom, even when systems are arbitrarily close to integrable (i.e., even when KAM and
Nekhoroshev theorems apply). This discovery spawned a large and continuing literature exploring
various features of this instability, now loosely called Arnold diffusion. Arnold’s original mechanism
uses so-called “transition chains,” which include tori supporting Diophantine linear flow. Unstable
orbits stay very near these tori for time intervals determined by filling-time estimates, allowing the
(average) speed of instability to be measured. This was first done in the previously cited article
[7] by Chierchia and Gallavotti. Other researchers, such as J.-P. Marco [16] and J. Cresson [8],
built upon these results with refined techniques and better filling-time estimates. By contrast, the
treatment of Arnold diffusion by Berti, Biasco, and Bolle [1] avoids the use of transition chains, but
uses the best filling-time estimates in a related way to get optimal diffusion times in a particular
setting.

(iii) Kinetic theory of the periodic Lorentz gas. This application studies the behavior
of a gas of non-interacting point particles moving rectilinearly in an array of obstacles distributed
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periodically in space (here “space” means Rn with n ≥ 2). Interest focuses on the behavior of the
gas in the so-called macroscopic limit, as the spacing of the array shrinks to zero while the size
of obstacles shrinks at a different rate controlled by an exponent γ (distinct from γ used in our
Diophantine conditions). The macroscopic limit depends in turn on the mean free path (hence
on the distribution of free path lengths) of particles in the array. Filling-time estimates may be
used to measure the free path lengths for directions in D1

n(τ, γ), leading ultimately to the existence
of a critical exponent γc = n

n−1 dividing gas behavior into three regimes: hydrodynamic behavior
for 1 ≤ γ < γc; purely ballistic behavior for γ > γc; and, most interestingly, behavior possibly
governed by a kinetic equation in the so-called Boltzmann-Grad limit γ = γc. This project was
begun in [12], continued in [4], and has led more recently to a surprising sort of kinetic behavior in
the Boltzmann-Grad limit. We observe that this application of filling-time estimates is not directly
connected to nearly integrable Hamiltonian systems.

(iv) Weak KAM theory. This broad and evolving subject lies in the intersection of nonlinear
PDE and dynamical systems, using viscosity solutions of Hamilton-Jacobi equations to find Aubry-
Mather sets in Hamiltonian systems. (Viscosity solutions are a special type of weak solution arising
in nonlinear PDE. Aubry-Mather sets are certain invariant sets of Hamiltonian systems; they include
the invariant tori of KAM theory, but also other sets present under weaker conditions.) Certain
Aubry-Mather sets are obtained at points where viscosity solutions have a particular regularity
(e.g., Lipschitz continuity or differentiability). This regularity is shown, in part, by the use of
filling-time estimates. A procedure of this sort was first carried out by D.A. Gomes in [13]; related
techniques have since been used by K. Wang and J. Yan [19], by K. Soga [18], and by H. Mitake and
K. Soga [17]. This is an area that might benefit from the use of truncated Diophantine conditions,
as it is connected with specialized numerical methods.

6 Proofs

We first state and prove the following proposition, which is a specially adapted version of Propo-
sition 2.3 from [3] and is the most novel part of the present paper. We then essentially follow
Bounemoura [2] in using the proposition to prove Theorem 1.

Proposition 1 For integer dimension n ≥ 2, choose Diophantine parameters τ > n− 1, γ ∈ (0, 1)
such that D1

n(τ, γ) is nonempty, and assume N > 1 + n2n!. Let α ∈ D1
n(τ, γ,N). Then there exist

ω1, . . . , ωn ∈ Rn and x1, . . . , xn ∈ R such that, for j ∈ {1, . . . , n}, we have

(i)

√
3

2
< xj ≤

nn!N τ

γ
,

(ii) ‖α− ωj‖ ≤
nn!

xj(N − 1)
, and

(iii) {x1ω1, . . . , xnωn} is a Z-basis for Zn.

In the proof below, we use basic definitions and results from the geometry of numbers. For the
reader’s convenience, we summarize the needed material in an appendix below. In what follows,
we refer by [A(R)] to items labeled A(R) in the appendix, where R is a small Roman numeral.

Because Proposition 1 is at the heart of our main result, before beginning the proof, we try
to give some insight here into how it works. The proof of Theorem 1 uses the special Z-basis
{x1ω1, . . . , xnωn} of Zn from assertion (iii) of Proposition 1. This basis is separated into multipliers
x1, . . . , xn and vectors ω1, . . . , ωn, which provides enough flexibility to show two things: assertion (i)
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of Proposition 1, controlling the size of the multipliers as they are used to estimate the filling time,
and assertion (ii) ensuring that basis vectors xjωj lie close to the line spanned by α, which is used
to show that filling occurs. To achieve this, we first construct a long, slender, solid cylinder C with
central axis span{α} so that the truncated Diophantine conditions may be used to check that the
reciprocal body C∗ (see [A(i),(iv)]) contains no element of Zn\{0}. Then C, C∗ may be used in the
Main Duality Result of Successive Minima (cf. [A(v)]) to show that nn! C contains the specially
adapted Z-basis for Zn satisfying the required assertions.

Proof of Proposition 1. Let H =
(
span{α}

)⊥
, and consider C, C∗ ⊂ Rn defined by

C = {xα+ y
∣∣x ∈ R, y ∈ H, |x| ≤ N τ/γ, ‖y‖ ≤ 1/(N − 1)} and

C∗ = {xα+ y
∣∣x ∈ R, y ∈ H, |x| ≤ γ/N τ , ‖y‖ ≤ N − 1}.

It is a simple matter to verify that C, C∗ are mutually reciprocal CCSBs (compact convex bodies
which are symmetric around the origin), as defined below in the appendix [A(i),(iv)].

We note that if k ∈ Zn ∩ C∗ then ‖k‖ < N , since ‖k‖ = ‖xα + y‖ ≤ |x|‖α‖ + ‖y‖, with
|x| ≤ γ/N τ < 1, ‖α‖ = 1, and ‖y‖ ≤ N − 1. Now assume 0 6= k ∈ Zn ∩ C∗. Then combining
‖k‖ < N with α ∈ Dn(τ, γ,N) shows that |x| = |k · α| ≥ γ‖k‖−τ > γ/N τ , which contradicts the
definition of C∗. Therefore Zn ∩ C∗ = {0}; in other words λ1(C∗,Zn) > 1 by definition of the first
successive minimum [A(ii)].

The main duality result of successive minima [A(v)] reads 1 ≤ λk(C∗,Zn)λn+1−k(C,Zn) ≤ n!
for k ∈ {1, . . . , n}. Setting k = 1 and using λ1(C∗,Zn) > 1 yields λn(C,Zn) < n!, which implies
[A(i),(iii)] that there is a Z-basis {ω1, . . . , ωn} of Zn such that for each j ∈ {1, . . . , n}, ωj ∈ nn! C.
In other words, ωj = xjα+ yj with xj ∈ R, yj ∈ H, |xj | ≤ nn!N τ/γ, and ‖yj‖ ≤ nn!/(N − 1).

Since yj ∈ H =
(
span{α}

)⊥
, we have ‖ωj‖2 = x2j + ‖yj‖2, thus x2j = ‖ωj‖2 − ‖yj‖2 ≥

1 −
(
nn!/(N − 1)

)2
> 3/4 since we assume n ≥ 2 and N > 1 + n2n!. Therefore |xj | >

√
3/2,

and changing ωj to −ωj if necessary, we obtain xj >
√

3/2. Together with |xj | ≤ nn!N τ/γ, this
establishes (i).

Now set ωj = ωj/xj = α + yj/xj , so that ‖α − ωj‖ = ‖yj/xj‖ ≤ nn!/xj(N − 1), which verifies
(ii). Finally, we see that {x1ω1, . . . , xnωn} = {ω1, . . . , ωn} is the Z-basis for Zn required in (iii). 2

Proof of Theorem 1. Let θ ∈ Tn be arbitrary. We will prove the theorem by producing a time
T < (1 + n2n!)τ+1/(γδτ ) such that the endpoint Tα of the orbit segment {αt(0), 0 ≤ t ≤ T} lies
within distance δ of θ. We use Proposition 1 with N = N∗ = (1 + n2n!)/δ.

By Part (iii) of Proposition 1 (and taking into account modular arithmetic on Tn), there exists
a unique (t1, . . . , tn) ∈ [0, 1)n such that θ = t1x1ω1+· · ·+tnxnωn modZn. Set T = t1x1+· · ·+tnxn.
Then by Part (i) of Proposition 1, we have 0 ≤ T = t1x1+· · ·+tnxn ≤ x1+· · ·+xn ≤ n2n!(N∗)τ/γ =
n2n!(1 + n2n!)τ/(γδτ ) < (1 + n2n!)τ+1/(γδτ ), as required. Next, we estimate the distance between
Tα and θ as ‖Tα− θ‖ = ‖

∑n
j=1 tjxj(α− ωj)‖ ≤

∑n
j=1 nn!/(N∗ − 1) = n2n!/(N∗ − 1) < δ, where

we use Part (ii) of Proposition 1 in the first inequality, and N∗ = (1 + n2n!)/δ > 1 + n2n!/δ in the
last inequality. 2

Finally, we say a few words about our proof and its relation to other proofs, especially the proof
by Berti, Biasco, and Bolle. Proofs of the earliest filling-time results made use of Fourier series
methods (cf. Results (i), (ii), (iv) in §5.2 above). Yet even then, the short proof of optimal estimates
using continued fractions in the special case n = 2 (Result (iii), §5.2) hinted that simpler proofs
and better results would come from number-theoretic methods. Indeed, though continued fractions
don’t fully generalize to higher dimensions, a hybrid number-theoretic approach was found by Berti
et al. in [1]. We would characterize their approach as a very clever use of geometry-of-numbers
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methods (without directly using any of the major theorems of that subject) combined with an
induction proof on the dimension. By contrast, our approach makes essential use of successive
minima in geometry of numbers, especially the Main Duality Result of Successive Minima (cf. A(v)
in the appendix below). Using this theorem not only gives a short proof, but we also believe it
shows filling-time estimates to be a natural part of the geometry of numbers.

Appendix. Geometry of Numbers

The geometry of numbers is a branch of number theory begun in the late 19th century by Hermann
Minkowski. It has by now grown substantially into a vigorous subject in its own right, as the reader
may verify by consulting [6], [14] or other texts. In this appendix, we provide only the minimum
material needed in the proof of Proposition 1, and we refer to the texts just cited for proofs and
further details.

A(i). Some notation and terminology.
In the geometry of numbers, it is customary to refer to a connected subset of Rn with nonempty
interior as a “body.” For simplicity, here we restrict attention to bodies that are compact, convex,
and symmetric around the origin. We use the abbreviation CCSB to denote such a body.

For C ⊂ Rn and λ ≥ 0, we define λ C ⊂ Rn by λ C = {λx |x ∈ C}, and we sometimes say that
λ C is the dilation of C by λ, or simply that λ C is dilated.

We say that the set {ω1, . . . , ωn} ⊂ Zn is a Z-basis for Zn if it is linearly independent and if,
given any k ∈ Zn, there are m1, . . . ,mn ∈ Z such that k = m1ω1 + · · ·+mnωn.

A(ii). The n successive minima.
Given a CCSB C ⊂ Rn, for j ∈ {1, . . . , n} we define the n successive minima of C with respect to
Zn by λj(C,Zn) = inf{λ > 0 | dim span (λ C ∩ Zn) ≥ j}.

This says that λj is the smallest λ for which the dilated body λ C contains j linearly independent
vectors in Zn. (The definition ordinarily applies when Zn is replaced by a more general lattice Λ,
but we don’t use such Λ in this paper.)

A(iii). Obtaining a Z-basis for Zn.
Given a CCSB C ⊂ Rn, by the definition of λn = λn(C,Zn), the body λn C contains a set of n linearly
independent elements of Zn. This set is not necessarily a Z-basis for Zn, as the n-dimensional lattice
consisting of its integer combinations may be a proper sublattice of Zn. However, by dilating further,
we can capture a Z-basis: it follows from the remark after the corollary to Theorem VII in Chapter
VIII of [6] that the dilated body nλn C contains a Z-basis for Zn.

A(iv). Reciprocal bodies.
Given a CCSB C ⊂ Rn, we define the corresponding reciprocal body C∗ ⊂ Rn by
C∗ = {y ∈ Rn |x · y ≤ 1 for all x ∈ C}. It is not difficult to show that C∗ is also a CCSB, and that C
is the reciprocal body corresponding to C∗. For this reason, we also say that C and C∗ are mutually
reciprocal, or form a mutually reciprocal pair. (Some authors use the adjectives “polar” or “dual”
in place of reciprocal, and in [14], the authors use the compound adjective “polar reciprocal.”)

A(v). The main duality result of successive minima.
Given a pair C, C∗ ⊂ Rn of mutually reciprocal CCSBs, for k ∈ {1, . . . , n} we have
1 ≤ λk(C∗,Zn)λn+1−k(C,Zn) ≤ n!.
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This is stated (with Zn replaced by a general lattice Λ and its dual) as Theorem VI of Chapter
VIII, §5 in [6]. A similar theorem, but with upper bound (n!)2 replacing n!, is stated as Theorem 5
of Chapter 2, §14.2 in [14]; then in Part ii.6 of the “Supplement to Chapter 2” in the same book,
it is explained that the upper bound was improved to n! by K. Mahler in 1939. In fact, there is an
ongoing effort to improve the theorem’s upper bound to an optimal value, which is conjectured to
be Kn for some universal constant K > 0. See the end of §5.2 above for the effect this would have
on the order constants in our Theorem 1.
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