
HAL Id: hal-03500187
https://hal.science/hal-03500187

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Insights on Car Relocation Operations in One-Way
Carsharing Systems

Rabih Zakaria, Laurent Moalic, Mohammad Dib, Alexandre Caminada

To cite this version:
Rabih Zakaria, Laurent Moalic, Mohammad Dib, Alexandre Caminada. Insights on Car Relocation
Operations in One-Way Carsharing Systems. International journal of advanced computer science and
applications (IJACSA), 2018, 9 (7), pp.281-290. �10.14569/IJACSA.2018.090739�. �hal-03500187�

https://hal.science/hal-03500187
https://hal.archives-ouvertes.fr

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

Insights on Car Relocation Operations in One-Way
Carsharing Systems

Rabih Zakaria
Université de Technologie et de Sciences Appliquées Libano-Française

Tripoli, Lebanon

Mohammad Dib
Engie

Paris, France

Laurent Moalic
Université de Haute-Alsace

Mulhouse, France

Alexandre Caminada
Université Bourgogne Franche-Comté Belfort, France

Abstract—One-way carsharing system is a mobility service
that offers short-time car rental service for its users in an
urban area. This kind of service is attractive since users can
pick up a car from a station and return it to any other station
unlike round-trip carsharing systems where users have to return
the car to the same station of departure. Nevertheless, uneven
users’ demands for cars and for parking places throughout the
day poses a challenge on the carsharing operator to rebalance
the cars in stations to satisfy the maximum number of users’
requests. We refer to a rebalancing operation by car relocation.
These operations increase the cost of operating the carsharing
system. As a result, optimizing these operations is crucial in
order to reduce the cost of the operator. In this paper, the
problem is modeled as an Integer Linear Programming model
(ILP). Then we present three different car relocation policies
that we implement in a greedy search algorithm. The comparison
between the three policies shows that car relocation operations
that do not consider future demands do not effectively decrease
rejected demands. On the contrary, they can generate more
rejected demands. Results prove that solutions provided by our
greedy algorithm when using a good policy, are competitive with
CPLEX solutions. Furthermore, adding stochastic modification
on the input data proves that the results of the two presented
approaches are highly affected by the input demand even after
adding threshold values constraints.

Keywords—Carsharing; car relocation; ILP; greedy algorithm;
CPLEX; green city

I. INTRODUCTION

It is straightforward that convenient transportation systems
are crucial for supporting the economic development of cities
[1], [2]. Generally, people in urban areas commute using
different modes of transportation, such as public transport
buses, trains, taxis, private cars, bikes, etc. Private cars are
more attractive to users for their high flexibility and comfort.
However, the increasing number of private cars has serious
consequences related to environment issues, traffic and parking
congestion [3]. Then, numerous efforts have been made to
motivate people to use more sustainable modes of transporta-
tion like biking, walking or the use of public transportation
facilities when possible. In June 2007, Vélib was successfully
launched in Paris. 20,000 self-service bikes were deployed
over 1500 stations [4]. Within the first year, the number of
subscribed members exceeded 200,000 members and the bikes
have been used 26 million times. The success of this system

has motivated cities all over the world to adopt this idea
of sharing vehicles, which includes carsharing, bikesharing
and other vehicle sharing concepts. Carsharing is one of
the innovative solutions that can contributes in promoting
sustainable car use. Many studies stated that private cars
spend most of their time parked, since many car owners use
their cars occasionally. Thus, in this case, one shared car can
replace many private owned ones. Carsharing offers on demand
access for cars distributed in a defined urban area. Therefore,
carsharing systems offer the benefits of owning a private car
without actually having to buy it. Carsharing is based on the
model of Pay As You Go service, so users do not have to afford
all the fees of owning a car like insurance and maintenance,
they just pay during the time they access the service as an
alternative of ownership in a market shift as predicted in “the
age of access” [5]. Usually, users of this kind of systems rent
cars for short periods of time. It is a complementary solution
for the existing public transportation facilities. It offers the
comfort and flexibility of private cars and the reduced costs of
public transportation. According to Navigant Research, global
carsharing service revenues will grow up to US$6.2 billion
by 2020 [6]. This kind of system has been implemented
since the end of forties in Europe [7]. However, they were
not successful since it was not easy to monitor the system
and protect it from vandalism. Thanks to the advances in
Information and Communications Technology (ICT), better
facilitation, monitoring and management of reservations and
payment operations of these systems have become available
[8]. System operators and users are able to locate the stations
and check the availability of vehicles in real time. In our
study, we are dealing with one-way carsharing systems. Unlike
round-trip carsharing systems, one-way carsharing systems
allow users to take a car from a station and to drop it off
in any other one. Although the one-way option makes the
system more attractive to users, carsharing operators encounter
difficulties in maintaining enough numbers of vehicles in
stations to satisfy user demands. If stations are full, users who
want to drop off their cars at the destination station cannot find
a free parking place. On the other hand, user demands to take a
car from empty stations will not be satisfied. If this imbalance
problem occurs frequently, system clients lose their enthusiasm
for using the service since it is not reliable and available when
they need it. Recently, vehicle-sharing systems have generated
a great interest of research in its different majors to solve

www.ijacsa.thesai.org 281 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

the problems that arise upon operating these systems. We
will focus in this paper on the problem of car relocation in
order to meet user demands. In one-way carsharing systems,
the relocation problem is technically more difficult than the
relocation problem in bikesharing systems. In the latter, we can
use a truck to move several bikes at the same time, while we
cannot do this in carsharing system because of the size of cars
and the difficulty of loading and unloading cars. This paper
presents an exact approach for the relocation problem in one-
way carsharing system, followed by a heuristic approach using
a greedy search algorithm. The focus is on providing different
analysis and results to highlight the particular aspects related
to this problem. In the literature, papers do not emphasize on
the workload and cost of employees recruited to locate cars
between the stations. The objective in this paper is to bring the
attention to the complexity of these operations and to provide
different analysis for this problem. This paper is structured as
follows. The next section presents a practical example for the
relocation problem. This is followed by the formulation of an
Integer Linear Programming model for the problem. Then, the
platform and mobility data used for this study are described.
After that, a greedy algorithm and three relocation policies
are explained. Different results and analysis are presented in
Section VI. Finally, conclusion and future works are provided.

II. LITERATURE OVERVIEW

In the literature, we find many papers dealing with the
relocation problem in one-way carsharing system. In 1999,
Barth et al. developed a simulation model performance analysis
of a multiple stations shared-use vehicles [9]. They found
that the carsharing system is most sensitive to vehicle to trip
ratio, to the relocation algorithm, and to the charging policy
used in case of electrical vehicles. Other papers proposed that
carsharing operators can involve users in the system to relocate
cars [10], [11]; despite the fact that this technique was fruitful
in alleviating the imbalance problem, it highly depends on
clients participation, which is obviously not always guaran-
teed. Mitchel et al. proposed dynamic pricing for mobility-
on-demand systems which include carsharing [12]. A price
incentive strategy is used to motivate users to change their
origin or destination stations to other stations near to them
based on system needs. In a different study, a decision support
system is presented by [13] to help carsharing operators to
decide the values of operating parameters in a near-optimal
way. Tuning these parameters reduces, between 37.1% and
41.1%, the number of relocation operations, it decreases the
staff cost of 50%. It also reduces the zero vehicle-time between
4.6% and 13.0%. The author in [14] presented a multistage
stochastic linear integer model with recourse for dynamic
decision-making problem of vehicle allocation. They optimize
trip selection in a way that the operator accepts or refuses
trips reservations that maximize the profit of the carsharing
system. Results showed profit increase but the model was not
applied on real network and under real conditions. In [15], the
author proposed stochastic mixed-integer programming model
to minimize the cost of cars relocation operations in a way
that satisfy p-proportion of all near-term demand scenarios.
The study used historical data originated from the Intelli-
gent Community Vehicle System (ICVS), which is no longer
operational. Authors proved the robustness of the solutions
through simulations that consider stochasticity in generating

redistribution plans.

III. RELOCATION PROBLEM IN A PRACTICAL EXAMPLE

This paper is dealing with one-way carsharing systems,
which consists of many stations scattered in an urban area.
A station has a predefined number of parking spots for its
users. System users can take a car from a station and return it
to any other station. When a user arrives at an empty station
to drive a car, his request will be rejected. On the other side
when a user wants to return a car to a station that is full,
his request will be rejected as well. Users expect that cars
are always available in stations when they need it, and they
expect to find a free parking place at the destination station
when they want to return the rented car as well. However,
maintaining this level of service is not an easy task. This should
be done by employees recruited to redistribute cars between
the stations; in the following, we refer to these employees
by “jockeys”. However, when the operator fails to solve this
imbalance problem, users tends to abandon the system, which
leads to potential system failure. We modeled our one-way
carsharing system by a simple time-space network. To simplify
the idea, an example of a simple carsharing system is provided
below. Table I shows how many vehicles are available avit in
each station i for each time step t. We have three stations
S1, S2 and S3. At time t = 0, we have the initial number of
available vehicles in each station. Table II shows the number
of cars outit that users would like to rent by station and by
time step. Table III shows the number of cars init that users
would like to return to each station at each time step. In Table
IV, we see the number of rejected user demands to take a
car because a station is empty outrit while Table V shows the
number of rejected demands to take a car because a station
is full inr

it
for each time step. In this example, we consider

that a station can host at most five cars. It is obvious that the
values in these five tables must be non-negative. The input for
the system consists of the initial number of available vehicles
at t = 0 and the values in Tables II and III. While all other
values are calculated based on the aforementioned input. To
get the number of available cars, we use this equation:

avit = avit−1
+ (init − inr

it
)− (outit − outrit) (1)

In (1), available vehicles in station i at time t is equal to
the number of available vehicles at the same station in the
previous time step added to the number of arriving cars to the
same station at time t minus the number of cars that could not
be returned because the station is full. Then, we subtract the
number of cars that go out of the station minus the number of
rejected requests to take a car out of the station because there
is a lack of cars.

TABLE I. NUMBER OF AVAILABLE CARS

t 0 1 2 3 4 5 6 ... T

S1 2 2 3 3 3 4 5

S2 4 2 2 1 0 0 0

S3 3 3 4 4 5 3 3

As we can see in Table IV, we have one rejected demand in
station S2 at time t = 6. This rejected demand occurs because
station S2 does not have any vehicle at t = 5 and there is one
request for vehicle at t = 6. On the other side, we see in Table

www.ijacsa.thesai.org 282 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

TABLE II. NUMBER OF REQUESTS FOR DEPARTING CARS

t 0 1 2 3 4 5 6 ... T

S1 0 0 0 0 0 0 0

S2 0 2 0 1 1 0 1

S3 0 0 0 0 0 2 0

TABLE III. NUMBER OF REQUESTS FOR ARRIVING CARS

t 0 1 2 3 4 5 6 ... T

S1 0 0 1 0 0 1 2

S2 0 0 0 0 0 0 0

S3 0 0 1 0 1 0 0

TABLE IV. NUMBER OF REJECTED DEMANDS BECAUSE OF AN EMPTY
STATION

t 0 1 2 3 4 5 6 ... T

S1 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 1

S3 0 0 0 0 0 0 0

TABLE V. NUMBER OF REJECTED DEMANDS BECAUSE OF A FULL
STATION

t 0 1 2 3 4 5 6 ... T

S1 0 0 0 0 0 0 1

S2 0 0 0 0 0 0 0

S3 0 0 0 0 0 0 0

V that we have one rejected demand in station S1 at time t
= 6 since this station has four vehicles at t = 5 and there are
two requests to return cars at t = 6.

IV. ILP FOR THE RELOCATION PROBLEM

We adapted the car relocation model presented in [13] to
our study. Thus, a two dimensional time-space matrix N × T
is used to model the relocation problem, N stands for the total
number of stations S = {1, 2, .., N} and T is the number of
time steps during a day starting from 1 to T . Each element of
the matrix represents a station Si at time t. For each station
s ∈ S we generate T nodes to represent that station at each
time t. Then we put all the S × T nodes in one row vector
V = (11, ..., 1T , ..., N1, ..., NT). An employee has three sorts
of activities:

1) Relocating: is the action taken by the jockey to move
a car from a station i to another station j.

2) Moving: is the action taken by the jockey to move
himself from his current station to another station in
order to begin a relocation activity.

3) Waiting: when the jockey is not involved in relocating
or moving activities we say that the jockey is waiting.

Therefore, to represent these activities three sets of arcs are
generated in the time-space network. An arc a1 is constructed
for each node it ∈ V , to represent a waiting activity between
it and it+1; this set is called A1 = {..., a1(it, it+1), ...}. Also,
N−1 arcs a2 are constructed for each node it in V , to represent
the move activity from station i and station j, ∀ i, j ∈ S, i 6= j,
from time t to time t+ tij where tij stands for the number of
time steps required to move from station i to station j; this set
is named A2 = {..., a2(it, jt+tij), ...}. likewise, N −1 arcs a3
are built to represent relocation activities, this set is denoted

A3 = {..., a3(it, jt+tij), ...}. The staff that is responsible for
these activities is denoted by a set E = {1, ..., e, ...,W}, W
represents the number of recruited employees. An ILP Model
is formulated for the relocation problem. Six different decision
variables are declared:

• ue: When an employee e is used at least once during
the day, its associated binary variable takes the value
1, while it takes the value 0 otherwise.

• waiteitit+1
: When an employee e is involved in a

waiting activity at station i from time t to t + 1,
the associated binary variable is assigned the value
1, while it remains 0 otherwise.

• moveeitjt+tij
: When an employee e is involved in a

moving activity from the set A2, the associated binary
variable is assigned with the value 1, while it remains
0 otherwise.

• releitjt+tij
: When an employee e is involved in one

of the relocation activities within the set A3, the
associated binary variable is assigned the value 1,
while it remains 0 otherwise.

• outrit : This variable can be assigned with integer val-
ues. It represents the number of rejected user demands
to rent a car from station i at time t.

• inr
it

: This variable can be assigned with integer val-
ues. It represents the number of rejected user demands
to give back the rented car to a station i at time t.

On other side, the input parameters for the ILP are listed
below:

• avi0 : Represents the number of available cars in
station i at time 0.

• outit : Represents the number of requests to rent a car
at time t from station i.

• init : Represents the number of requests to give back
a car at time t to a station i.

• pi: Represents the number of parking spots in a station
i.

• cij : Denotes the estimated cost of a relocation or
moving activity from a station i to station j.

• ce: Denotes the estimated cost of an employee during
a day.

• cin: Stands for the estimated cost of the rejection of
a demand to give back a vehicle to a station.

• cout: Stands for the estimated cost of the rejection of
a demand to rent a vehicle from a station.

Also, one dependent variable is used:

• avit: Denotes the remaining available cars at station i
at time t.

The relocation problem can be modeled by the ILP model
below:

www.ijacsa.thesai.org 283 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

Min Z = cij(
∑

(it,jt+tij
)∈A3

∑
e∈E

moveeitjt+tij

+
∑

(it,jt+tij
)∈A4

∑
e∈E

releitjt+tij
)+ cout

∑
it∈V

outrit

+cin
∑

it∈V

inr
it
+ ce

∑
e∈E

ue

(2)

Subject to:∑
i∈S

waitei1i2 +
∑

i,j∈S
i6=j

moveei1j1+tij
+

∑
i,j∈S
i6=j

relei1j1+tij

= ue ∀e ∈ E

(3)

waiteit−1it
+

∑
(jt−tij

,it)∈A3

moveejt−tij
it

+
∑

(jt−tij
,it)∈A4

relejt−tij
it
− waiteitit+1

−
∑

(it,jt+tij
)∈A3

moveeitjt+tij
−

∑
(it,jt+tij

)∈A4

releitjt+tij

= 0 ∀ it ∈ V, e ∈ E, t > 1

(4)

avit = avit−1
+ (init − inr

it
)− (outit − outrit)

+
∑

(jt−tij
,it)∈A4

∑
e∈E

relejt−tij
it
−∑

(it,jt+tij
)∈A4

∑
e∈E

releitjt+tij
∀ it ∈ V

(5)

avit ≤ pi ∀ it ∈ V (6)

inr
it ≤ init ∀ it ∈ V (7)

outrit ≤ outit ∀ it ∈ V (8)

ue = (0, 1) ∀ e ∈ E (9)

waiteitit+1
∈ {0, 1} ∀ (it, it+1) ∈ A1, e ∈ E (10)

moveeitjt+tij
∈ {0, 1} ∀ (it, jt+tij) ∈ A2, e ∈ E (11)

releitjt+tij
∈ {0, 1} ∀ (it, jt+tij) ∈ A3, e ∈ E (12)

inr
it ≥ 0 ∀ it ∈ V (13)

outrit ≥ 0 ∀ it ∈ V (14)

avit ≥ 0 ∀ it ∈ V (15)

Equation (2) represents the objective function. It minimizes
the weighted aggregation of the number of rejected requests
to rent or to give back a car, the number of needed staff
and the required moving and relocating operations needed to
decrease the number of rejected demands. Constraint (3) serves
to ensure that an employee cannot perform more than one task
at a time and to assign the value 1 to the variable ue when
the associated employee e is engaged in an activity at t = 1.
Constraint (4) ensures that an employee cannot be engaged
with a new activity before he completed the last one and to
assure the continuity of activities for an employee if he is
engaged at t = 1. Constraint (5) is used to get the remaining
available cars at each station at each time step. It is calculated
based on the number of remaining cars in the previous time
step, the number of cars entering and leaving the station by the
users and the number of cars moved in/out of the station by the
staff. Constraint (6) ensures that the number of available cars
at a station will not exceed its capacity. Constraints (7) and
(8) are used to make sure that the number of rejected demands
will not be greater than the number of demands. Constraints
(9)-(12) are used to impose binary values to the associated
variables, and constraints (13)-(15) ensure that the associated
variables are non-negative.

V. GREEDY ALGORITHM TO SOLVE THE CAR
RELOCATION PROBLEM

A. Motivation Behind the Greedy Algorithm

As described earlier in Section IV, the car relocation prob-
lem is modeled as an ILP model. The model is solved using
CPLEX. The model was tested using different configurations,
it was evident that the running time gets significantly bigger
when the number of jockeys increased. It was also noted that
stations number, the average number of trips per car and the
maximum number of parking spots in each station highly affect
the running time. These parameters highly influence number
of rejected demands. After running the model with CPLEX
with some complex configurations, CPLEX could not give a
solution before two days of execution. While the solver could
not give any solution for other complex configurations. Fig. 1
shows the variation of CPLEX’s running time with respect to
the number of jockeys used. This experiment uses a configura-
tion of a simple carsharing system which has 10 parking spaces
per station, 18 stations and 83 cars. The average trips per car
for this experiment was 12. It was clear that the running time
of CPLEX grows significantly when the number of jockeys
is increased. This observation was a good motivation to look
for another approach to get a result more quickly. For this
reason, a simple greedy algorithm is developed to minimize
the number of rejected demands while reducing the number
of required relocation operations. A relocation operation is
performed through two steps: first, a station is selected to take
a car from it, then the destination station is chosen to move
the car for it by the jockey to rebalance the system.

In this paper, different relocation policies are proposed
which are implemented later using a greedy algorithm. This
algorithm uses a policy pattern to assess the impact of each
policy on resulting rejected demands. When the greedy algo-
rithm is executed, one second of running time was enough to
build a good non-optimal solution for configurations regardless
of their complexity, and the used policy.

www.ijacsa.thesai.org 284 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ti
m

e
 in

 m
in

u
te

s

Number of jockeys

CPLEX Execution time in minutes

Fig. 1. CPLEX execution time when solving the relocation problem (10
parking places per station, 18 stations, 12 trips per car, 83 cars).

B. Relocation Policies

To increase client satisfaction, it is important to choose a
good relocation policy in order to reduce the total number of
rejected demands. Different approaches were tested using the
greedy algorithm:

• Policy 1: The jockey moves one car from the nearest
station to his current station, and if several, he chooses
the one that has the highest number of available
vehicles, to the nearest station, and if there are several
ones, to the station that has the lowest number of
available vehicles.

• Policy 2: The jockey moves one car from the station
that has the biggest number of available vehicles, and
if several, the nearest station, to the station that has the
lowest number of available vehicles, and if several, at
the closest station.

• Policy 3: The jockey moves one car from the station
having the soonest rejected demand because it is full
to the station having the soonest rejected demand
because it is empty.

NB: In our examples (Fig. 2 and 3), we consider that
the only car movements are done by jockeys for relocation
purposes.

1) Policy 1: In this policy, the priority is given to the
time needed to move between the stations. For each operation
decision, the jockey chooses the operation that takes the
shortest possible time with the objective of having enough time
to do the maximum number of relocation operations that can
be done during the day. During each relocation operation, the
jockey starts by determining the closest station to his present
location in order to take a car from this station. If more than
one station found on same distance, he selects randomly a
station having the biggest number of available vehicles. Then,
the jockey chooses the closest station again and if he finds
many, he selects the one that has the minimum number of
available vehicles among them. For example, Fig. 2 shows
a representation of this policy with four stations. The circles
represent the stations. The name of the station and the number
of available cars at a specified time are displayed in each circle.

In our example, the jockey starts the relocation operation by
going to the nearest station from his location which is S3. This
moving activity is done without a car from the system. Then,
in a second step, he drives a car from the selected station S3

to the station S1, because, first, it is the closest station and,
second, because it presents the minimum number of available
cars.

S2, 8

cars

S4, 5

cars

S3, 7

cars

S1, 1

car

S1, 1

car

S3, 7

cars

S2, 8

cars

S4, 5

cars

Step 1

Step 2

Current Station at

time t

Fig. 2. Simple relocation operation using Policy 1.

2) Policy 2: Policy 2 prioritizes the balancing of the cars
over the station, aiming to rebalance the number of available
cars in each station. Policy 1 has some similarities with Policy
2, but here, the order of selecting stations is reversed. During
each relocation operation, the jockey starts by looking for
stations having the highest number of available vehicles, and
he selects the closest station in the list. After that, stations
having the minimum number of cars are selected, and the
jockey chooses the closest. As we can see in Fig. 3, the jockey
chooses station S2 in the first step since it presents the highest
number of cars, while the choice in the later step remains the
same since station S1 has the lowest number of cars.

S2, 8

cars

S4, 5

cars

S3, 7

cars

S1, 1

car

S1, 1

car

S3, 7

cars

S2, 8

cars

S4, 5

cars

Step 1

Step 2

Current Station at

time t

Fig. 3. Simple relocation operation using Policy 2.

3) Policy 3: Policy 3 considers that an estimation of what
will happen in the future is known by the jockey, so he
can foresee the rejected demands even if they occur after
several time steps. In addition, in this policy the jockey can
see the effect of each relocation operation on the overall
system, so the jockey will not remove or add cars when this

www.ijacsa.thesai.org 285 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

may cause a station to be empty or full respectively. Here,
the aim is to get rid of the maximum number of rejected
demands during a single relocation operation. The relocation
operation starts at step 1 by looking for the list of stations
where the soonest rejected demands will occur as a result
of stations filling up (inr

it
> 0) and the list of stations that

have cars that can be delivered to other stations that will
need cars for future demands. In step 2, the jockey tries to
find the list of stations where the soonest rejected demands
will occur because empty stations (outrit > 0) and the list of
stations that may be in shortage for future demands. From these
lists, the jockey chooses the target station for the relocation
operation in order to reduce the maximum number of rejected
demands while preventing to generate future rejected demands.
When choosing the best relocation operation, if we have many
possibilities with the same effect on rejected demands, we
privilege the operation that reduces rejected demands in the
closest stations and the soonest possible. In Fig. 4 we propose
the flow chart to implement Policy 3 in a greedy algorithm. A
greedy algorithm makes the optimal choice at each iteration
up to the local optimum.

VI. EXPERIMENTATION AND RESULTS

A. Mobility Data

The mobility data used for this study consists of socio-
economical information and survey data that are collected by
professional for the objective of regional planning. This data
describes people mobility flows in a region of 20 km x 10 km
in Paris. The region of the study is plotted into a grid of cells
having the same size. A cell has two characteristics:

• The type of the terrain: it describes structure types
that are dominant in the area associated to the cell
(commercial center, business center, buildings, roads,
houses, etc.).

• Attraction weight: based on the terrain type and survey
data, this information attributes a dynamic attraction
weight to each cell for each 15 minutes of the day.

A 3D matrix F = (fi,j,t) represents the people mobility
between different cells, where fi,j,t stands for the number of
persons who want to move from cell i to cell j at time t. We
consider t to be a period of 15 minutes during the day, which
makes 96 time periods. Then the flow mobility data is plotted
on a map using GIS shapefiles. As a result, 400 cells have been
detected as a potential origin or destination point knowing that
some cells are eliminated because of their geographical nature
e.g. lakes, plains, etc. The final flow mobility data consists of
400 x 400 x 96 elements, which makes 15,360,000 records to
represent how people move during the day.

B. Platform for Locating Stations

In order to locate station for a carsharing system in the
region on the study, [16] developed a dedicated platform. The
platform uses the mobility data that are described earlier in
this study. To locate the stations, a multiobjective memetic al-
gorithm has been implemented in the platform. The algorithm
optimizes three objective functions:

• Objective 1: The location of the stations should max-
imize the mobility flow between the cells.

Yes

Yes

No

No

No

Yes

No

No

Yes

Set t = 0 and

paths_list=null

Look for stations i having the

soonest rejected demands
because stations are full

Look for stations j that have

available parking spaces on

the next move

Look for stations j having the

soonest rejected demands

because stations are empty

Look for stations i that can

release cars on the next move

Look for stations j having the

soonest rejected demands

because stations are full

Calculate best path from

station i to j, then add it to

paths_list

Update time t

Update matrices of the

available vehicles and the

rejected demands

Stations

detected ?

No more feasible paths

Start

Stations

detected ?

Stations

detected ?

Stations

detected ?

Stations

detected ?

Yes

No

End

End of the

day ?

Yes

Fig. 4. Flowchart of the Relocation Algorithm using Policy 3.

• Objective 2: The location of the stations should max-
imize the balance between the ingoing and outgoing
flows in each station.

• Objective 3: The location of the stations should min-
imize the standard deviation of the flows in order to
obtain a uniform flow during the day.

Each cell is considered to cover the demand in a radius
of 300 meters. Special filters and probability distribution are
applied on the mobility data to forecast the potential users for

www.ijacsa.thesai.org 286 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

the service. A study has been carried out with the carsharing
operator to set the desired system parameters. We used this
platform to generate the data for this study. The generated
dataset consists of the four matrices described in Section III.
For each generated dataset, we use four parameters:

1) Total number of cars in the system.
2) Total number of stations in the system.
3) Average trips number by car.
4) Parking spots number for each station.

C. Relocation Policies Comparison

Fig. 5 shows a comparison of three policies described
earlier, these results concern a generated dataset for a car-
sharing system that consists of 20 stations having 10 parking
places each and 150 cars that have an 9 average trips. As
we can see, the performance of policy 1 and policy 2 is
rather similar in the beginning. After that, when the number
of jockeys is increased to be more than 19, policy 1 and
policy 2 start to generate new rejected demands rather than
reducing them. Policy 1 is worse than policy 2 in minimizing
the rejected demands number. This result is logical, since
policy 2 gives the priority to the relocation operations which
aims to redistribute the cars in order to rebalance the system.
Bad relocation operations may lead to an augmentation in the
number of remaining rejected demands in the future. On the
other hand, policy 3 performs much better than the other two
policies. This can be explained by the fact that the jockey has
an estimated knowledge of the future rejected demands. With
this knowledge, the jockey is able to take better relocation
decisions in order to reduce the maximum number of rejected
demands, keeping in mind not to generate future rejected
demands. This policy is better from the other two policies
since relocation decisions are taken only when needed. When
relocation operations are not advantageous to the system, the
jockey does not relocate cars but he waits until the appropriate
moment for better relocation operations. Fig. 6 clearly shows
that the number of relocation operations is somehow constant
using policy 1 and policy 2. While in policy 3, the number
of relocation operations is decreasing, likewise the number of
remaining rejected demands which also decreases.

D. Comparison of CPLEX and Greedy Algorithm

As we can see in the subsection VI-C, the comparison
of the performance of the three proposed policies shows that
Policy 3 is the best approach for the relocation problem. In the
remaining part of this paper, our greedy algorithm implements
the policy 3, exclusively. In order to assess the performance
of our greedy algorithm we solved the same problem with the
same data with CPLEX. Fig. 7 shows that the results of the
greedy algorithm are competent with the results obtained by
CPLEX; especially the greedy algorithm takes less than one
second to deliver a solution while CPLEX may take a long
time before delivering a solution as shown in Section V.

E. Stochastic Data Results

After solving the relocation problem using our greedy
algorithm and CPLEX, each jockey is affected to a path that
should be followed in order to cut down rejected demands.
The path is constituted of a series of relocation operations

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

N
u

m
b

e
r

o
f

re
m

ai
n

in
g

re
je

ct
e

d
 d

e
m

an
d

s

Number of jockeys

Policy 1 Policy 2 Policy 3

Fig. 5. Comparison of the performance of the three relocation policies.

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

N
u

m
b

e
r

o
f

re
lo

ca
ti

o
n

 o
p

e
ra

ti
o

n
s

Number of jockeys

Number of Relocation Operations: Policy 1

Number of Relocation Operations: Policy 2

Number of Relocation Operations: Policy 3

Fig. 6. Number of relocation operations with the three relocation policies.

to be done during the day. A relocation operation tells the
jockey from which station and when, a car should be moved,
and to which station and when, it should be dropped off.
When the number of jockeys is increased in Policy 3, the
number of remaining rejected demands decreases as well as
the number of needed relocation operations as shown in Fig.
5 and 6. In order to measure the robustness of the resulted
relocation operations, we used a special Gaussian method to
add stochastic noise to the input data for the incoming and
outgoing cars; knowing that the added stochastic noise does not
exceed 10% of the original data. In Fig. 8 we see an example of
stochastic input data modification on the number of incoming
cars at a station in our carsharing system. After that, using the
original data, the resulted relocation operation plan is applied,
then these operations were evaluated on the input data that was
modified in a stochastic manner regardless of the number of
available cars; we call this step blind relocation. As shown in
Fig. 9, when the number of jockeys is increased the number

www.ijacsa.thesai.org 287 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

e
r

o
f

re
m

ai
n

in
g

re
je

ct
e

d
 d

e
m

an
d

s

Number of jockeys

Number of remaining rejected demands when using CPLEX

Number of remaining rejected demands when using Greedy Algorithm

Fig. 7. Comparison results between the greedy algorithm and CPLEX (18
stations, 10 parking spots by station, 88 cars with the average of 12 trips by
car).

of remaining rejected demands is decreased with stochastic
input data. However, as much as the number of jockeys is
increased, the difference between remaining rejected demands
increases when using the original data as well as when using
stochastic modified data (see both curves with triangles). This
is due to the fact that each stochastic modification on the input
data, in any station at any time step, will be aggregated and
propagated to all the following time steps that concern this
station. Thus, since the number of available vehicles in each
station at each time step is used to make the decision of the
relocation operation, the resulted relocation operations can lose
its efficiency drastically when the input data of user demands
is changing.

0

2

4

6

8

10

12

14

1
1

:0
0

1
1

:1
5

1
1

:3
0

1
1

:4
5

1
2

:0
0

1
2

:1
5

1
2

:3
0

1
2

:4
5

1
3

:0
0

1
3

:1
5

1
3

:3
0

1
3

:4
5

1
4

:0
0

1
4

:1
5

1
4

:3
0

1
4

:4
5

1
5

:0
0

1
5

:1
5

1
5

:3
0

1
5

:4
5

1
6

:0
0

1
6

:1
5

1
6

:3
0

1
6

:4
5

1
7

:0
0

1
7

:1
5

1
7

:3
0

1
7

:4
5

1
8

:0
0

N
u

m
b

e
r

o
f

in
co

m
in

g
ca

rs

Time of the day

Number of incoming cars in the original data

Number of incoming cars after adding 10% stochastic variation

Fig. 8. Stochastic data variation on the number of incoming cars from 11:00
to 18:00 in one station.

F. Integrating Threshold Values in our Greedy Algorithm

In another step, the greedy algorithm is changed by inte-
grating lower and upper threshold values in order to measure
the effect of threshold values on the relocation operations when
using stochastic modified data. The lower threshold is used

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

er
 o

r
re

m
a

in
in

g
 r

ej
ec

te
d

 d
em

a
n

d
s

Number of Jockeys

Number of remaining rejected demands without using threshold values with stochastic data
Number of remaining rejected demands when using threshold values with stochastic data
Number of remaining rejected demands without using threshold values with original data
Number of remaining rejected demands when using threshold values with original data

Fig. 9. Effects of threshold values and stochastic data on the total number
of remaining rejected demands.

to avoid relocating a car from a station when the number of
available vehicles in the station before the relocation operation
is less than or equal to the lower critical threshold. In this
example, this value is set to one. That is if the station has only
one car before the relocation operation, then the algorithm does
not apply the relocation in that station. The upper threshold
value is used to avoid relocating a car to a station when the
number of available cars in the destination station is greater
than or equal to the upper critical threshold. In this example,
it is set to the maximum number of places in the station
minus one. As shown in the chart below, the performance
of the threshold strategy in terms of reducing the number of
rejected demands (curves with squares) is worse than without
threshold constraints. In addition, shown in Fig. 9 the threshold
values does not bring improvement for the blind relocation
on stochastic data compared to blind relocation without using
threshold values. In both cases, the difference in the number of
reduced rejected demands starts to be small when the number
of jockeys is small, but gets bigger as the number of jockeys
increases. On the other side, it is clear that the number of
relocation operations when using threshold values, is less than
the number of relocation operations without using threshold
values since threshold adds a constraint on the decision of a
relocation operation until all rejected demands problems are
solved as shown in Fig. 10.

G. Identification of Mobility Patterns During the Day

As described earlier, when the number of jockeys is in-
creased, the number of rejected demands decreases as well.
However, the cost of relocation operations increases as well.
In this study, we consider that we are using each jockey for the
whole day, which is impractical. However, in real life there will
be staff shifts that depend directly on the demands and needs
of relocation operations. In the literature, relocation operations
that are carried out at night are called static relocation since
user demands for cars is considered negligible during this
period. Static relocation is necessary to provide the stations
with the appropriate number of cars for the next morning.
In static relocation, there are no time window constraints to

www.ijacsa.thesai.org 288 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u

m
b

e
r

o
f

re
lo

ca
ti

o
n

 o
p

e
ra

ti
o

n
s

p
e

r
jo

ck
ey

Number of Jockeys
Number of relocation operations when using threshold values Number of relocation operations without using threshold values

Fig. 10. Number of relocation operations when using threshold values and
without using them.

deliver cars to stations at specific times, unlike cars relocation
during the day where some stations have urgent needs for cars
to satisfy user demands on time. In our approach, relocation
operations are carried out during the day. When analyzing
the time at which the rejected demands are solved using our
greedy algorithm with policy 3, we get the histogram in Fig.
11. This histogram compares the total number of reduced
rejected demands per hour of the day when using 15 jockeys
for the whole day and when using them from 7:00 to 19:00.
When analyzing the histogram in Fig. 11 we can detect some
relocation patterns during the day. There are some periods of
high activity such as the period from 8:00 to 10:00 and from
17:00 to 19:00. There are also periods of low activity such as
period from 11:00 to 16:00. These patterns can be explained
by the fact that these intervals correspond to periods of high
mobility of customers in the morning when they go to work
and in the evening when they come back home. On the other
side, we notice that when we limit the working time until
19:00, the number of reduced rejected demands in the late
hours (17:00 to 19:00) increases. This can be explained by the
fact that the jockey can anticipate rejected demands and reduce
them even before their occurrences. Knowing that the number
of reduced rejected demands at any time t of the day, does not
only represent the number of reduced rejected demands that
occur at time t, but it also includes the anticipated rejected
demands that occur in the future but reduced by relocation
operations performed at time t.

Thereby, the required effort for the jockeying operations,
will not be the same during the day; likewise, the number of
jockeys should vary as well. Thus choosing the appropriate
number of jockeys per time interval is a key factor to reduce
the cost of jockeying operations.

In another experience, we divided the working time of
jockeys into three periods with an interruption of work between
them:

1) From 7:00 to 9:00
2) From 11:00 to 13:00
3) From 17:00 to 19:00

Then we compared the performance of the jockeys in this
case with their performance when they work from 7:00 to
19:00. As we can see in the chart below in Fig. 12, even when
we divide the working time into three periods, the number

0

10

20

30

40

50

N
u

m
b

e
r

o
f

re
d

u
ce

d
 r

e
je

ct
e

d
 d

e
m

an
d

s

Time of the day

Reduced rejected demands when working from 7:00 to 19:00

Reduced rejected demands when working the whole day

Fig. 11. Number of solved rejected demands in each hour of the day using
15 jockeys.

of reduced rejected demands decreases. However, the slope
is smaller since the number of working hours is smaller. We
conclude that the company must evaluate the cost of rejected
demands in regard to the cost of the jockeying hour.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u

m
b

er
 o

f
re

m
ai

n
in

g
re

je
ct

ed
 d

em
an

ds

Number of jockeys
7:00 to 19:00
7:00 to 9:00;11:00 to 13:00;17:00 to 19:00
00:00 to 24:00

Fig. 12. Number of remaining rejected demands when varying working hours.

VII. CONCLUSION AND PERSPECTIVE WORKS

The one-way car sharing service is appealing to users since
they are not required to return the car of departure station
and for its flexibility. Nevertheless, this flexibility leads to an
imbalance in cars distribution. The imbalance problem affects
the image of the service and makes it less attractive to users. To
cope with problem, relocation operations are vital to increase
the satisfaction of the clients. In this study, three different
policies of car relocation are compared. The performance of
Policy 3, where the jockey has information on the future state
of the system based on historical data and predictions, is much

www.ijacsa.thesai.org 289 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 7, 2018

better than the two other policies that do not consider any
future information. It was proven that the implementation of
intuitive policies that are based on basic decisions such as
the total distance covered by jockeys and the available cars at
stations without considering the propagation of the effect of
these relocation operations on the future, which may influence
the overall service, will not have a great impact in minimizing
the number of rejected demands. On the contrary, applying
these policies may require more relocation operations, which
will eventually rise the total cost of the system. Taking into
consideration the historical data to make future estimation is
crucial in order to minimize the number of rejected demands.
From another side, we see that jockeys pass by inactivity
periods when there is no need for relocation operations.
Analyzing these periods, suggests that working hours of each
jockey can be reduced and so, we can decrease the car sharing
operation cost. In addition, we found that the effectiveness of
the resulted relocation operations is highly dependent on the
input data even when we use threshold values for the relocation
operations. As perspective, it is possible to implement a new
heuristic approach based on stochastic model using historical
data, in the aim of solving the relocation problem. This can be
modeled in a simulation environment that considers real life
parameters.

REFERENCES

[1] A. Reno and G. Weisbrod, “Economic impact of public transportation
investment,” 2009.

[2] J.-P. Rodrigue, C. Comtois, and B. Slack, The geography of transport
systems. Routledge, 2013.

[3] R. Katzev, “Car sharing: A new approach to urban transportation
problems,” Analyses of Social Issues and Public Policy, vol. 3, no. 1,
pp. 65–86, 2003.

[4] F. Meunier, “Véhicules partagés: des défis pour la ro.”
[5] J. Rifkin, The Age of Access. How the Shift from Ownership to Access

is Transforming Capitalims. Putnam, New York et al, 2000.
[6] [Online]. Available: http://www.navigantresearch.com/research/carsharing-

programs
[7] S. A. Shaheen, D. Sperling, and C. Wagner, “A short history of

carsharing in the 90’s,” Institute of Transportation Studies, 1999.
[8] D. Jorge and G. Correia, “Carsharing systems demand estimation and

defined operations: a literature review,” EJTIR, vol. 13, no. 3, pp. 201–
220, 2013.

[9] M. Barth and M. Todd, “Simulation model performance analysis of a
multiple station shared vehicle system,” Transportation Research Part
C: Emerging Technologies, vol. 7, no. 4, pp. 237–259, 1999.

[10] M. Barth, M. Todd, and L. Xue, “User-based vehicle relocation tech-
niques for multiple-station shared-use vehicle systems,” Transportation
Research Record, vol. 1887, pp. 137–144, 2004.

[11] K. Uesugi, N. Mukai, and T. Watanabe, “Optimization of vehicle
assignment for car sharing system,” in Knowledge-Based Intelligent
Information and Engineering Systems. Springer, 2007, pp. 1105–1111.

[12] D. Jorge, G. H. Correia, and C. Barnhart, “Comparing optimal reloca-
tion operations with simulated relocation policies in one-way carsharing
systems,” 2014.

[13] A. G. Kek, R. L. Cheu, Q. Meng, and C. H. Fung, “A decision
support system for vehicle relocation operations in carsharing systems,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 45, no. 1, pp. 149–158, 2009.

[14] W. D. Fan, R. B. Machemehl, and N. E. Lownes, “Carsharing: Dy-
namic decision-making problem for vehicle allocation,” Transportation
Research Record: Journal of the Transportation Research Board, vol.
2063, no. 1, pp. 97–104, 2008.

[15] R. Nair and E. Miller-Hooks, “Fleet management for vehicle sharing
operations,” Transportation Science, vol. 45, no. 4, pp. 524–540, 2011.

[16] L. Moalic, S. Lamrous, and A. Caminada, “A multiobjective memetic
algorithm for solving the carsharing problem,” in WORLDCOMP’13-
The 2013 World Congress in Computer Science, Computer Engineering,
and Applied Computing, vol. 1, 2013, pp. 877–883.

www.ijacsa.thesai.org 290 | P a g e

