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Introduction

We consider a system of two Schrödinger equations coupled by a matrix-valued potential [START_REF] Bily | Propagation d'états cohérents et applications[END_REF] iε∂ t ψ ε = -

ε 2 2 ∆ψ ε + V (x)ψ ε , ψ ε |t=t0 = ψ ε 0 where ψ ε 0 is a bounded family in L 2 (R d , C 2 ), and V ∈ C ∞ (R d , C 2,2
) is a self-adjoint matrix that we assume to be subquadratic: • C 2,2 denotes a norm in the space of matrices C 2,2 , the matrix V satisfies [START_REF] Calderón | On the boundedness of pseudo-differential operators[END_REF] ∀γ ∈ N d , |γ| ≥ 2, ∃c γ > 0, sup

x∈R d ∂ γ x V (x) C 2,2 ≤ c γ .
These assumptions guarantee the existence of solutions to equation (1) in L 2 (R d , C 2 ) or, more generally, in the functional spaces Σ k

ε := Σ k ε (R d , C 2 ) containing functions f ∈ L 2 (R d , C 2 ) such that ∀α, β ∈ N d , |α| + |β| ≤ k, x α (ε∂ x ) β f ∈ L 2 (R d , C 2 )
with a uniform control of the norm, with respect to ε ∈ (0, 1]

f Σ k ε = sup |α|+|β|≤k x α (ε∂ x ) β f L 2 .
For simplicity, we denote by Σ k the sets Σ k ε corresponding to ε = 1. The Schwartz space S(R d ) then satisfies ∩ k∈N Σ k = S(R d ). The initial data that we will consider belong to Σ k ε for all k ∈ N, as explained below.

Let us first detail the assumptions we make on the matrix structure of the potential. As any symmetric matrix, the potential V can be decomposed as the sum of a scalar function and a tracefree matrix: we write

(3) V (x) = v(x)Id C 2 + w 1 (x) w 2 (x) w 2 (x) -w 1 (x)
and denote by λ -and λ + the eigenvalues of V with λ -≤ λ + . We have

λ ± (x) = v(x) ± |w(x)|, |w(x)| = w 2 1 (x) + w 2 2 (x)
. We associate with these eigenvalues the scalar Hamiltonians [START_REF] Carles | Nonlinear coherent states and Ehrenfest time for Schrodinger equation[END_REF] h

± (z) = |ξ| 2 2 + λ ± (x), z = (x, ξ).
Since V is smooth, the functions v and w = (w 1 , w 2 ) are also smooth and the eigenvalues of V are smooth outside the set Υ of crossing points

Υ = {z = (x, ξ) ∈ R 2d , h + (z) = h -(z)} = {z = (x, ξ) ∈ R 2d , w(x) = 0 R 2 }.
We shall also consider the eigenprojectors associated with each of the eigenvalues

Π ± (x) = 1 2 Id R 2 ± 1 |w(x)| w 1 (x) w 2 (x) w 2 (x) -w 1 (x)
.

Following [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF], we will work in the case of conical crossing points by considering the following set of assumptions. Assumption 1.1.

(1) The crossing on Υ is a conical crossing of codimension 2:

∀q ∈ Υ, Rank dw(q ) = 2.

(2) The conical crossing point z = (q , p ) is non-degenerate:

E(z ) := (p • ∇w 1 (q ), p • ∇w 2 (q )) = dw(q )p = 0 R 2
We write dw(q )p = rω with r > 0 and ω ∈ S 1 .

In the notations above, we denote by dw(q) the 2 × d matrix dw(q) = (∂ qj w i ) 1≤i≤2, 1≤j≤d , meaning that, when applied to a vector p ∈ R d , one gets a vector rω = dw(q)p ∈ R 2 . Note that Point (1) of Assumption 1.1 implies that Υ is a submanifold of R d . Then, the points of Υ are said to be conical crossing points because the eigenvalues λ + and λ -develop a conical singularity at those points. This singularity induces special behaviors of the solution to Equation (1) that has been already studied in the literature (see [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF][START_REF] Kammerer | Mesures semi-classiques et croisements de modes[END_REF] for example) and that we want to analyze here for wave packets propagation. The eigenvalues λ + and λ -are also supposed to satisfy a polynomial gap condition at infinity: we assume that there exist constants c 0 , n 0 , r 0 > 0 such that [START_REF] Verdière | The level crossing problem in semi-classical analysis I. The symmetric case[END_REF] |λ + (x) -λ -(x)| ≥ c 0 x -n0 , when |w(x)| ≥ r 0 , where x = (1 + |x| 2 ) 1/2 . This gap condition at infinity [START_REF] Verdière | The level crossing problem in semi-classical analysis I. The symmetric case[END_REF] ensures, that the derivatives of the eigenprojectors Π ± (x) grow at most polynomially : it is proved in [START_REF] Carles | A Nonlinear Adiabatic Theorem for Coherent States[END_REF]Lemma B.2] that for all β ∈ N d there exists a constant C β > 0 such that (6) 1+n0) , when |w(x)| ≥ r 0 . We are interested in initial data that are wave packets as studied in [START_REF] Combescure | Coherent states and applications in mathematical physics[END_REF]. Wave packets are highly localized in position and impulsion, they are associated with a profile ϕ ∈ S(R d ) and a point z = (q, p) ∈ R 2d of the phase space according to [START_REF] Combescure | Coherent states and applications in mathematical physics[END_REF] WP ε z ϕ(x) = ε -d/4 e i ε p•(x-q) ϕ x-q √ ε .

∂ β x Π ± (x) C 2,2 ≤ C β x |β|(
Such families are uniformly bounded in all the spaces Σ k ε for any k ∈ N. Note that Hagedorn's wave packets in [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF] are built by choosing ϕ related to Hermite functions. Our set of data contains Hagedorn's ones. With these notations, we shall make the following set of assumptions on the initial data.

Assumption 1.2. The initial data of the system (1) is given by ψ ε 0 (x) = Y 0 WP ε z0 ϕ(x), where ϕ ∈ S(R d ), z 0 = (q 0 , p 0 ) ∈ R 2d \ Υ and Y 0 ∈ R 2 is a normalized eigenvector of the matrix V in q 0 for the minus-mode:

V (q 0 ) Y 0 = λ -(q 0 ) Y 0 .

Note that since Y 0 is assumed to be a real-valued normalized eigenvector of V (q 0 ) with w(q 0 ) = 0, one can replace the pair ( Y 0 , ϕ) by (-Y 0 , -ϕ) without changing the wave packet.

Wave packets satisfy localization properties that are recalled in Appendix B. In particular, considering a function V 0 ∈ C ∞ (R d , R 2 ) such that V 0 (q 0 ) = Y 0 , we have [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] 

ψ ε 0 (x) = V 0 (x)WP ε z0 ϕ(x) + O( √ ε)
in Σ k ε for all k ∈ N. Additionally, we can assume without loss of generality, that V 0 (x) is an eigenvector of V (x) associated with λ -(x) for all x in a neighborhood Ω of q 0 . It is well-known (and we provide a detailed exposition of those results below) that, outside the crossing set, such a wave packet propagates along the classical trajectories associated with the mode λ -(x) (see [START_REF] Combescure | Coherent states and applications in mathematical physics[END_REF]). We aim at precisely describing what happens when a wave packet reaches the crossing set, and passes through it. These results have been announced in [START_REF] Gamble | Conical Intersections and Avoided Crossings of Electronic Energy Levels[END_REF].

We provide a picture similar to the one involving Gaussian wave packets in [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF]: as long as the gap remains large enough on the trajectory, the solution can be approximated by a wave packet with a time dependent profile, an action S -(t, t 0 , z 0 ) and a time dependent eigenvector Y -(t)

ψ ε (t) = Y -(t)e i ε S-(t,t0,z0) WP ε Φ t,t 0 - (u -(t)) + o(1), in Σ k ε .
Besides, as soon as the gap shrinks, transitions occur on the other mode, leading to the birth of a quite similar wave packet on the other mode. The advantage of considering general wave packets lies in the fact that the transitions generate contributions on each mode that keep the more general structure, while the Gaussian one is not preserved (see [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF]).

We use the following ingredients:

(1) The existence of generalized trajectories that exist despite the conical singularity (see [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF][START_REF] Kammerer | Mesures semi-classiques et croisements de modes[END_REF][START_REF] Kammerer | A Landau-Zener formula for non-degenerated involutive codimension 3 crossings[END_REF]). ( 2) The use of real-valued eigenvectors evaluated along the time-dependent classical trajectories.

(3) The introduction of a profile equation along a trajectory and the analysis of this profile when the trajectory reaches a crossing point, proving precise estimates on its behavior close to the crossing time. This is performed in Section 1.1.3 and uses ideas from [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF][START_REF] Hagedorn | Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation[END_REF]. [START_REF] Carles | Nonlinear coherent states and Ehrenfest time for Schrodinger equation[END_REF] The definition of a thin layer close to the crossing point of the trajectory and the reduction to a model problem in this thin layer.

In the next Section 1.1, we introduce the main objects (classical trajectories, actions, eigenvectors and profiles) that characterize the approximate solution, and our result is stated in Section 1.2.

We point out that this transfer has been precisely described in terms of Wigner measures by the results of [START_REF] Kammerer | A Landau-Zener formula for non-degenerated involutive codimension 3 crossings[END_REF] when one single wave packet reaches a crossing point. However, if two wave packets reach simultaneously a point of the crossing set, the Wigner measure information is not enough and a phase information is needed to describe the Wigner measure of the outgoing wave packets. One of our aim here is to get this phase information.

Even though our results are inspired by those of [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF], they differ on several aspects. First, the way we handle the problem is different and easier to generalize to other Hamiltonians. Secondly, the results obtained are more general in terms of the data that are considered. Thirdly, the method we develop also allow to treat data passing close to the crossing set and not exactly through it (see Remark 4.3) and more general Hamiltonian (see Appendix D). The latter point opens the way to further development and proofs of the convergence of numerical methods mixing surface hopping approaches [START_REF] Kammerer | Propagation through generic level crossings: a surface hopping semigroup[END_REF][START_REF] Kammerer | Single switch surface hopping for molecular dynamics with transitions[END_REF][START_REF] Kammerer | Single switch surface hopping for molecular dynamics[END_REF][START_REF] Kammerer | An Egorov Theorem for avoided crossings of eigenvalue surfaces[END_REF][START_REF] Lu | Frozen Gaussian approximation with surface hopping for mixed quantumclassical dynamics: A mathematical justification of fewest switches surface hopping algorithms[END_REF] and thawed or frozen Gaussian algorithms (also called Herman-Kluk approximation) as introduced in chemical literature in [START_REF] Herman | A semiclassical justification for the use of non-spreading wavepackets in dynamics calculations[END_REF][START_REF] Kay | Integral expressions for the semi-classical time-dependent propagator[END_REF][START_REF] Kay | The Herman-Kluk approximation: derivation and semiclassical corrections[END_REF] and studied from a mathematical point of view in [START_REF] Robert | On the Herman-Kluk Semiclassical Approximation[END_REF][START_REF] Swart | A mathematical justification for the Herman-Kluk Propagator[END_REF] (see also [START_REF] Fermanian Kammerer | Herman-Kluk propagator for systems, Adiabatic and non-adiabatic evolution of wave packets and applications to initial value representations[END_REF]).

1.1. The parameters of the approximate solution. The aim of this paper is to give a precise description of how one can approximate solutions to equation [START_REF] Bily | Propagation d'états cohérents et applications[END_REF] in the framework of Assumptions 1.1 and 1.2. This result is presented in the next section and we begin here by introducing the parameters of the wave packets that are involved in the process. We give a description of their centers, profiles and phase factor, which are ε-independent and related with classical quantities.

1.1.1. Classical trajectories and actions. For (t 0 , z 0 ) ∈ R × (R 2d \ Υ) we consider the classical trajectory (q ± (t), p ± (t)) issued from z 0 = (q 0 , p 0 ) at time t 0 , and defined by the ordinary differential equation q± (t) = p ± (t), ṗ± (t) = -∇λ ± (q ± (t)) with q ± (t 0 ) = q 0 and p ± (t 0 ) = p 0 .

The associated flow map is then denoted by Φ t,t0 ± (z 0 ) = (q ± (t), p ± (t)) and we have (9)

∂ t Φ t,t0 ± = J∇ z h ± • Φ t,t0 ± , Φ t0,t0 ± = 1 R 2d , where (10) 
J = 0 Id R d -Id R d 0
and the Hamiltonians h ± are defined in (4). It will be convenient in the following to denote by {f, g} the Poisson bracket of two functions f, g ∈ C ∞ (R 2d ), that might be scalar-, vector-or matrix-valued as soon as the product f g makes sense:

{f, g} := J∇f • ∇g = d j=1 ∂ ξj f ∂ xj g -∂ xj f ∂ ξj g .
Of course, since w(q 0 ) = 0 R 2 , the existence of these Hamiltonian trajectories is guaranteed by Cauchy-Lipschitz theorem, as long as they do not reach Υ. Moreover, one can prove that there exist trajectories passing through z = (q , p ) ∈ Υ that are piecewise smooth, as soon as Assumptions 1.1 hold at point (q , p ). We point out that we will make the convenient abuse of notations of saying indistinctly that z = (q, p) ∈ Υ or q ∈ Υ.

Proposition 1.3. [ [START_REF] Kammerer | A Landau-Zener formula for non-degenerated involutive codimension 3 crossings[END_REF], Proposition 1] Let z ∈ Υ satisfying Assumptions 1.1, the notations of which we use. Then, there exist two continuous maps

t → Φ t,t ± (z ) = (q ± (t), p ± (t))
defined in a neighborhood of t and which satisfy (9) for t = t with moreover Φ t ,t ± (z ) = z . Besides, we have for all t ∼ t w(q

± (t)) = (t -t )rω + O((t -t ) 2 ). ( 11 
)
We shall call generalized trajectories these continuous maps passing through points z ∈ Υ satisfying Assumptions 1.1. We associate with Φ t,t0 ± (z 0 ) = (q ± (t), p ± (t)) the action integral

(12) S ± (t, t 0 , z 0 ) = t t0 (p ± (s) • q± (s) -h ± (z ± (s))) ds.
We analyze in Section 2.1 the behavior of both these generalized trajectories and their actions close to a crossing point.

1.1.2. Real-valued time-dependent eigenvectors along the trajectory. We introduce the matrix-valued function

B ± ∈ C ∞ (R 2d \ Υ) defined by (13) B ± (x, ξ) = ±Π ∓ (x)ξ • ∇ x Π + (x) Π ± (x) = ∓Π ∓ (x)ξ • ∇ x Π -(x) Π ± (x) = -B ∓ (x, ξ) * . Proposition 1.4. Let (t 0 , z 0 ) ∈ R 2d+1 be such that the trajectory Φ t,t0 -= (q -(t), p -(t)) reaches Υ at time t > t 0 and point z = Φ t ,t0 -(z 0 ) satisfying Assumption 1.1. Let Y 0 such that Π -(q 0 ) Y 0 = Y 0 . Then, the solution Y -(t) of the differential system (14) ∂ t Y -(t) = B -(Φ t,t0 -(z 0 )) Y -(t), t ∈ [t 0 , t ) Y -(t 0 ) = Y 0
satisfies the following properties:

(1) for all t ∈ [t 0 , t ), Y -(t) is an eigenvector for the minus-mode along the trajectory:

Π -(q -(t)) Y -(t) = Y -(t).
(2) There exists a normalized real-valued vector V ω such that

lim t→t , t<t Y -(t) = V ω and (15) ω 1 ω 2 ω 2 -ω 1 V ω = V ω with V ω ∈ R 2 , | V ω | = 1.
(3) There exist τ > 0 and a function

x → V -(x) smooth in a neighborhood of (Φ t,t0 -(z 0 )) t∈[t -τ,t ) such that Π -V -= V -and Y -(t) = V -(q -(t)).
Note that since V ω is real-valued, the relation [START_REF] Kammerer | Single switch surface hopping for molecular dynamics with transitions[END_REF] fixes V ω up to its sign. Its sign depends on the value of Y 0 .

Of course, a similar result holds for the plus-mode. More generally, one can construct ingoing and outgoing eigenvectors along the trajectories arising from a non-degenerate conical crossing point z .

Proposition 1.5. Let t ∈ R and z satisfying Assumption 1.1 and V ω ∈ R 2 satisfying (15). Let V ⊥ ω obtained by the rotation of angle π 2 . There exist two families of eigenvectors Y ± (t) defined in a neighborhood I of t , such that

(16) ∂ t Y ± (t) = B ± (Φ t,t ± (z )) Y ± (t), t ∈ I \ {t } and (17) lim t→t , t>t Y + (t) = lim t→t , t<t Y -(t) = V ω , lim t→t , t>t Y -(t) = lim t→t , t<t Y + (t) = V ⊥ ω .
As a consequence, starting at time t 0 from a trajectory Φ t,t0 -(z 0 ) for the minus-mode that reaches Υ at a non-degenerate conical crossing point z , we are left with a family of time-dependent eigenvectors Y -(t) that reaches the crossing and defines a vector V ω . One can then continuously pass through the crossing, while hopping from the minus-mode to the plus-mode at time t . Similarly, with the generalized trajectory arriving at time t in z for the plus-mode, one can associate a family of time-dependent eigenvector for the plus-mode that will pass continuously through the crossing with [START_REF] Kammerer | An Egorov Theorem for avoided crossings of eigenvalue surfaces[END_REF], while hopping from the plus-mode to the minus-mode at time t . 1.1.3. Profile equations. The profiles of the approximate solutions are linked with the scalar Hamiltonians h ± -see (4) -and the associated trajectories. We consider trajectories Φ t,t0 ± (z 0 ) that do not meet Υ on some time interval I containing t 0 and associate with them the Schrödinger equations with time-dependent harmonic potential [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF] i∂

t u ± = - 1 2 ∆u ± + 1 2 Hess λ ± (Φ t,t0 ± (z 0 ))y • y u ± ,
with initial data in S(R d ). In view of [START_REF] Maspero | On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms[END_REF], these equations have a solution in Σ k (R d ) on the time interval I for any k ∈ N * . Moreover, we have the following proposition.

Proposition 1.6. Let (t 0 , z 0 ) ∈ R 2d+1 be such that the trajectory Φ t,t0 ± reaches Υ at time t > t 0 and point z = Φ t ,t0 ± (z 0 ) satisfying Assumption 1.1. Then, there exists a solution u ± (t) to (18)

on [t 0 , t ) with initial data u ± (t 0 ) = ϕ ± ∈ S(R d ). Moreover, for any t ∈ [t 0 , t ), u ± (t) ∈ S(R d ), u ± (t) L 2 = ϕ ± L 2 and if k ∈ N * , there exists a constant C k > 0 such that (19) sup t∈[t0,t ) u ± (t) Σ k ≤ C k 1 + ln |t -t | .
The result of Proposition 1.6, implies that the time derivatives of the profile functions u + and u - are integrable, up to a phase. With the notations of Assumptions 1.1, we consider the d×d matrix Γ 0 defined by [START_REF] Gamble | Conical Intersections and Avoided Crossings of Electronic Energy Levels[END_REF] Γ 0 = r -1 t dw(q

)(Id R 2 -ω ⊗ ω)dw(q )
where ω⊗ω is the 2 by 2 matrix (ω i ω j ) i,j and dw is the 2×d matrix (∂ xj w i ) i,j (note that Id R 2 -ω⊗ω is the orthogonal projector on R ω ⊥ ).

Corollary 1.7. Under the assumptions of Proposition 1.6, there exists u in ± ∈ S(R d ) such that for all k ∈ N, there exists C k > 0 with

(21) Exp(∓ i 2 Γ 0 y • y ln |t -t |)u ± (t) -u in ± Σ k ≤ C k |t -t | 1 + ln |t -t | .
Moreover, once given u out ± ∈ S(R d ), there exists a unique pair u ± (t) for t > t satisfying [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF] and such that for all k ∈ N, there exists C k > 0 with

(22) Exp(± i 2 Γ 0 y • y ln |t -t |)u ± (t) -u out ± Σ k ≤ C k |t -t | 1 + ln |t -t | .
Let us consider an initial data as in [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] and assume that Φ t,t0 -(z 0 ) passes through Υ at time t at a point z that satisfies Assumption 1.1. Then one can associate a profile u -(t) with the ingoing trajectory Φ t,t0 -for t ∈ [t 0 , t ); this generates an ingoing profile u in -∈ S(R d ). We shall see later how to build an approximate solution to the system (1) thanks to u in -, and how to associate two outgoing profiles, u out -and u out + , with u in -in an adequate manner; these outgoing profiles then generate two profiles u + (t) and u -(t) when t > t , one for each mode, by solving equation [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF] with initial data at time t given by u out -and u out + respectively.

1.2. Main results. Let us consider an initial data at time t 0 satisfying [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF] and assume that the trajectory Φ t,t0 -(z 0 ) does not reach Υ on the interval [t 0 , t 0 + T ] because Φ t,t0 -(z 0 ) ∈ {|w(x)| ≥ δ} for some δ > 0. Then, there is adiabatic propagation of the wave packet: at leading order, the solution remains in the same eigenspace and can be approximated by a wave packet whose parameters are determined by the classical quantities associated with the related eigenvalue. This type of results are already present in the literature, see [START_REF] Bily | Propagation d'états cohérents et applications[END_REF] for the case of wave packets and [START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF] for more general results. Our contribution here is intended to emphasize the dependence of the approximation on the parameter δ, encoding the minimum gap along the trajectory, which is a crucial ingredient in the proof of our next result.

Theorem 1.8. [Propagation with a gap of size δ] Let k ∈ N. Assume ψ ε 0 is chosen as in Assump- tion 1.2. Let δ > 0 and assume that Φ t,t0 -(z 0 ) ∈ {|w(x)| ≥ δ} for all t ∈ [t 0 , t 0 + T ].
Consider the time-dependent eigenvector Y -(t) given by Proposition 1.4 and the profile u -associated with ϕ -by Proposition 1.6. Then, there exists C k > 0 independent of δ such that

ψ ε (t) -Y -(t) e i ε S-(t,t ,z ) WP Φ t,t -(z ) u -(t) Σ k ε ≤ C k (1 + |ln δ|) ε 3/2 δ 4 + √ ε δ .
Of course, this result easily extends by linearity to the case of data which have components on both modes with wave packet structures. Theorem 1.8 only gives information when the gap along the trajectory is large enough.

Let us now assume that the trajectory Φ t,t0 -(z 0 ) passes through Υ at time t ∈ (t 0 , t 0 + T ), T > 0 at point z where Assumption 1.1 is satisfied. We consider:

• The trajectories Φ t,t0 -(z 0 ) and Φ 

(t 0 ) = ϕ -.
We define u in -by Corollary 1.7, and associate with u in -the profiles u ± (t) defined for t > t thanks to the outgoing limiting profiles u out -and u out + given by ( 23)

u out + u out - = e -iθε(η) b(η 2 ) a(η 2 ) a(η 2 ) -e iθε(η)b (η 2 ) 0 e i ε S -u in - .
where, S -= S -(t , t 0 , z 0 ) and, with the notations of Assumption 1.1,

η(y) = ω • (dw(q )y), ω ⊥ • (dw(q )y) = (η 1 (y), η 2 (y)), ∀y ∈ R d , (24) 
a(η 2 ) = e -πη 2 2 2 , b(η 2 ) = 2i √ πη 2 2 -iη 2 2 /2 e -πη 2 2 /4 Γ 1 + i η 2 2 2 sinh πη 2 2 2 , ( 25 
)
θ ε (η) = η 2 2 2r ln r ε + η 2 1 r (26) 
We recall the Gamma function and hyperbolic sine function we use:

Γ(z) = 1 0 ln 1 t z-1 dt = ∞ 0 t z-1 e -t dt, sinh(z) = e z -e -z 2 .
We then have the following result.

Theorem 1.9. [Propagation of a single wave packet] Let k ∈ N. Assume ψ ε 0 is chosen as in Assumption 1.2 and that the trajectory Φ t,t0 -(z 0 ) reaches Υ at some time t and some point z satisfying Assumption 1.1. Consider the above-mentioned classical quantities. Then, as ε tends to 0, the solution to equation [START_REF] Bily | Propagation d'états cohérents et applications[END_REF] 

with initial data ψ ε 0 satisfies in Σ k ε (R d ): if t ∈ [t 0 , t ) ψ ε (t) = e i ε S-(t,t0,z0) Y -(t)WP Φ t,t 0 -(z0) u -(t) + O (1 + |ln ε|)ε 1 14 - and if t ∈ (t , t 0 + T ], ψ ε (t) = Y -(t)) e i ε S-(t,t ,z ) WP Φ t,t -(z ) u -(t) (27) + Y + (t) e i ε S+(t,t ,z ) WP Φ t,t + (z ) u + (t) + O (1 + |ln ε|)ε 1 14 - By ε 1 14
-, we mean ε 1 14 -ς for some ς ∈ (0, 1 14 ) small enough. Note that the constants involved in the approximation result of Theorem 1.9 depend on the initial data, the potential V and the time length T of the approximation. This is also the case in the next results.

Remark 1.10. The presence of the phase-shift driven by the function θ ε (η) in the transfer formula implies that if the L 2 -norms of the outgoing profiles are still uniformly bounded with respect to ε, it will not be the case for their Schwartz semi-norms, that will grow as powers of ln(ε). However, setting f ε = WP z0 (e iS(y) ln(ε) ϕ(y)) with ϕ ∈ S(R d ) and S ∈ C ∞ (R d ) with polynomial growth together with its derivatives, one can check that the ε-derivatives of f ε are uniformly bounded. Indeed, one can prove by a recursive argument that for α ∈ N d ,

ε |α| ∂ α x f ε (y) = WP z0 (e iS(y) ln(ε) ϕ ε α (y)) with for k ∈ N, ϕ ε α Σ k ≤ c k (1 + ( √ ε ln(ε)) |α|+k , c k > 0.
The wave packet structure is not excessively deteriorated by this phase shift and the approximate solution in ( 27) is uniformly bounded in Σ k ε with respect to ε for all k ∈ N. The result extends, by superposition principles, to the case where two wave packets interact at a crossing point z . Assume (28)

ψ ε 0 (x) = Y 0,-WP ε z0,-ϕ -(x) + Y 0,+ WP ε z0,+ ϕ + (x),
where ϕ ± ∈ S(R d ), z 0,± = (q 0,± , p 0,± ) ∈ R 2d \ Υ with Φ t ,t0 ± (z 0,± ) = z , and Y 0,± ∈ R 2 are normalized real-valued eigenvectors of the matrix V :

V (q 0,± ) Y 0,± = λ ± (q 0,± ) Y 0,± .
We associate with each mode classical quantities:

• One first computes the time-dependent eigenvectors along the trajectories Y ± (t), carefully handling the fact that if V ω is the vector associated with Y 0,-, the vector associated with Y 0,+ by (2) of Proposition 1.4 adapted to the plus-mode is V ⊥ ω or -V ⊥ ω . If one gets -V ⊥ ω , one has to turn the pair ( Y 0,+ , ϕ + ) into (-Y 0,+ , -ϕ + ).

• Once this issue is fixed, one computes the profiles u ± (t) for t < t associated with the trajectories and the initial data ϕ ± . Note that the change of initial data ( Y 0,+ , ϕ + ) into (-Y 0,+ , -ϕ + ) corresponds to changing the ingoing profiles u in + into -u in + . • This generates incoming profiles u in -and u in + on the minus-mode and plus-mode, and incoming actions S ± = S ± (t , t 0 , z 0,± ) respectively. Then, we set (29)

u out + u out - = -e iθε(η)b (η 2 ) a(η 2 ) a(η 2 ) e -iθε(η) b(η 2 ) e i ε S + u in + e i ε S -u in -
and one computes the outgoing profiles u ± (t) for t > t along the trajectories and with initial data u out ± at time t = t . Then, the following result is a straightforward consequence of Theorem 1.9 and of the linearity of the equation.

Corollary 1.11. [Interactions of wave packets at conical intersections] The solution of equation [START_REF] Bily | Propagation d'états cohérents et applications[END_REF] with initial data (28) is given for t ∈ (t , t 0 + T ] by

ψ ε (t) = Y -(t)e i ε S-(t,t ,z ) WP Φ t,t -(z ) u -(t) + Y + (t)e i ε S+(t,t ,z ) WP Φ t,t + (z ) u + (t) + O((1 + |ln ε|)ε 1 14 
- ) in Σ k ε (R d ). Remark 1.
12. Several remarks are of interest :

(1) The adjustment of the-time dependent eigenvectors is a crucial issue. It is connected with the choice of the basis ( V ω , V ⊥ ω ) at the level of the transition. This basis plays the role of what is sometimes called a diabatic basis and the process that we describe above gives a way of choosing a diabatic basis close to a non-degenerate conical crossing point.

(2) The actions accumulated during the transport to the conical intersection play a part in the transition process and the new profiles are affected by a ε-dependent phase. (3) The analysis performed above extends to the case of time-dependent symmetric Hamiltonian H(t, z) presenting conical intersections. Appendix D is devoted to the generalization of the process.

It is interesting to compute the Wigner measure of the function ψ ε (t) (t > t ) of Corollary 1.11.

Corollary 1.13. The (matrix-valued) Wigner measure of the solution to equation (1) with initial data (28) is given for t > t by

(30) µ(t, z) = c + δ z -Φ t,t + (z ) Y + (t) ⊗ Y + (t) + c -δ z -Φ t,t -(z ) Y -(t) ⊗ Y -(t)
and (with the notations of (24) and (25))

c ± = a(η 2 )u in ± 2 + 1 -a(η 2 ) 2 u in ∓ 2 .
Let us conclude this section with a parallel between our main result and Theorem 6.3 of [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF]. The latter deals with the propagation of a Hagedorn's wave packet through the conical intersection; it corresponds to our Theorem 1.9 for ϕ being a Gaussian multiplied by a polynomial function, which implies that the ingoing profile u in -has the same structure. The outgoing profiles are decomposed on the basis of Hagedorn's wave packets in formula (6.53). One sees that the component that switches from one mode to the other one only has a finite number of components. In fact, it still has the structure of a Gaussian multiplied by a polynomial function, while the one that keeps going on the same mode has a full decomposition, which is due to the presence of the function Γ in the coefficient b(η). The comparison with our result is easier page 100 (last formula of the page): one can observe the oscillating phase and the exponential transition coefficient in the part of the approximate solution that switches of mode, together with a decomposition on Hermite functions at the top of page 101. The other mode is treated page 102 and 103, where the Gamma function can be spotted. The phase shift itself is more visible in [START_REF] Hagedorn | Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation[END_REF] where λ(ε) of Theorem 3.1 is the analogue of our θ ε (y). The phase λ(ε) does not depend on y but does depend on the parameters of the avoided crossing that is the subject of [START_REF] Hagedorn | Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation[END_REF]. Note that in both references [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF] and [START_REF] Hagedorn | Landau-Zener transitions through small electronic eigenvalue gaps in the Born-Oppenheimer approximation[END_REF], the scaling of the equation is not the same, as ε in this present article corresponds to ε 2 in those contributions. 1.3. Ideas of the proof, organization of the paper and notations. An important part of the proof consists in the construction of the approximate solutions and, in particular, in the resolution of equation [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF], as well as the analysis of the properties of its solutions. This part is performed in Section 2, together with results on the classical quantities. Then the proof proceeds in two steps. We first show that the approximate solution fits outside Υ, which corresponds to times t / ∈ (t -δ, t +δ) for some δ that will be chosen small. In this region -that can be qualified as adiabatic -the solutions of (1) decouples on each of the modes. Using techniques arising from [START_REF] Bily | Propagation d'états cohérents et applications[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF] for example, as spelled out in [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF], we carefully analyze the order of the approximation (which involves negative powers of δ combined with powers of ε) in Section 3. Then, in (t -δ, t + δ), we are able to reduce to a local model of Landau-Zener's type and exhibit the transitions relations [START_REF] Landau | Collected papers of L. Landau[END_REF] in Section 4. This allows us to fix the ansatz for times t > t + δ. All along the proof, it will be convenient to use the notation ( 31)

A(w) = w 1 w 2 w 2 -w 1 , w ∈ R 2 .
Besides, with a vector V =

v 1 v 2 ∈ R 2 , we associate the vector V ⊥ = -v 2 v 1 . Moreover, if U = u 1 u 2 ∈ R 2 , we set U ∧ V = U ⊥ • V = u 1 v 2 -u 2 v 1 .
Finally, we will use the notation D y = 1 i ∇ y . Acknowledgements. CFK thanks Caroline Lasser and Didier Robert for several stimulating discussions about this paper. CFK and LH acknowledge support form the CNRS 80-Prime program AlgDynQua, LH from the regional ANER project ClePh-M and the ANR JCJC ESSED. The authors thank George Hagedorn for his stimulating pioneer works and SG and CFK wish to thank him for the kindness he has always shown them when they have been interacting with him.

Analysis of classical quantities and construction of the approximate solution

In this section, we first focus on the properties of the classical trajectories and actions in the neighborhood of the crossing set. Then, the next subsections are intended to construct the timedependent eigenvectors along the trajectories and the solutions of the profile equation ( 18), together with a careful analysis of their properties.

The classical trajectories and actions. It is interesting to compare a generalized classical trajectory Φ t,t0

± (z 0 ) reaching the crossing set Υ at time t and point z with the trajectory Φ t,t 0 (z ) = (q 0 (t), p 0 (t)) associated with the (smooth) Hamiltonian [START_REF] Lubich | From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis[END_REF] h

0 (z) = |ξ| 2 2 + v(x).
A simple Taylor expansion close to t = t gives the following lemma.

Lemma 2.1. Under the assumptions stated in Proposition 1.3, we have

q ± (t) = q 0 (t) ∓ 1 2 sgn(t -t )(t -t ) 2 t dw(q )ω + O((t -t ) 3 ), p ± (t) = p 0 (t) ∓ |t -t | t dw(q )ω + O((t -t ) 2 ).
We recall the notation S ± = S ± (t , t 0 , z 0 ) introduced in Section 1.2. The next lemma provides a comparison between the action S ± (t, t , z ) = S ± (t, t 0 , z 0 ) -S ± associated with a generalized trajectory Φ t,t0 ± (z 0 ) and the action

(33) S 0 (t, t , z ) = t t (p 0 (s) • q0 (s) -h 0 (z 0 (s))) ds
associated with the trajectory Φ t,t 0 (z ). Lemma 2.2. Using the notations of Proposition 1.3 we have the following asymptotics

S ± (t, t , z ) = S 0 (t, t , z ) ∓ sgn(t -t )r(t -t ) 2 + O((t -t ) 3 ), and 
S 0 (t, t , z ) = (t -t ) 1 2 |p | 2 -v(q ) -p • ∇v(q )(t -t ) 2 + O((t -t ) 3 ).
Proof of Lemma 2.2. We use that h ± (z ± (t)) is conserved along the trajectory and we write Ṡ± (t,

t 0 , z 0 ) = p ± (t) • q± (t) -h ± (z ) = |p ± (t)| 2 -h ± (z ). Lemma 1.3 gives Ṡ± (t, t 0 , z 0 ) = |p | 2 -2p • ∇v(q )(t -t ) ∓ 2 dw(q )p • ω|t -t | -h ± (z ) + O((t -t ) 2 ).
Integrating between t and t and using

|p | 2 -h ± (z ) = 1 2 |p | 2 -v(q ), we obtain S ± (t, t 0 , z 0 ) = S + (t -t ) 1 2 |p | 2 -v(q ) -p • ∇v(q )(t -t ) 2 ∓ sgn(t -t )dw(q )p • ω(t -t ) 2 + O((t -t ) 3 ),
and we identify the terms (t -t )

1 2 |p | 2 -v(q ) -p • ∇v(q )(t -t ) 2
with the first terms of the Taylor expansion of S 0 (t, t , z ) close to t .

Parallel transport.

In this subsection, we prove Propositions 1.4 and 1.5. We begin with preliminary conditions in order to prepare the elements required for the proof. We use the crucial observation that for all (x, ξ)

∈ (R d \ Υ) × R d , the matrix ξ • ∇Π + (x) is off-diagonal (see Lemma C.1 for details), that is (34) Π ± (x)ξ • ∇Π + (x)Π ± (x) = 0
and that for α ∈ N d , there exist constants

C α > 0, n α ∈ N such that (35) ∂ α x Π ± (x) C 2,2 ≤ C α |w(x)| -|α|
x nα , which is obtained by combining the estimate (6) at infinity and the analysis of the singularity close to Υ.

A simple calculus shows that the pair (

V + , V -) given by V ± (x) = ς ± (x) η ± (x) with ς ± (x) = w 2 (x) √ 2 |w(x)|(|w(x)| ∓ w 1 (x)) ; η ± (x) = ± |w(x)| ∓ w 1 (x) √ 2
is a pair of real-valued eigenvectors of the matrix V (x) given in (3). These functions are smooth in {w 2 = 0} (indeed, one has |w| = ±w 1 when w 2 = 0). Actually, one cannot construct pairs of eigenvectors that are smooth in R 2d \ Υ. However, it is possible to construct pairs of eigenvectors that are smooth in R 2d \ {w(x) • e = 0} for all e ∈ R 2 , | e| = 1. Indeed, we introduce the rotation matrix

(36) R(θ) = cos θ 2 -sin θ 2 sin θ 2 cos θ 2 , θ ∈ R which satisfies (37) R(θ) * A(w)R(θ) = e θ • w e θ ∧ w e θ ∧ w -e θ • w where e θ = (cos θ, sin θ) (recall w ∧ w = w 1 w 2 -w 2 w 1 for w, w ∈ R 2 ).
Then, consider the vectors

V θ ± (x) = ς θ ± (x) η θ ± (x) with ς θ ± (x) = w(x) ∧ e θ √ 2 |w(x)|(|w(x)| ∓ w(x) • e θ ) ; η θ ± (x) = ± |w(x)| ∓ w(x) • e θ √ 2 , the pair (R(θ) * V θ + , R(θ) * V θ -)
with gives a pair of eigenvectors of V (x) that are smooth in the region

R d \ {w(x) • e ⊥ θ = 0}. Lemma 2.3 (Control of real-valued eigenvectors outside Υ). Let ( V + , V -)) be a pair of normalized eigenvectors of the matrix V (x) that are smooth in Ω = R 2d \ {w(x) • ω = 0} for ω = 0.
Then, for all α ∈ N d , there exist C α > 0, and

n α ∈ N such that for x ∈ Ω (38) ∂ α x V ± (x) C 2 ≤ C x nα |w(x)| -α .
Moreover, with the notation of (13), the following relation holds in

Ω (39) ξ • ∇ x V ± (x) = B ± (x, ξ) V ± (x).
Proof. • Proof of [START_REF] Robert | On the Herman-Kluk Semiclassical Approximation[END_REF]. We proceed by induction on |α| ≥ 1, using the relations

Π ± Y ± = Y ± and | Y ± | 2 = 1.
When |α| = 1 with α = 1 j , we derive the second relation in x j and using the fact that the vectors are real-valued, we obtain that

∂ xj V ± • V ± = 0 which implies that ∂ xj V ± is colinear to V ∓ .
Deriving the first relation, we have [START_REF] Meyer | Nouvelles estimations pour les solutions d'équations aux dérivées partielles non linéaires[END_REF], we obtain [START_REF] Robert | On the Herman-Kluk Semiclassical Approximation[END_REF] for all α ∈ N d such that |α| = 1.

∂ xj Π ± V ± + Π ± ∂ xj V ± = ∂ xj V ± that is (40) ∂ xj Π ± V ± = (Id R 2 -Π ± )∂ xj V ± = Π ∓ ∂ xj V ± = ∂ xj V ± since ∂ xj V ± is colinear to V ∓ . Using
We now fix α ∈ N d and suppose that for some C β > 0, n β ∈ N, we have [START_REF] Meyer | Nouvelles estimations pour les solutions d'équations aux dérivées partielles non linéaires[END_REF] and the assumption on lower order derivatives of Y ± , we infer that there exist a constant C α and an integer n α (taking the sup on (m, )) such that (38) holds.

∀β ∈ N d , |β| ≤ |α| -1, |∂ β x V ± (x)| ≤ C β |w(x)| -|β| x n β . Let j ∈ {1, • • • , d} such that α j = 0. We apply ∂ α-1j to the relation "∂ xj Π ± V ± = ∂ xj V ± " from (40). The chain rule implies that ∂ α x V ± is a linear combination of terms ∂ β Π ± ∂ γ V ± for β + γ = α with |β| > 1 so that |γ| < |α|. Using
• Proof of [START_REF] Robert | Propagation of coherent states in quantum mechanics and applications[END_REF]. We write the proof for the plus-mode, since the other mode is dealt in the same manner. We first notice that

ξ • ∇ x V + = (ξ • ∇ x Π + ) V + + Π + (ξ • ∇ x V + ).
Since V + is normalized and real-valued, Π + (ξ • ∇ x V + ) = 0 and we are left with the relation

ξ • ∇ x V + = (ξ • ∇ x Π + ) V + = (ξ • ∇ x Π + )Π + V + = Π -(ξ • ∇ x Π + )Π + V + = B + V + .
We can now prove Propositions 1.4 and 1.5.

Proof of Proposition 1.4. 1-Differentiating in time the expression Π

+ (q -(t)) Y -(t), we obtain d dt (Π + (q -(t)) Y -(t)) = p -(t) • ∇Π + (q -(t)) Y -(t) + Π + (q -(t))B -(q -(t)) Y -(t) = 0. Indeed, p -(t) • ∇Π + (q -(t)) Y -(t) = Π + (q -(t))p -(t) • ∇Π + (q -(t))Π -(q -(t)) Y -(t) = -Π + (q -(t))B -(q -(t)) Y -(t)
by ( 13), [START_REF] Maspero | On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms[END_REF] and

Y -= Π -Y -. Therefore, Π + (q -(t)) Y -(t) = Π + (q -(t 0 )) Y -(t 0 ) = 0 2-We start by analyzing Π -(Φ t,t0 -(z 0 )) and (ξ • ∇Π ± )(Φ t,t0 ± (z 0 )) when t goes to t with t < t . We recall Π -(x) = 1 2 Id -|w(x)| -1 A(w(x) .
By equation [START_REF] Fermanian-Kammerer | Opérateurs pseudo-différentiels semi-classiques[END_REF] 

setting ω = (ω 1 , ω 2 ) t , We obtain (41) Π -(Φ t,t0 -(z 0 )) = 1 2 (Id + A(ω)) + O(t -t ).
We now consider the limit of B -(Φ t,t0 -(z 0 )). Using Lemma C.1, we obtain

B -(x, ξ) = - ξ • ∇w(x) ∧ w(x) 2|w(x)| 3 Π + (x) w 2 (x) -w 1 (x) -w 1 (x) -w 2 (x) Π -(x) (42) = - 1 2 Π + (x) 1 |w(x)| ξ • ∇ x w 1 ξ • ∇ x w 2 ξ • ∇ x w 2 -ξ • ∇ x w 1 - (ξ • ∇ x w 1 )w 1 + (ξ • ∇ x w 2 )w 2 |w(x)| 3 w 1 w 2 w 2 -w 1 Π -(x)
We now specify this relation to (

x, ξ) = Φ t,t0 -(z 0 ). By definition p -(t) • ∇ x w(q -(t)) = rω + O(|t -t |),
and, using [START_REF] Fermanian-Kammerer | Opérateurs pseudo-différentiels semi-classiques[END_REF], we obtain

1 |w(x)| ξ • ∇ x w 1 ξ • ∇ x w 2 ξ • ∇ x w 2 -ξ • ∇ x w 1 (x,ξ)=Φ t,t 0 -(z0) = 1 |t -t | ω 1 ω 2 ω 2 -ω 1 + O(1) and (ξ • ∇ x w 1 )w 1 + (ξ • ∇ x w 2 )w 2 |w(x)| 3 w 1 w 2 w 2 -w 1 (x,ξ)=Φ t,t 0 -(z0) = 1 |t -t | ω 1 ω 2 ω 2 -ω 1 + O(1), that is ξ • ∇w(x) ∧ w(x) 2|w(x)| 2 (x,ξ)=Φ t,t 0 -(z0) = O(1)
and the singularity in

|t -t | -1 disappears in the expression of B -(Φ t,t0 -(z 0 )). We obtain that B -(Φ t,t0
-(z 0 )) is uniformly bounded in a neighborhood of t . As a consequence of the last observation, we deduce the boundedness of ∂ t Y -(t) for t ∈ [t 0 , t ), which -in turn -implies that Y -(t) has a limit V ω when t goes to (t ) -which is normalized and real-valued. Besides, by [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF], V ω is in the range of 1 2 (Id C 2 + A(ω)), thus an eigenvector of A(ω). 3-One checks that the function w(x) • ω is non zero along the curves Φ t,t0 -(z 0 ) for t close to t . Therefore, we choose the function V -(x) that is a smooth real-valued eigenvector of V (x) for the minus-mode in the region {w(x) • ω = 0} and so that V -(q -(t)) has the same limit V ω than Y -(t) as t goes to t with t < t by turning V -into -V -if necessary. Then, the result comes from the observation

d dt V -(q -(t)) = p -(t) • ∇ V -(q -(t)) = Π + (q -(t))p -(t) • ∇ V -(q -(t)) = Π + (q -(t))p -(t) • ∇Π -(q -(t)) V -(q -(t)) = B -(Φ t,t0 -(z 0 )) Y -(t),
where we have used (ξ

• ∇Π -) Y -= Π + ξ • ∇ V -= ξ • ∇ V -.
Proof of Proposition 1.5. The proposition follows the same ideas than in the preceding one and is based on the following observations

Π -(Φ t,t -(z )) -→ t→(t ) - V ω ⊗ V ω , Π + (Φ t,t + (z )) -→ t→(t ) - V ⊥ ω ⊗ V ⊥ ω , (43) 
Π + (Φ t,t + (z )) -→ t→(t ) + V ω ⊗ V ω , Π -(Φ t,t -(z )) -→ t→(t ) + V ⊥ ω ⊗ V ⊥ ω , (44) 
(ξ • ∇Π ± )(Φ t,t ± (z )) = O(1) when t ∼ t . (45) 2.3.
Resolution of the profile equations. In this section, properties of the solutions of equation ( 18) are discussed and Proposition 1.6 and Corollary 1.7 are proved. A crucial element of the proof is a good understanding of the singularity of the Hessian of the function λ ± along the trajectories. We start by a technical Lemma that we shall use later.

Lemma 2.4. There exist smooth matrices M ± (t) defined on [t 0 , t ] (resp. [t , t + τ ]) such that when t tends to t with t < t (resp. t > t ),

(46) Hess λ ± (q ± (t)) = M ± (t) ± |t -t | -1 Γ 0
with Γ 0 given by [START_REF] Gamble | Conical Intersections and Avoided Crossings of Electronic Energy Levels[END_REF].

Proof. We have Hess λ ± = Hess v ± Hess(|w|) and

∂ 2 xixj (|w|) = ∂ 2 xixj w • w |w| + ∂ xi w • ∂ xj w |w| - (∂ xi w • w)(∂ xj w • w) |w| 3 .
We deduce from [START_REF] Fermanian-Kammerer | Opérateurs pseudo-différentiels semi-classiques[END_REF] that

Hess λ ± (q ± (t)) = ± 1 |t -t | Γ 0 ± sgn(t -t )d 2 w(z )ω + Hess v(q ) + O(t -t ) with Γ 0 = r -1 (∂ xi w • ∂ xj w -(∂ xj w • ω)(∂ xi w • ω)) 1≤i,j≤d , whence (20) 
We now prove Proposition 1.6.

Proof of Proposition 1.6. Let us consider the operator

(47) Q ± (t) = - 1 2 ∆ y + 1 2 Hess λ ± (q ± (t))y • y.
This operator has a classical symbol (y, ξ) → 1 2 |ξ| 2 + 1 2 Hess λ ± (Φ t,t0 ± (z 0 )) y • y that enjoys subquadratic estimates in the interval [t 0 , t [, which guarantees the existence of the solution (see [START_REF] Maspero | On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms[END_REF]): the solution u ± (t) exists for all t ∈ [t 0 , t [ and is in all spaces Σ k for k ∈ N. Since we know that the L 2 -norm is conserved, we focus on u ± (t) Σ k for k ≥ 1.

For convenience, we fix a mode, the plus-mode, and choose t < t . So we drop any mention of the mode as it will cause no confusion in this part of the paper:

Q(t) = Q + (t), λ(q(t)) = λ + (q + (t)), u = u + .
The proofs for the minus-mode or for t > t are similar. We set the following notation,

U = t (yu, D y u),
and our aim is to prove that the norms U Σ k are bounded for all k ∈ N.

Using (48) [Q(t), D y ] = -iHess λ(q(t))y and [Q(t), y] = -∇ y = -iD y , we obtain [Q(t), t (y, D y )]u ± = t (-iD y u, iHess λ(q(t))yu) = -i 0 Id R d Hess λ(q(t)) 0 t (yu, D y u)U.
We deduce the equation

i∂ t U -Q(t)U = Q(t), y D y u = -i 0 Id R d Hess λ(q(t)) 0 U
This system is closed and by Lemma 2.4 it is a system of the form

i∂ t U -Q(t) U = (M (t) + i(t -t ) -1 Γ) U,
where t → M (t) smoothly depends on t for t ∈ [t 0 , t ] (meaning that it has -as its derivativeslimits when t goes to t from below) and Γ = 0 0 -Γ 0 0 , for Γ 0 defined in [START_REF] Gamble | Conical Intersections and Avoided Crossings of Electronic Energy Levels[END_REF]. Our aim is to prove the following claim :

Claim: For all k ∈ N, there exists C k > 0 such that for all t ∈ [t 0 , t [

U (t) Σ k (R d ,C 2d ) ≤ C k 1 + ln |t -t | .
For that purpose, we introduce the following projector of rank d

P = 0 0 0 Id R d ; satisfying (1 -P)Γ = 0 and PΓ = PΓ(1 -P).
Step one: k = 0. We set V = (1 -P)U and W = PU . Then, because (1 -P)Γ = 0,

i∂ t V -Q(t)V = (1 -P)M (t)(V + W ) and i∂ t W -Q(t)W = i(t -t ) -1 PΓV + PM (t)(V + W ).
We then introduce the variable Ṽ = W -ln |t -t |PΓV so that Ṽ satisfies

i∂ t Ṽ -Q(t) Ṽ = PM (t)(V + W ) -ln |t -t |PΓ(i∂ t V -Q(t)V ) = PM (t)(V + W ) -ln |t -t |PΓ(1 -P)M (t)(V + W ) = (P -ln |t -t |PΓ)M (t)(V + Ṽ + ln |t -t |PΓV ).
To conclude, V and Ṽ satisfy the system (49) 

i∂ t V -Q(t)V = A(t)V + B(t) Ṽ i∂ t Ṽ -Q(t) Ṽ = Ã(t)V + B(t)
∀t ∈ [t 0 , t ), V (t) L 2 + Ṽ (t) L 2 ≤ C.
Since we can write

U = V + W = V + Ṽ + ln |t -t |PΓV,
this implies the existence of C 1 > 0 such that for all t ∈ [t 0 , t )

U (t) L 2 ≤ V (t) L 2 + Ṽ (t) L 2 + ln |t -t |PΓV (t) L 2 ≤ C 1 1 + ln |t -t | .
Step two: k = 1. In view of (48), the quantities

y j V, y j Ṽ , D yj V, D yj Ṽ , 1 ≤ j ≤ d
satisfy a closed system of equations of the form

i∂ t (y j V ) -Q(t)(y j V ) = A(t)(y j V ) + B(t)(y j Ṽ ) + iD yj V, i∂ t (y j Ṽ ) -Q(t)(y j Ṽ ) = Ã(t)(y j V ) + B(t)(y j Ṽ ) + iD yj Ṽ , i∂ t (D yj V ) -Q(t)(D yj V ) = A(t)(D yj V ) + B(t)(D yj Ṽ ) + C(t) • y V +i|t -t | -1 (e j • Γ 0 y) V, i∂ t (D yj Ṽ ) -Q(t)(D yj Ṽ ) = Ã(t)D yj V + B(t)(D yj Ṽ ) + C(t) • y Ṽ +i|t -t | -1 (e j • Γ 0 y) Ṽ ,
where A(t), Ã(t), B(t), B(t), C(t) and C(t) are smooth maps. Again, this system presents the nonintegrable singularity |t -t | -1 in the right-hand side that calls for a change of unknown, as we previously did. We write V 1 = V ∈ C d , Ṽ1 = Ṽ ∈ C d and consider the derivatives and momenta of V 1 and Ṽ1 . We set

V 2 = (y 1 V, • • • , y d V, y 1 Ṽ , • • • , y d Ṽ ) and Ṽ2 =((D yj V + ln |t -t |(e j • Γ 0 y)V ) 1≤j≤d , (D yj Ṽ + ln |t -t |(e j • Γ 0 y) Ṽ ) 1≤j≤d ),
where (e j ) j is the canonical basis of R d . We have: V 2 , Ṽ2 ∈ C (2d) 2 and the functions t → V 2 (t), Ṽ2 (t) satisfy a system of the form

i∂ t V 2 -Q(t)V 2 = A 2 (t)V 2 + B 2 (t) Ṽ2 i∂ t Ṽ2 -Q(t) Ṽ2 = Ã2 (t)V 2 + B2 (t) Ṽ2
with A 2 (t), B 2 (t), Ã2 (t), B2 (t) are integrable. Arguing as above by using an energy estimate and Grönwall lemma, together with the control established for V 1 , Ṽ1 , we obtain a control of the L 2 -norm of (V 2 (t), Ṽ2 (t)) of the form

V 2 (t) L 2 (R d ,C (2d) 2 ) + Ṽ2 (t) L 2 (R d ,C (2d) 2 ) ≤ C 2 .
We then write

U (t) Σ 1 ≤ U (t) L 2 + V 2 (t) L 2 + Ṽ2 (t) L 2 + ln |t -t |(e j • Γ 0 y)V 1 (t) L 2 + ln |t -t |(e j • Γ 0 y) Ṽ1 (t) L 2 ≤ C 2 1 + ln |t -t | , where we have noticed that (e j • Γ 0 y)V 1 (t) L 2 is controlled by V 2 (t) L 2 ,
and the same holds with the tilda-term.

Step three: from k to k + 1. At the (k -1)-th step, we are left with a vector

(V k (t), Ṽk (t)) ∈ C (2d) k satisfying a system of the form i∂ t V k -Q(t)V k = A k (t)V k + B k (t) Ṽk i∂ t Ṽk -Q(t) Ṽk = Ãk (t)V k + Bk (t) Ṽk
with A k (t), B k (t), Ãk (t), Bk (t) are integrable. This leads to the construction of a vectors of (2d) k = d(2d) k-1 + d(2d) k-1 variables. Re-organizing the equation in order to cancel the singularity generated by the commutator [D y , Q(t)]: we set

V k+1 = (y 1 V k , • • • , y d V k , y 1 Ṽk , • • • , y d Ṽk ) and Ṽk+1 = ((D yj V k + ln |t -t |(e j • Γ 0 y)V k ) 1≤j≤d , (D yj Ṽk + ln |t -t |(e j • Γ 0 y) Ṽk ) 1≤j≤d ).
One can proceed as before and one obtains the boundedness of (

V +1 , Ṽ +1 ) in L 2 , whence the existence of C k+1 , C k+1 > 0 such that (V k , Ṽk ) Σ 1 ≤ c k (V k+1 , Ṽk+1 ) L 2 ≤ C k+1 , which implies U Σ k ≤ C k+1 1 + | ln |t -t || .
With Proposition 1.6, we have a precise information on the behavior of the Σ k -norms of the solutions to the system [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF]. This allows to characterize their behaviors on the crossing set and to solve the equation [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF] after the crossing time. This is the subject of Corollary 1.7 that we now prove.

Proof of Corollary 1.7. Let us assume t < t and set

v ± (t) = Exp ∓ i 2 Γ 0 y • y ln |t -t | u ± (t).
We have

i∂ t v ± (t) = Exp ∓ i 2 Γ 0 y • y ln |t -t | × i∂ t u ± ∓ 1 2|t -t | Γ 0 y • y u ± , = Exp ∓ i 2 Γ 0 y • y ln |t -t | × - 1 2 ∆ y u ± (t) + 1 2 (Hessλ ± (q ± (t))y • y)u ± (t) ∓ 1 2|t -t | Γ 0 y • y u ± = Exp ∓ i 2 Γ 0 y • y ln |t -t | × - 1 2 ∆ y u ± (t) + 1 2 M ± (t)y • yu ±
where the matrix M ± (t) is defined in Lemma 2.4 and is smooth on [t 0 , t ] (the term ±(t-t ) -1 Γ 0 y •y compensates for the singularity of the potential of the operator Q(t) (see ( 47)). We now use Proposition 1.6. Therefore, for all t ∈ [t 0 , t ), ∂ t v ± (t) ∈ Σ k for all k ∈ N. Besides, for each k ∈ N, in view of the control [START_REF] Fermanian Kammerer | Herman-Kluk propagator for systems, Adiabatic and non-adiabatic evolution of wave packets and applications to initial value representations[END_REF], there exist constants C k , Ck > 0 and N k , Ñk ∈ N such that

∂ t v ± (t) Σ k ≤ C k 1 + ln |t -t | N k u ± (t) Σ k+2 ≤ C k 1 + ln |t -t | Ñk
We deduce that t t0 ∂ t v ± (s)ds is well-defined as a function of Σ k and we denote by u in ± this function that satisfies [START_REF] Gérard | Mesures semi-classiques et ondes de Bloch[END_REF].

We now want to use u in ± as an initial data at time t . We observe that the function v ± (t) solves an equation of the form (50)

i∂ t v ± = H(t)v ± with H(t) = - 1 2 ∆ ± a(t)y • D y ± c(t) + b(t)y • y, a(t) = Γ 0 ln |t -t |, c(t) = - i 2 tr(Γ 0 ) ln |t -t | b(t)y • y = 1 2 M ± (t)y • y + 1 2 (ln |t -t |) 2 |Γ 0 y| 2 .
Note that a(t)y

• D y + c(t) = 1 2 (a(t)y • D y ) + 1 2 (a(t)y • D y ) * .
The operator H(t) is a self-adjoint quadratic operator with time-integrable coefficients to which we can associate a two-parameters propagator U(t, s) defined for t, s ∈ [t 0 , t ) (see [START_REF] Maspero | On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms[END_REF]). our aim is to construct U(s, t ). We use the following facts:

(1) It is equivalent to say that u ± (t) solves [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF] and to say that v ± (t) solves (50).

(2) There is conservation of the L 2 -norm and

v ± (t) L 2 = v ± (t 0 ) L 2 = u ± (t 0 ) L 2 .
(3) When t tends to t , U(t, s)u ± (t 0 ) has a limit u in with u ± (t 0 ) L 2 = u in ± L 2 . Let us denote by U(t , s) the operator mapping u ± (t 0 ) to u in ± .

(

) For all f ∈ S(R d ), k ∈ N there exists C k > 0 such that ∀f ∈ S(R d ), U(t , s)f Σ k ≤ C k f Σ k+3 . 4 
We claim that for t, s ∈ [t 0 , t ) we have U(s, t) = U(t, s) * , which allows to define the operator U(s, t ) by U(s, t ) := U(t , s) * .

Indeed, from the definition of U(t, s) as solving

(51) i∂ t U(t, s) = H(t) U(t, s), U(s, s) = Id R 2 ,
we deduce on one hand, that

i∂ t U(t, s) * = -U(t, s) * H(t), U(s, s) = Id R 2 ,
and on the other hand, differentiating in s the relation (51), we obtain that

V (t, s) = ∂ s U(t, s) satisfies i∂ t V (t, s) = H(t)V (t, s), V (s, s) = -∂ t U(s, s) = iH(s).
Therefore, V (t, s) = U(t, s)iH(s), which gives i∂ s U(t, s) = -U(t, s)H(s). Exchanging the roles of t and s we obtain that U(s, t) solves the same equation as U(t, s) * with the same initial data and thus, they are equal. Therefore, we have proved that we can build a function u ± (t) solving [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF] for t ≤ t , starting from a profile u in ± on t with enough regularity, in particular for u in ± ∈ S(R d ). Arguing in a similar way in the zone t > t , we deduce that there exists a unique solution to [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF] satisfying [START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF] for some given u out ± ∈ S(R d ).

Adiabatic transport outside the gap region

This section is inspired by [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF] and discussions with Caroline Lasser and Didier Robert. We focus here on zones that are far enough from the gap region in the sense that |w(x)| > δ, along the trajectories concerned by the process. In this adiabatic region, we prove the following result showing that one can approximate the solution of the system (1) by solutions of scalar type equations. Proposition 3.1. Let k ∈ N and δ ∈ (0, 1) such that √ εδ -1 1. Consider s 1 , s 2 ∈ R, s 1 < s 2 and two classical trajectories z ± (t)) t∈[s1,s2] that reach the crossing set Υ at time t at a point where Assumptions 1.1 are satisfied. We assume [s 1 , s 2 ] ⊂ {|t -t | > δ} and that at initial time s 1 ,

ψ ε (s 1 ) -Y + (s 1 )v ε + (s 1 ) -Y -(s 1 )v ε -(s 1 ) Σ k ε ≤ C √ ε, v ε ± (s 1 ) = WP ε z±(s1) (u ± (s 1 )), u ± (s 1 ) ∈ S(R d ), z ± (s 1 ) = (q ± (s 1 ), p ± (s 1 )) ∈ R 2d , and with Π ± (q ± (s 1 )) Y ± (s 1 ) = Y ± (s 1 ). Then, for all k ∈ N, one has sup t∈[s1,s2] Π ± ψ ε (t) -Y ± (t)v ε ± (t) Σ k ε ≤ C k (1 + | ln δ|) ε 3/2 δ 4 + √ ε δ ,
where the constant C k is uniform in δ and ε, and for t ∈ [s 1 , s 2 ]

• the functions v ε ± (t) are wave packets:

(52) v ε ± (t) = e i ε S±(t) WP ε z±(t) (u ± (t)) ,
• the trajectory z ± (t) is the classical trajectory z ± (t) = Φ t,s1 ± (z ± (s 1 )) and S ± (t) is the related action S ± (t) = S ± (t, s 1 , z ± (s 1 ))(see [START_REF] Kammerer | Mesures semi-classiques et croisements de modes[END_REF]),

• the functions u ± (t) satisfy [START_REF] Fermanian Kammerer | Propagation of wave packets for systems presenting codimension 1 crossings[END_REF] with data u ± (s 1 ) at time s 1 and their norms in spaces Σ k satisfy (19), • the vectors Y ± (t) are defined in Section 1.1.2 and satisfy Π ± (z

± (t)) Y ± (t) = Y ± (t), together with ∂ t Y ± (t) = B ± (z ± (t)) Y ± (t).
Note first that, by the results of Section 2, all the quantities involved in Proposition 3.1 are well defined for t ∈ [s 1 , s 2 ]. Besides, the solution at time t ∈ [s 1 , s 2 ] on each mode only depends on the data on the same mode at time s 1 . This is the reason why one may say that the approximation is of "scalar type" as mentioned before.

Note also that the assumptions of Proposition 3.1 imply that there exists c > 0 such that

∀t ∈ [s 1 , s 2 ], |w(z ± (t))| > cδ.
In the proof of Theorem 1.9, we will use Proposition 3.1 twice: first between s 1 = t 0 and s 2 = t -δ with u + (t 0 ) = 0 and u -(t 0 ) = a, then, between s 1 =: t + δ and s 2 equal to some final time t with the profiles u ± (t + δ) arising from the process of passing through the crossing.

For proving Proposition 3.1, we use the semi-classical formalism of Appendix A and the pseudodifferential operators introduced therein: with a ∈ C ∞ (R 2d , C N ) (N = 1 or 2), we associate the operator op ε (a) defined by (79). We shall use the matrices P, P

± , Ω and Ω

(2) ± of Section C.2. We work close enough to the crossing time t so that the curves z ± (t)) are included in {w(x) • ω = 0} for all t ∈ [s 1 , s 2 ]. Indeed, far from t , the proof is easier since one does not see the singularities of the involved quantities. The proof is divided into two steps: we first identify an approximate solution satisfied by an auxiliary ansatz that is close to the function Y ± (t)v ε ± (t) (Lemma 3.4 in Section 3.1), then we prove that Π ± ψ ε (t) (up to some remainder) satisfies the same equation (Section 3.2).

3.1. The adiabatic ansatz. For proving Proposition 3.1, we first introduce cut-off functions that allow us to restrict the analysis close to the trajectories, where the functions λ ± and related quantities are smooth. Let I be an interval containing [s 1 , s 2 ]. We construct χ δ ± ∈ C(I, C ∞ 0 (R 2d )), compactly supported in {|w(x)| > δ}, equal to 1 close to the curve (z ± (t)) t∈[s1,s2] and satisfying (53)

∂ t χ δ ± + |ξ| 2 2 + λ ± , χ δ ± = 0.
Remark 3.2. Let s 1 , s 2 as in Proposition 3.1. The functions χ δ ± can be taken for t ∈ [s 1 , s 2 ] as

χ δ ± (t, x, ξ) = χ Φ t,s2 ± (x, ξ) -z ± (s 2 ) δ
where 0 ≤ χ ≤ 1 with χ = 1 close to 0 and χ = 0 far from 0.

We also introduce χδ

± ∈ C(I, C ∞ 0 (R 2d 
)) compactly supported, such that for all t ∈ [s 1 , s 2 ], we have χδ ± (t) = 1 on supp χ δ ± (t). We have

(54) for α ∈ N 2d , ∂ α χ δ ± = O(δ -|α| ) ; ∂ α χδ ± = O(δ -|α| )
Step one: reduction to an auxiliary ansatz. Let V ± be the smooth functions defined in (3) of Proposition 1.4, that is a smooth eigenvector of the matrix V (x) satisfying Y ± (t) = V ± (q ± (t)).

Lemma 3.3. Let δ ∈ (0, 1] be such that

√ εδ -1 1. Then, we have for t ∈ [s 1 , s 2 ], Y ± (q ± (t))v ε ± (t) = op ε χ δ ± (t, x, ξ) V ± (x) v ε ± (t) + O √ ε δ -1 (1 + | ln δ|) .
Proof. The proof relies on the application of Lemma B.2 with n 0 = 0 to the symbol a(t, x, ξ) = χ δ ± (t, x, ξ) V ± (x), which requires the computation of the semi-norms

N ε d+k+1 (∂ zj a) = α∈N 2d ,|α|≤n d+k+1 ε |α| 2 sup R 2d |∂ α z ∂ zj a|, 1 ≤ j ≤ 2d,
where for ∈ N, n = M , M ≥ 1. With a = χ δ ± V ± and in view of Lemma 2.3 and equation (54), we obtain

√ εN ε d+k+1 (∂ zj a) ≤ C √ ε   |α|≤n d+k+1 ε |α|/2 sup R 2d ∂ α z ((∂ zj χ δ ± ) V ± ) + |α|≤n d+k+1 ε |α|/2 sup R 2d ∂ α z (χ δ ± ∂ zj V ± )   ≤ C √ ε |α|≤n d+k+1 ε |α|/2 δ -|α|-1 = C |α|≤n d+k+1 ( √ εδ -1 ) |α|+1 = O( √ εδ -1 ) since √ εδ -1
1. We can now see, thanks to Lemma B.2 and the previous computation, that we have in Σ k ε , for some integer N

op ε χ δ ± (t, x, ξ) V ± (x) v ε ± (t) = e i ε S±(t) op ε χ δ ± (t, x, ξ) V ± (x) WP ε z±(t) (u ± (t)) = e i ε S±(t) WP ε z±(t) χ δ ± (t, z ± (t)) V ± (q ± (t)) u ± (t) + O √ εδ -1 u ± (t) Σ N = Y ± (t)e i ε S±(t) WP ε z±(t) u ± (t) + O √ εδ -1 (1 + | ln δ|) = Y ± (t)v ε ± (t) + O √ εδ -1 (1 + | ln δ|)
where we have used to definition of χ δ ± , the estimation on the profiles [START_REF] Fermanian Kammerer | Herman-Kluk propagator for systems, Adiabatic and non-adiabatic evolution of wave packets and applications to initial value representations[END_REF], χ δ ± (t, z ± (t)) = 1 and Lemma B.1.

Step two: Analysis of the ansatz. We now study the properties of the ansatz (55)

ψ ε ±,app (t) = op ε χ δ ± (t, x, ξ) V ± (x) v ε ± (t).
We analyze the equations satisfied by ψ ε ±,app and use the notations of Section C.2. Lemma 3.4. Let k ∈ N and δ ∈ (0, 1] be such that √ εδ -1 1. With the notations of Proposition 3.1 and Equation (55), for t ∈ [s 1 , s 2 ], we have

iε∂ t ψ ε ±,app = - ε 2 2 ∆ψ ε ±,app + λ ± (x)ψ ε ±,app + ε op ε (Ω χδ ± )ψ ε ±,app + ε 2 op ε (Ω (2) ± χδ ± )ψ ε ±,app + O (ε 3/2 + ε 2 δ -2 + ε 5/2 δ -4 )(1 + |ln δ|) in Σ k ε , where Ω (2) 
± is given in (90) and Ω is the self-adjoint matrix

Ω = i(B + + B -) = i(Π -ξ • ∇Π + Π + -Π + ξ • ∇Π + Π -) (56) = - i 2|w(x)| ξ • ∇w(x) ∧ w(x) |w(x)| 0 1 -1 0 .
We recall that the matrices B ± are defined in [START_REF] Kammerer | A Landau-Zener formula for non-degenerated involutive codimension 3 crossings[END_REF] and we point out that Ω is self-adjoint because

Ω * = -i(B * + + B * -) = i(B + + B -) = Ω.
Moreover, by ( 13) and ( 6), the operator op ε (Ω) is a differential operator of order 1 with matrixvalued coefficients that are growing polynomially at infinity and are singular on Υ. The various expressions of the matrix Ω are proved in Lemma C.1.

Remark 3.5. We shall use δ = ε α with 3/2-4α > 0, that is α ≤ 3/8. We shall see in the next section that the analysis requires δ 3 ε 1 1 (see Remark 4.7), which is possible since one has 1/3 < 3/8. Besides, ε 2 δ -2 ε 5/2 δ -4 as soon as α > 1/4, which is satisfied when α ∈ (1/3, 3/8). An optimal choice of δ will then consist in choosing δ = ε 5 14 , leading to ε 3/2 δ -4 = δ 3 ε -1 = ε 1 14 (and of course √ ε ε 5/14 ).

Proof. We begin by considering for t ∈ [s 1 , s 2 ] the family (v ε ± (t)) defined in (52). It comes from a computation (see [START_REF] Combescure | Coherent states and applications in mathematical physics[END_REF] for example) that v ε

± (t) solves in Σ k , ( 57 
) iε∂ t v ε ± (t) = - ε 2 2 ∆v ε ± (t) + λ ± (x)v ε ± (t) + O(ε 3/2 u ± (t) Σ k+3 ).
Since the profiles satisfy ( 19), we have

O(ε 3/2 u ± Σ k+3 ) = O(ε 3/2 (1 + | ln δ|)). Considering ψ ε ±,app , we write in Σ k ε , ( 58 
) iε∂ t ψ ε ±,app = op ε (iε∂ t χ δ ± (t) V ± )v ε ± + op ε χ δ ± (t) V ± iε∂ t v ε ± . Using (53) in the first term of (58), we get op ε (iε∂ t χ δ ± (t) V ± )v ε ± = -iεop ε |ξ| 2 2 + λ ± , χ δ ± (t) V ± v ε ± . Writing |ξ| 2 2 + λ ± (x), χ δ ± (t, z) V ± (x) = |ξ| 2 2 + λ ± (x), χ δ ± (t, z) V ± (x) + ξ • ∇ x V ± (x)χ δ ± (t, z)
, and using (39) together with Π ∓ V ± = 0, we deduce

op ε (iε∂ t χ δ ± (t) V ± )v ε ± = -iεop ε |ξ| 2 2 + λ ± , χ δ ± (t) V ± v ε ± + ε op ε Ω V ± χ δ ± (t) v ε ± , .
On the other hand, using (57), the second term of (58) can be handled as

op ε χ δ ± (t) V ± iε∂ t v ε ± = op ε |ξ| 2 2 + λ ± op ε χ δ ± (t) V ± v ε ± -op ε |ξ| 2 2 + λ ± , op ε χ δ ± (t) V ± v ε ± + O(ε 3/2 (1 + | ln δ|)) = op ε |ξ| 2 2 + λ ± op ε χ δ ± (t) V ± v ε ± - ε i op ε |ξ| 2 2 + λ ± , χ δ ± (t) V ± v ε ± + O(ε 3/2 (1 + | ln δ|)) + O(ε 2 δ -2 )
thanks to Proposition A.1. As a consequence of these two computations, we obtain

iε∂ t ψ ε ±,app = - ε 2 2 ∆ + λ ± ψ ε ±,app +ε op ε Ω V ± χ δ ± (t) v ε ± +O(ε 3/2 (1+| ln δ|))+O(ε 2 δ -2 (1+| ln δ|)))
We then use

op ε Ω V ± χ δ ± (t) = op ε Ω χδ ± (t) op ε χ δ ± (t) V ± - iε 2 op ε Ω χδ ± (t), V ± χ δ ± (t) + O(ε 3 δ -5 ).
Therefore,

iε∂ t ψ ε ±,app = - ε 2 2 ∆ + λ ± + εop ε Ω χδ ± (t) + ε 2 op ε (Ω (2) ± χδ ± (t)) ψ ε ±,app -ε 2 op ε (Ω (2) ± χδ ± (t))op ε V ± χ δ ± (t) v ε ± - iε 2 2 op ε Ω χδ ± (t), V ± χ δ ± (t) v ε ± + O(ε 3/2 (1 + | ln δ|)) + O(ε 2 δ -2 (1 + | ln δ|))) + O(ε 4 δ -5 (1 + | ln δ|)))
To handle the last terms, we rely on Proposition A.1, Remark C.3 and estimates (54), ( 38), together with [START_REF] Fermanian Kammerer | Herman-Kluk propagator for systems, Adiabatic and non-adiabatic evolution of wave packets and applications to initial value representations[END_REF]. We write in Σ k ε op ε (Ω 

(2) ± χδ ± (t)) op ε (χ δ ± (t) V ± )v ε ± = op ε (Ω (2) 
± χ δ ± (t) V ± )v ε ± + O εδ -5 (
op ε (Ω (2) ± χ δ ± (t) V ± )v ε ± = Ω (2) 
± (z ± (t)) V ± (q ± (t))v ε ± + O(ε 5/2 δ -4 v ε Σ k+1 ε ) = O δ -2 (1 + | ln δ|) + O ε 1/2 δ -4 (1 + | ln δ|)
thanks to Lemma C.4. We treat the term op ε Ω χδ

± (t), V ± χ δ ± (t) v ε ± in a similar way. One notices Ω χδ ± (t), V ± χ δ ± (t) (z ± (t)) = {Ω, V ± }(z ± (t)) = ∇ ξ Ω • ∇V ± (z ± (t)) = O(δ -2 ) because ∂ zj χ δ ± (z ± (t)) = ∂ zj χδ ± (z ± (t)) = 0. Then Lemma B.2 gives op ε Ω χδ ± (t), V ± χ δ ± (t) v ε ± = Ω χδ ± (t), V ± χ δ ± (t) (z ± (t))v ε ± + O √ ε(1 + | ln δ|)N ε d+k+1 (d({Ω χδ ± (t), V ± χ δ ± (t)})) .
One has Ω χδ

± (t), V ± χ δ ± (t) (z ± (t)) = O(δ -4 ), which gives op ε Ω χδ ± (t), V ± χ δ ± (t) v ε ± = O (ε 1/2 δ -4 + δ -2 )(1 + | ln δ|) .
One the concludes by observing that ε 4 δ -5 ε 5/2 δ -4 since √ εδ -1 1.

3.2. Superadiabatic correctors of the projectors. In this section, we proceed with the study of the equation satisfied by the projections of ψ ε (t) on the modes, the functions Π ± ψ ε (t). We use ideas issued from [START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF][START_REF] Bily | Propagation d'états cohérents et applications[END_REF][START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF][START_REF] Nenciu | Linear adiabatic theory. Exponential estimates[END_REF][START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF], aiming at improving the projectors Π ± (x) into operators called superadiabatic projectors that are pseudodifferential operators with symbols that are series in ε.

For our purpose, we only need the first two terms of these series. We set

H(x, ξ) = |ξ| 2 2 + V (x), h ± (x, ξ) = |ξ| 2 2 + λ ± (x),
and consider for x / ∈ Υ, the matrices Ω(x, ξ) defined by (56), P(x, ξ) given by

P(x, ξ) = i 2|w(x)| (Π -(x)ξ • ∇Π + (x) -Π + (x)ξ • ∇Π + (x)) (59) = -i 4|w(x)| 2 ξ • ∇w ∧ w |w| 0 1 -1 0 and P (2) ± , Ω (2) 
± written in details in Section C.2. The superadiabatic projectors at order 2 are the functions

Π ε ± (x, ξ) = Π ± (x) ± εP(x, ξ) + ε 2 P (2) 
± (x, ξ). These matrices are smooth outside Υ. From Lemma C.2, outside Υ, we have equation (85), i.e.

Π ε ± ε H = (h ± + ε Ω (1) ± + ε 2 Ω (2)
± ) ε Π ε ± + ε 3 R ε where R ε satisfies the estimate (86). Besides, Estimate [START_REF] Meyer | Nouvelles estimations pour les solutions d'équations aux dérivées partielles non linéaires[END_REF] and Remark C.3 give precise information about these matrices at infinity and close to Υ. Because these corrected projectors may grow in the variables x and ξ, we shall localize them by use of the cut-off functions of Section 3.1. It will also allow to restrict the analysis to the zone where they are smooth. By construction, we have the following Lemma.

Lemma 3.6. Let k ∈ N, δ ∈ (0, 1) such that √ εδ -1 1. Then, in L(Σ k ε ), we have for all function χδ ± (t) ∈ C ∞ (R 2d ) satisfying (54) and supported on {χ δ (t)) = 1} for t ∈ [t 0 , t ), op ε ( χδ ± (t))op ε (Π ε ± χ δ ± (t)) - ε 2 2 ∆ + V (x) = op ε ( χδ ± (t))op ε (H ε adiab,± )op ε (Π ε ± χ δ ± (t)) + O(ε 3 δ -5 ). with H ε adiab,± (t) := h ± + εΩ χδ ± (t) + ε 2 Ω (2) ± χδ ± (t) Remark 3.7. Note that if δ = ε α with α ∈ ( 1 3 , 3 8 
), as suggested in Remark 3.5, then ε 2 δ -5 ε 3/2 δ -4 .

This lemma emphasizes the purpose of these superadiabatic projectors: they allow to diagonalize the operator op ε (H) up to the correction ε op ε (Ω) + ε 2 op ε (Ω (2) ) which is of lower order in ε (recall that Ω = i(B + + B -) is self-adjoint).

Proof. The proof comes from the symbolic calculus of Proposition A.1 and Remark A.3, keeping in mind that we have |w(x)| > δ on the support of the cut-off functions. We observe

op ε (Π ε ± χ δ ± (t))op ε (H) = op ε (Π ε ± χ δ ± (t)) ε H = op ε χ δ ± (t)(Π ε ± ε H) + op ε (b ε ± ) with b ε ± = (Π ε ± χ δ ± ) ε H -χ δ ± (Π ε ± ε H)
depending linearly on derivatives of χ δ ± of order larger or equal to 1. Using (85), we obtain

op ε (Π ε ± χ δ ± (t))op ε (H) = op ε χ δ ± (t)((h ± + εΩ + ε 2 Ω (2) ± ) ε Π ε ± + op ε (b ε ± ) + ε 3 op ε (χ δ ± (t)R ε ) = op ε (χ δ ± (t)h ± + χδ ± (t)χ δ ± (t)(εΩ + ε 2 Ω (2) ± ) ε Π ε ± + op ε (b ε ± ) + ε 3 op ε (χ δ ± (t)R ε ) = op ε (χ δ ± (t)H ε adiab,± (t)) ε Π ε ± + op ε (b ε ± ) + ε 3 op ε (χ δ ± (t)R ε )
where we have used in the last equation that χδ ± (t) is identically equal to 1 on the support of χ δ ± (t). Then, we can write

op ε (Π ε ± χ δ ± (t))op ε (H) = op ε H ε adiab,± (t) op ε χ δ ± (t)Π ε ± + op ε ( bε ± ) + ε 3 op ε (χ δ ± (t)R ε ) where b ε ± = b ε ± + (χ δ ± H ε adiab,± (t)) ε Π ε ± -H ε adiab,± (t) ε (Π ε ± χ δ ± ) satisfies the same properties as b ε ± . Using (86), we have op ε (χ δ ± (t)R ε ) = O(δ -5
). Besides, on the support of χδ + (t), the functions

∂ α z χδ + (t), ∂ α z χ δ + (t)
, and thus b ε + and its derivatives, are all identically equal to 0 for any α ∈ N 2d , and similarly for the minus-mode. Therefore, using Remark A.2, we obtain op ε ( χδ

± (t))op ε ( b ε ± ) = O(ε N +1 δ -3-N ) because for γ ∈ N 2d , using Remark C.3 (the worst term being Π ε ± ), we have N ε d ( b ε ± ) = O(εδ -|γ|-3 ) and N ε d (∂ γ z χδ ± ) = O(δ -|γ|
). One then concludes by choosing N = 2.

We can now perform the proof of Proposition 3.1.

Proof of Proposition 3.1. Without loss of generality, we can reduce to only one mode and we can assume v ε + (s 1 ) = 0, what we do from now on. Indeed, the same scheme of proof then extends to the other mode and one gets the general case because of the linearity of the equation. It is also enough to prove

Π ± ψ ε (s 2 ) -ψ ε ±,app (s 2 ) Σ k ε ≤ C k (1 + | ln δ|) ε 3/2 δ 4 + √ ε δ ,
where ψ ε ±,app has been defined in (55). Indeed, the same argument will be valid for any s * ∈ [s 1 , s 2 ], with the same constant C k because that constant will only depend on the sup-norm of quantities that are continuous functions in {|w(x)| > δ}.

We choose δ such that √ εδ -1 ≤ 1 and consider χ δ ± (t), χδ ± (t) and χδ ± (t) as in the preceding section (see Remark 3.2 and Lemma 3.6); they enjoy the following relations: 

0 ≤ χδ ± (t) ≤ χ δ ± (t) ≤ χδ ± (t) ≤ 1 χδ ± (t) = 1 on supp χ δ ± (t)
w ε -(t) = op ε ( χδ -(t)) op ε (χ δ -(t)Π ε -)ψ ε (t) -op ε (χ δ -(t))ψ ε -,app (t) and w ε + (t) = op ε ( χδ + (t)) op ε (χ δ + (t)Π ε + )ψ ε (t).
The crucial point of the proof is to establish the equation satisfied by

w ε ± (t). Lemma 3.8. Let k ∈ N, δ ∈ (0, 1) with √ εδ -1 1. For t ∈ [s 1 , s 2 ], we have in Σ k ε , iε∂ t w ε + = - ε 2 2 ∆w ε + + λ + w ε + + ε op ε χδ ± (t)(Ω + εΩ (2) + ) w ε + + O(ε 3 δ -5 ) iε∂ t w ε -= - ε 2 2 ∆w ε -+ λ -w ε -+ ε op ε χδ ± (t)(Ω + εΩ (2) -) w ε -+ O((ε 5/2 δ -4 + ε 3/2 δ -1 )(1 + | ln δ|)) with initial data w ε ± (s 1 ) = O( √ ε).
Proof of Lemma 3.8. Let us begin with w ε + (t). We have

iε∂ t w ε + (t) = op ε ( χδ + (t))op ε (χ δ + (t)Π ε + )op ε (H)ψ ε (t) + iεop ε (∂ t χδ + (t))op ε (χ δ + (t)Π ε + )ψ ε (t) + iε op ε ( χδ + (t))op ε (∂ t χ δ + (t)Π ε + )ψ ε (t). Using ∂ t χδ + (t) = {h + , χδ + (t)
} and the fact that ∂ z χ δ + (t) = 0 on the support of χδ + (t), we obtain by Remark A.2 as in the proof of Lemma 3.6,

ε op ε ( χδ + (t))op ε (∂ t χ δ + (t)Π ε + )ψ ε (t) = O(ε N +1 δ -3-N
) and we choose as before N = 2. By Lemma 3.6, we are left with

iε∂ t w ε + (t) = op ε ( χδ + (t))op ε H ε adiab,+ op ε (χ δ + (t)Π ε + )ψ ε (t) (60) + iε op ε (∂ t χδ + (t)) op ε (χ δ + (t)Π ε + )ψ ε (t) + O(ε 3 δ -5
). We now take advantage of Remark A.3 for writing op ε ( χδ

+ (t)), op ε (H ε adiab,+ ) = -iε op ε ({ χδ + (t), H ε adiab,± }) + O(ε 3 δ -5 ),
where we have used the analysis of the singularities of Ω and Ω

+ (see Lemma C.2). We deduce op ε ( χδ

+ (t)) op ε (H ε adiab,+ ) op ε (χ δ + (t)Π ε + )ψ ε (t) = op ε (H ε adiab,+ )w ε + -iε op ε ({h + , χδ + (t)})op ε (χ δ + (t)Π ε + )ψ ε (t) + O(ε 3 δ -5
). Combining the latter with (60) and the relation

∂ t χδ + (t) = {h + , χδ + (t)}, we obtain iε∂ t w ε + (t) =op ε (H ε adiab,+ )w ε + (t) + O(ε 3 δ -5
). For w ε -(t), the computation follows the same steps with the difference that there is an additional term due to the presence of ψ ε -,app . Using Lemma 3.4, an additional remainder in

O((ε 5/2 δ -4 + ε 3/2 δ -1 )(1 + | ln δ|)),
is generated, which is much larger than O(ε 3 δ -5 ) (again because of √ εδ -1 ≤ 1).

We can now conclude the proof of Proposition 3.1. Using Lemma 3.8, and by the properties of the unitary propagator associated with the operators

op ε (H ε adiab,± ) = - ε 2 2 ∆ + λ ± + εop ε (Ω χδ ± (t)) + ε 2 op ε (Ω 2 ± χδ ± (t)),
(see [START_REF] Maspero | On time dependent Schrödinger equations: global well-posedness and growth of Sobolev norms[END_REF]), we obtain the existence of a constant C k such that (61)

w ε + (s 2 ) Σ k ε + w ε -(s 2 ) Σ k ε ≤ C k ((ε 3/2 δ -4 + √ εδ -1 )(1 + | ln δ|)).
Equivalently, using χδ (s 

2 ) = χδ (s 2 )χ δ ± (s 2 ), op ε (Π ε + + Π ε -) = Id + O(ε 2 δ -4 ) (see Remark C.3),
( χδ (s 2 ))ψ ε (s 2 ) = ψ ε -,app (s 2 ) + O((ε 3/2 δ -4 + √ εδ -1 )(1 + | ln δ|))
in Σ k ε . The argument could have been worked out between s 1 and any s ∈ [s 1 , s 2 ]. Therefore, at this stage of the proof, varying the function χδ , we have obtained that for any t ∈ [s 1 , s 2 ] and any cut-off function

χ δ supported in {|w(x)| > δ}, we have in Σ k ε , (62) op ε (χ δ (t))ψ ε (t) = ψ ε -,app (t) + O((ε 3/2 δ -4 + √ εδ -1 )(1 + | ln δ|)).
We now want to extend this approximation to ψ ε (t) itself. We define θ δ -localizing close to the trajectory z -(t) and in {|w(x)| > δ} (we denote it θ δ -to emphasize that it is independent of the functions χ δ -used before). The analysis performed above applies to the special case of θ δ -and we have in Σ k ε and for t

∈ [s 1 , s 2 ] op ε (θ δ -(t))ψ ε (t) = ψ ε -,app (t) + O((ε 3/2 δ -4 + √ εδ -1 )(1 + | ln δ|)).
We study

w ε (t) = op ε (1 -θ δ -(t)
)ψ ε (t) and aim at proving that w ε (s 2 ) is negligible, which is the case for w ε (s 1 ). Moreover, for t ∈ [s 1 , s 2 ], (63)

iε∂ t w ε = - ε 2 2 ∆w ε + V w ε + 1 2 ε 2 ∆, op ε (θ δ -(t)) ψ ε .
Let us study the source term. By symbolic calculus (see Remark A.3), we have

- ε 2 2 ∆, op ε (θ δ -(t)) = ε op ε (χ δ (t)) + O(ε 3 δ -3 )
where

χ δ = ξ • ∇ x θ δ -∈ C ∞ (R 2d+1
) is supported in {|w(x)| > cδ} for some c > 0, with χ δ (t) identically equal to 0 in a neighborhood of Φ t,s2 (z -(s 2 )) and |∂ α χ δ (t, x, ξ)| ≤ Cδ -1-|α| for all α ∈ N 2d . We deduce from (63) and from ( 2

) of Lemma B.2 that for N ∈ N * , t ∈ [s 1 , s 2 ] and in Σ k ε op ε (χ δ (t))ψ ε (t) = O δ -1 ( √ εδ -1 ) N (1 + | ln δ|) + O (ε 3/2 δ -4 + √ εδ -1 )(1 + | ln δ|) .
Therefore, equation (63

) gives in Σ k ε w ε (s 2 ) = w ε (s 1 ) + O δ -1 ( √ εδ -1 ) N (1 + | ln δ|) + O (ε 3/2 δ -4 + √ εδ -1 )(1 + | ln δ|) + O(ε 2 δ -3 ).
By choosing N = 3 and using ε 2 δ -3 ε 3/2 δ -4 , we deduce

ψ ε (s 2 ) = ψ ε -,app (s 2 ) + O (ε 3/2 δ -4 + √ εδ -1 )(1 + | ln δ|) ,
whence Proposition 3.1.

Passing through the gap region

At this stage of the proof, we have obtained an approximation of the solution as long as the trajectories do not enter in the region {|w(q)| ≤ cδ}, for some c > 0 fixed, i.e. in a neighborhood of the crossing set Υ. We now focus on trajectories that reach their minimal gap inside this region and enter in the region at time t -δ and leaves it at time t + δ.

The strategy is the following.

(1) We first perform a change of time and unknown in order to reduce the system (1) into a Landau-Zener model in the region {|w(q)| ≤ cδ}. (2) We identify the ingoing wave packet in the new coordinates, i.e. the function

ψ ε (t -δ) that satisfy in L 2 (R d ), ψ ε (t -δ) = ψ ε app (t -δ) + O(( √ εδ -1 + ε 3/2 δ -4 ) (1 + | ln δ|)) .
(3) We prove that we can use the resolution of the Landau-Zener model to obtain an approximation of the solution at time t + δ.

4.1.

Reduction to a Landau-Zener model. To pass through the region Υ, following ideas from [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF], we use a Taylor approximation along the trajectory Φ t,t 0 (z ) = (q 0 (t), p 0 (t)) introduced in Section 2.1. We make the time-scaling t = t + s √ ε and consider the new unknown function

u ε (s) ∈ L 2 (R d , C 2 ) defined by (64) ψ ε (t) = e i ε S0(t,t ,z ) WP ε Φ t,t 0 (z ) (u ε (s)), t = t + s √ ε
where the action S 0 (t, t , z ) is associated with h 0 , defined in [START_REF] Lubich | From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis[END_REF], and Φ t,t 0 (z ) as introduced in Lemma 2.2.

Remark 4.1.

(1) Note that when t = t -δ, then s = -s 0 := -δ/ √ ε and when t = t + δ, then s = s 0 = δ/ √ ε. Since we have assumed √ εδ -1 1 in the preceding section, we will have s 0 1. Through the change of variable (64), for k ∈ N and s ∈ [-s 0 , s 0 ], there exist constants c, C such that

c u ε (s) Σ k ε ≤ ψ ε (t) Σ k ε ≤ C u ε (s) Σ k ε with (65) f Σ k ε = sup |α|+|β|≤k ε |α|+|β| 2 f Σ |α|+|β| .
Therefore, it is natural to use these sets Σ k ε for estimations. Lemma 4.2. Let k ∈ N. The family (u ε (s)) ε>0 satisfies for all (s, y) ∈ R 2d+1 (66)

i∂ s u ε = A s rω + dw(q )y u ε + √ ε - 1 2 ∆u ε + B ε (s, y)u ε
where B ε is a smooth hermitian matrix valued potential with the following properties: there exist constants C 0 , C 1 > 0 such that for all s ∈ [-s 0 , s 0 ] and y ∈ R d ,

|B ε (s, y)| ≤ C 0 s 2 √ ε|y| + |y| 2 , |∇B ε (s, y)| ≤ C 1 √ ε|y| 2 + |y| + √ εs 2
and for all |β| ≥ 2, there exists C β > 0 such that for all s ∈ [-s 0 , s 0 ] and y ∈ R d ,

∂ β y B ε (s, y) ≤ C β ε |β|-2 2 √ εy 2 .
Remark 4.3. When (t , z ) is the point of the trajectory Φ t,t0 -(z 0 ) where the quantity w Φ t,t0 -(z 0 ) (called the gap) is minimal, a similar analysis yields to the system

i∂ s u ε = A w(q ) √ ε + s rω + dw(q )y u ε + √ ε - 1 2 ∆u ε + B ε (s, y)u ε .
This observation gives a starting point for the analysis of the propagation of a wave packet passing close to a crossing point, while no exactly through it. The size of the gap comparatively to √ ε then is a crucial point of the description.

Recall that rω = dw(q )p and that w(q ) = 0. We shall set in the following η(y) := dw(q )y and compare u ε with the solution u of the equation

i∂ s u = A (s rω + η(y)) u.
The important point to note here is that the leading part A (s rω + η(y)) of the system has the same structure as the well-known Landau-Zener system (see references [START_REF] Landau | Collected papers of L. Landau[END_REF][START_REF] Zener | Non-adiabatic crossing of energy levels[END_REF] and equation (67) below). The latter is well understood as it will be detailed in the next sections. We shall use the initial data at time s = -s 0 with

s 0 = δ/ √ ε.
The time -s 0 corresponds to t = t -δ, i.e. to the ingoing solution, and we shall deduce the value of the outgoing solution at time t = t + δ or equivalently s = +s 0 . This will be done assuming δ √ ε, thanks to the scattering result of the next section.

Proof. We use the formalism of Section 2.3, together with the observation of Appendix B. The first step consists in observing that

iε∂ t + ε 2 2 ∆ -v(x) ψ ε (t, x) = e i ε S0(t,t ,z ) e i ε p0(t)•( √ εy) i √ ε∂ s u ε (s, y) + ε 2 ∆ y u ε (s, y) -v(q 0 (t) + √ εy) -v(q 0 (t)) -y √ εdv(q 0 (t)) u ε (s, y) y= x-q 0 (t) √ ε = e i ε S0(t,t ,z ) e i ε p0(t)•( √ εy) i √ ε∂ s u ε (s, y) + ε 2 ∆ y u ε (s, y) + εW ε (t, y)u ε (s, y) y= x-q 0 (t) √ ε
where we have used Lemma B.2 (1) and the definition of the action. Besides,

W ε (s, y) = R 0 (t, y √ ε)y • y, R 0 (t, y √ ε) = 1 0 Hess v(q 0 (t) + √ εθy)(1 -θ)dθ,
and R 0 is bounded with bounded derivatives according to [START_REF] Calderón | On the boundedness of pseudo-differential operators[END_REF]. Similarly, we have

A(w(x))ψ ε (t, x) = e i ε S0(t,t ,z ) e i ε p0(t)•( √ εy) A(w(q 0 (t) + √ εy))u ε (s, y) y= x-q 0 (t) √ ε . Therefore, Equation (1) becomes i √ ε∂ s u ε + ε 2 ∆u ε + εW ε (s, y)u ε (s, y) = A(w(q 0 (t) + √ εy))u ε (s, y).
Writing w(q 0 (t) + √ εy) = w(q 0 (t)) + √ εdw(q 0 (t))y + εR

1 (t, y √ ε)y • y i √ ε∂ s u ε = A w(q 0 (t + s √ ε)) + √ εdw(q 0 (t + s √ ε))y u ε + εR 2 (s √ ε, y √ ε)y • y u ε (s, y),
for some bounded smooth matrix R 1 and tensor R 2 , with bounded derivatives coming from (2). We conclude by performing a Taylor expansion in s, writing

q 0 (t + s √ ε) = q + √ εsp + εs 2 R 3 (s √ ε) and w(q 0 (t + s √ ε)) + √ εdw(q 0 (t + s √ ε))y = √ εsdw(q )p + √ εdw(q )y + εR 4 (s √ ε)s 2 + ε 3/2 s 2 R 5 (s √ ε)y
for some smooth bounded vector-valued R 3 and R 4 , and matrix-valued R 5 , with bounded derivatives because of the assumption (2). The properties of B ε (s, y) come from its expression in terms of the

R j , j ∈ {1, • • • , 5} B ε (s, y) = W(t + s √ ε, y) + s 2 A R 4 (s √ ε) + √ εR 5 (s √ ε)y + R 2 (s √ ε, y √ ε)y • y
and the assumption (2) made on the potential.

4.2.

The Landau-Zener model and the structure of the solutions. The structure of the system (66) suggests that we consider the model problem

(67) i∂ s u = A(srω + η)u, u(0, η) = u 0 (η) ∈ C 2
where η ∈ C 2 is a parameter. As we shall see below, this problem can be turned into the following Landau-Zener problem by elementary computations

(68) 1 i ∂ s u LZ (s, z) = s + z 1 z 2 z 2 -s -z 1 u LZ (s, z).
Therefore, one can deduce the behavior of the solutions to (67) from the asymptotics, as s → ±∞, of the solutions to the Landau-Zener problem (68). Besides the historical references [START_REF] Landau | Collected papers of L. Landau[END_REF][START_REF] Zener | Non-adiabatic crossing of energy levels[END_REF], the reader can refer to [START_REF] Kammerer | Mesures semi-classiques et croisements de modes[END_REF] where an analysis of the behavior of the solutions of the Landau-Zener model is given with a stationary phase approach; or to [START_REF] Hagedorn | Molecular Propagation through Electron Energy Level Crossings[END_REF] where the proof is given in terms of parabolic-cylinder functions. We follow the results of the Appendix of [START_REF] Kammerer | Mesures semi-classiques et croisements de modes[END_REF] which are obtained for η taken in a fixed compact, while the analysis in terms of the size R of this compact is performed in [Appendix, [START_REF] Kammerer | Propagation through generic level crossings: a surface hopping semigroup[END_REF]]: as s → ±∞

(69) u LZ (s) = e i (s+z 1 ) 2 2 +i z 2 2 2 ln |s+z1| u ± 1 (z 2 ) 0 + e -i (s+z 1 ) 2 2 -i z 2 2 2 ln |s+z1| 0 u ± 2 (z 2 ) + O(R 2 |s| -1 ), with u + 1 = a(z 2 )u - 1 -b(z 2 )u - 2 , u + 2 = b(z 2 )u - 1 + a(z 2 )u - 2
where the coefficients a and b are given by [START_REF] Hari | Propagation of Semiclassical Wave Packets through Eigenvalue Crossings in Nonlinear Schrödinger Equations[END_REF]. It is then possible to derive the next proposition about solutions to (67) in which ( V ω , V ⊥ ω ) is a direct orthogonal basis of R 2 as in ( 15) consisting of normalized real-valued eigenvectors of A(ω) satisfying

A(ω) V ω = V ω and A(ω) V ⊥ ω = -V ⊥ ω .
Note that they are uniquely defined up to a sign. The next lemma gives the form of the asymptotics of u(s, η) when s → ±∞ in such a basis, together with scattering relations.

Lemma 4.4. There exists

α in 1 , α in 2 , α out 1 , α out 2 ∈ S(R d ) such that as s goes to -∞ and for |η| ≤ R, u(s, η) = e iΛ(s,η) α in 1 (η) V ⊥ ω + e -iΛ(s,η) α in 2 (η) V ω + O(R 3 |s| -1
), 1 and as s goes to +∞ and |η| ≤ R u(s, η) = e iΛ(s,η) α out 1 (η)

V ⊥ ω + e -iΛ(s,η) α out 2 (η) V ω + O(R 3 |s| -1 )
, where

(70) Λ(s, η) = 1 2r |ω • η + rs| 2 + 1 2r |ω ⊥ • η| 2 ln( √ r|s|). Besides α out 1 α out 2 = S(r -1/2 ω ⊥ • η) α in 1 α in 2 with S(η) = a(η) -b(η) b(η) a(η) ,
where the coefficients a and b are given by (25).

1 check R 3
Proof. For proving Lemma 4.4, we relate the solution u of the system (67) to u LZ thanks to a change of variables via the rotation matrix R(θ) defined in [START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF] and its property [START_REF] Nenciu | Linear adiabatic theory. Exponential estimates[END_REF]. Therefore, choosing θ ∈ R such that ω θ = -ω, we have

R(θ) -1 A(η + srω)R(θ) = - η • ω + sr η • ω ⊥ η • ω ⊥ -η • ω -sr .
We then write

1 i ∂ s (R(θ) -1 u) = R(θ) -1 A(-η -srω)R(θ) (R(θ) -1 u) = η • ω + sr η • ω ⊥ η • ω ⊥ -η • ω -sr (R(θ) -1 u).
and we deduce that v(s, η) = R(θ) -1 u(sr -1/2 , r 1/2 η)

solves 1 i ∂ s v(s, η) = η • ω + s η • ω ⊥ η • ω ⊥ -η • ω -s v(s, η),
i.e. the equation ( 68) for z = (η • ω, η • ω ⊥ ) and we can write

u(s, η) = R(θ)u LZ (sr 1/2 , r -1/2 z).
Then, Equation (69) motivates the following:

Λ(s, η) := 1 2 |sr 1/2 + r -1/2 η • ω| 2 + 1 2 |r -1/2 η • ω ⊥ | 2 ln sr 1/2 + r -1/2 η • ω = 1 2r |sr + η • ω| 2 + 1 2r |η • ω ⊥ | 2 ln sr 1/2 + O(R 3 |s| -1 )
where we have performed a Taylor expansion of ln 1 + η • ω sr and used |η| ≤ R. As s → ±∞, we deduce that Equation (69) yields to u(s, η) = e iΛ(s,η) u ± 1 R(θ)

1 0 + e -iΛ(s,η) u ± 2 R(θ) 0 1 + O(R 3 |s| -1 ).
In view of

R(θ) -1 A(ω)R(θ) = -1 0 0 1
we deduce that there exists ς ∈ {-1, +1} such that

V ω = ςR(θ) 0 1 , V ⊥ ω = ςR(θ) 1 0
up to a sign. The result of Lemma 4.4 then follows with α in j = ςu - j and α out j = ςu + j , j ∈ {1, 2}.

In the following, we wish to compare u ε with u from (67) with η = η(y) and use Lemma 4.4 to deduce the leading behavior of u ε at s 0 = δ/ √ ε from information available at time -s 0 = -δ/ √ ε. For that purpose, it is required to identify the ingoing profiles α in 1 and α in 2 related with the data u(-s 0 ) := u ε (-s 0 ), that is known from Section 3. We will do that in the next section and will make use of the following property of u ε (s, y). Lemma 4.5. Assume u(-s 0 ) ∈ Σ k (R d ), α, β ∈ N 2 . Then, there exists a constant C α,β > 0 such that the solution of (67) satisfies for for s ∈ (-s 0 , s 0 ) we have

η α ∂ β η u(s) L 2 ≤ C α,β s |β| .
Proof. When β = 0, one easily checks that the result holds (because η α commutes with the equation). One then fixes α, uses a recursive argument on the length of β, starting from the conservation of the L 2 -norm (β = 0) and based on the observation

i∂ s (η α ∂ β u) = A(srω + η)(η α ∂ β u) + j=1,2
1 βj >0 c j A(e j )η α ∂ β-1j u where c j are universal constants and (e 1 , e 2 ) the canonical basis of R 2 . An energy inequality generates the growth in s.

4.3.

The ingoing wave packet. Here we prove the following proposition. Proposition 4.6. With the assumptions of Theorem 1.9, the solution of (1) satisfies (64) at time t = t -δ, i.e. s = -s 0 = -δ/ √ ε with

u ε (-s 0 , y) = e -iΛ(-s0,η) α in 2 (η(y)) V ω + O ( √ εδ -1 + ε 3/2 δ -4 + δ 3 ε -1 )(1 + | ln δ|) in Σ k ε
where Λ(s, η) is defined in (70), η is given by η = dw(q )y and we have

(71) α in 2 (η) = Exp i ε S -+ i 4r (η • ω ⊥ ) 2 ln( r ε ) + i 2r |ω • η| 2 u in -(y),
with S -= S -(t , t 0 , z 0 ).

Remark 4.7. This result suggests that δ has to be chosen so that δ 3 ε, accordingly with the constraints mentioned in Remark 3.5 and fits with the choice of δ = ε 5 14 .

Proof. We start from the estimate obtained for t ≤ t -δ, namely

ψ ε (t, x) =ε -d/4 e i ε S-(t,t0,z0)+ i ε p-(t)(x-q-(t)) V -(t, Φ t,t0 -(z 0 )) × u -t, x -q -(t) √ ε + O ( √ εδ -1 + ε 3/2 δ -4 )(1 + | ln δ|)
in Σ k ε . We fix k ∈ N and prove the estimates in this set. We begin by considering the phase. The asymptotics of Lemma 2.1 and Lemma 2.2 imply that when t = t + √ εs with s < 0 and x = q 0 (t) + √ εy, we have the pointwise estimates

i ε S -(t, t , z ) = i ε S 0 (t, t , z ) -irs 2 + O( √ εs 3 ) and i ε p -(t) • (x -q -(t)) = i ε p 0 (t) - √ εs t dw(q )ω + O(εs 2 ) • x -q 0 (t) + ε 2 s 2 t dw(q )ω + O(ε 3/2 s 3 ) = i √ ε p 0 (t) • y -isω • dw(q )y + i 2 s 2 ω • dw(q )p 0 (t) + O( √ εs 2 |y|) + O( √ εs 3 ).
We observe that ω • dw(q )p 0 (t) = ω • dw(q

)p + O(s √ ε) = r + O(s √ ε). Therefore i ε S -(t, t , z ) + i ε p -(t) • (x -q -(t)) = i ε S 0 (t, t , z ) + i √ ε y • p 0 (t) - i 2 rs 2 -isω • dw(q )y + O( √ εs 2 |y|)) + O( √ εs 3 )
We now consider the profile and takes into account Corollary 1.7. We obtain the estimate in Σ k ε

ψ ε (t, x) = ε -d/4 Exp i ε S 0 (t + √ εs, t , z ) + i √ ε p 0 (t) • y × V ω Exp - i 2 Γ 0 y • y ln |s √ ε| - i 2 rs 2 -is ω • dw(q )y + O(s 3 √ ε) × e i ε S -u in -(y + y ε (s)) + O ( √ εδ -1 + ε 3/2 δ -4 + δ)(1 + | ln δ|)
where we have approximated u -(t) by u in -and Y -(t) by V ω (t) for t close to t (|t -t | ∼ δ) and y ε (s) satisfies the pointwise estimate y ε (s) = O(s 2 √ ε y )). We deduce from the fact that u in -∈ S(R d )

u ε (-s 0 , y) = V ω e i ε S -Exp - i 2 Γ 0 y • y ln |s √ ε| - i 2 rs 2 -is ω • dw(q )y u in -(y) + O ( √ εδ -1 + ε 3/2 δ -4 + δ + δ 3 ε -1 )(1 + | ln δ|)
where we have used that

δ 2 √ ε δ 3 ε since √ ε δ.
Given the definition of Λ(s, η) in (70) with η = dw(q )y, we obtain

Λ(s, η) = r 2 s 2 + sω • dw(q )y + 1 2r |ω • η| 2 + 1 2r |ω ⊥ • η| 2 ln( √ r|s|). Moreover Γ 0 y • y = r -1 (Id R 2 -ω ⊗ ω)dw(q )y • dw(q )y = r -1 (dw(q )y • ω ⊥ ) 2 . Therefore, in Σ k ε u ε (-s 0 , y) = V ω Exp (-iΛ(s, y)) Exp i ε S -+ i 4r (η • ω ⊥ ) 2 ln( r ε ) + i 2r |ω • η| 2 u in -(y) + O ( √ εδ -1 + ε 3/2 δ -4 + δ + δ 3 ε -1 )(1 + | ln δ|) ,
which concludes the proof in view of (71).

4.4. The outgoing solution. We now compare u ε (s) with a solution to the Landau-Zener model problem. Let u be the solution of (67) for η = η(y) and the initial data u(-s 0 ) = e iΛ(-s0,η) α in 2 (η) V ω where α in 2 (η) is given by (71), R > 0, η = η(y). We consider χ 0 ∈ C ∞ 0 (R d , [0, 1]) such that |η(y)| ≤ cR when y/R ∈ suppχ 0 . We consider the function u R (s) = χ 0 (y/R)u(s). Then, u R is the solution to (67) for η = η(y) and the initial data Lemma 4.8. Let u R (s) be the solution of the Landau-Zener model problem (67) for η = η(y) and the initial data u R (-s 0 ) given by (72), and u ε (s) be the solution of (66). Let k ∈ N, then for all N 0 ∈ N and for all s ∈ [-s 0 , s 0 ], for all R ≥ 1 with

R 2 √ ε 1, Rδ 1 and Rε 2 δ -4 1, in Σ k ε (R d ), u ε (s) -u R (s) = O ( √ εδ -1 + ε 3/2 δ -4 + δ + Rδ 3 ε -1 + R -N0 )(1 + | ln δ|) .
Remark 4.9. We are going to take α = 5 14 as in Remark 3.5, which implies δ 3 ε -1 = ε 1 14 . We choose R = ε -β with β ∈ (0, 1 14 ) small enough so that R 2 √ ε 1, Rδ 1 and Rε 2 δ -4 1. Since R produces an error of size R 3 √ εδ -1 1 by Lemma 4.4, we additionally ask R 3 √ εδ -1 ≤ ε 1 14 . We choose N 0 as large as necessary to ensure R -N0 ≤ ε 1 14 . We are then left with an approximation of order O(ε

1 14 -β ) = O ε 1 14 - .
Proof. We set r ε (s) = u ε (s) -u R (s). We observe that using that u in -∈ S(R d ) (see Proposition 4.6), we deduce that we have in Σ k ε and for any N 0 ∈ N,

r ε (-s 0 ) = O ( √ εδ -1 + ε 3/2 δ -4 + δ + δ 3 ε -1 + R -N0 )(1 + | ln δ|) = O(ς ε ).
where we set for short

O(ς ε ) = O ( √ εδ -1 + ε 3/2 δ -4 + δ + Rδ 3 ε -1 + R -N0 )(1 + | ln δ|)
. Besides, we have (with the notations of Lemma 4.2)

i∂ s r ε (s) -P ε (s)r ε (s) = √ εf ε (s, y)
where

P ε (s) = A(sE + dw(q )y) + √ ε 2 ∆ + √ εB ε (s, y) f ε (s) = 1 2 ∆u R (s) + B ε (s, y)u R (s).
We shall use the two following properties: (i) By Lemma 4.2, there exist constants C 0 , C 1 , C β , |β| ≥ 2, such that on the support of u R (where |y| ≤ c R, c > 0), and for s ∈ [-s 0 , s 0 ], we have

|B ε (s, y)| ≤ C 0 (Rs 2 + |y| 2 ), |∇B ε (s, y)| ≤ C 1 (R|y| + δs), |∂ β y B ε (s, y)| ≤ C β R 2 ε |β|-2 2 
.

(ii) By Lemma 4.5, f ε satisfies the following: for all α, β ∈ N d , there exists C α,β such that (73)

y α ∂ β y f ε (s, y) L 2 ≤ C α,β (Rs |β|+2 0 + R 2 s (|β|-2) 0 ) ≤ C α,β Rs |β|+2 0
where we used Rs -4 0 ≤ 1. We prove by a recursive argument that (74) sup s∈[-s0,s0]

y α ∂ β y r ε (s, y) L 2 = O( √ ε Rs |α|+|β|+3 0 ) + O(ς ε )
which implies the Lemma since

ε |α|+|β| 2 R √ εs |α|+|β|+3 0 = R √ εs 3 0 = R δ 3 ε .
• k = 0. An energy estimate gives

(75) r ε (s) L 2 ≤ C √ ε s -s0 f ε (s ) L 2 ds + O(ς ε ) ≤ CR √ εs 3 0 + O(ς ε ),
whence (74) for k = 0.

• k = 1. Using the equation satisfied by r ε , we write for j ∈ {1, • • • , d}

(i∂ s -P ε (s))(y j r ε ) = √ ε(y j f ε ) + √ ε(∂ yj r ε ), (i∂ s -P ε (s))(∂ yj r ε ) = √ ε(∂ yj f ε ) + √ ε(∂ yj B ε r ε ) + A(∂ xj w(q ))r ε . Note that |∂ yj B ε r ε | ≤ C(R|y| + δs)|r ε | and R ≥ 1.
Using Point (i) above, an energy argument gives for some constant c 1

yr ε (s) L 2 + ∇ y r ε (s) L 2 ≤ O(ς ε ) + c 1 (R √ ε) s -s0 ( yr ε (s ) L 2 + ∇ y r ε (s ) L 2 ) ds + √ ε s -s0 ( yf ε (s ) L 2 + ∇ y f ε (s ) L 2 ) ds + +c 1 δ √ ε s -s0 s r ε (s ) L 2 ds + c 1 s 0 r ε (s ) L 2 ds ≤ 2c 1 R √ εs 0 sup s∈[-s0,s0] ( yr ε (s) L 2 + ∇ y r ε (s) L 2 ) + c 1 s 0 r ε (s ) L 2 ds + √ ε s -s0 ( yf ε (s ) L 2 + ∇ y f ε (s ) L 2 ) ds + c 1 δ √ εs 0 s -s0 r ε (s ) L 2 ds + O(ς ε )
where we have used 73) and (75), we deduce (changing the constant c 1 as necessary)

√ εs 0 ≤ δ. Using R √ εs 0 ≤ Rδ 1, (
sup s∈[-s0,s0] ( yr ε (s) L 2 + ∇ y r ε (s) L 2 ) ≤ c 1 (R √ εs 4 0 + δεRs 5 0 ) + O(ς ε ) ≤ c 1 R √ εs 4 0 + O(ς ε ),
where we have used s 0 √ ε ≤ δ, whence (74) for k = 1. • k → k + 1. We assume that there exists some k ∈ N such that for all ∈ {0, • • • , k}

sup |α|+|β|= sup s∈[-s0,s0] y α ∂ β y r ε (s) L 2 ≤ c k R √ εs +3 0
and that for any term of the form y α ∂ β y r ε with |α| + |β| = k, we have

(i∂ s -P ε (s))(y α ∂ β y r ε ) = √ εy α ∂ β y f ε + k =0 |α |+|β |= c ε α,β (s, y)y α ∂ β y r ε
for some smooth functions c ε α,β bounded together with their derivatives uniformly in ε with

|c ε α ,β (s, y)| + |∇ y c ε α ,β (s, y)| = O( √ ε( s + |y|) + 1) for |α | + |β | < k |c ε α ,β (s, y)| + |∇ y c ε α ,β (s, y)| = O(R √ ε) for |α | + |β | = k.
Multiplying the equation by y j and applying ∂ yj for all j ∈ {1, • • • , d}, one obtains that the form of the equation passes to the (k + 1)-th step, which gives the norm estimate by an energy argument. This concludes the proof.

Proof of the main results

5.1. Proof of Theorem 1.8. When the trajectory Φ t,t0 -(z 0 ) remains in the domain {|w(q)| > δ}, the results of Proposition 3.1 apply and imply Theorem 1.8. 5.2. Proof of Theorem 1.9. Inside the gap region, for t ∈ [t -δ, t + δ], we apply Lemma 4.3 to pass through it. Then over the time [t +δ, t 0 +T ] we use Proposition 3.1 again to propagate further, with initial data found from the resulting solution ψ (t + δ) from Lemma 4.3 in the gap region. Then, we optimize δ and R to get the best approximation in terms of ε according to Remarks 3.5 and 4.9. 5.2.1. Away from the gap region. Given the initial assumptions of the theorem, we start at time t 0 far from the crossing point with initial data ψ ε 0 satisfying [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF]. We consider the trajectory Φ t,t0 -(z 0 ) and the classical quantities that are associated with it. Applying Proposition 3.1 on [t 0 , t -δ] with u + (t 0 ) = 0 and u -(t 0 ) = a, we propagate the solution up to the gap region: at

t = t -s 0 √ ε = t -δ, we have in L 2 (R d ) ψ ε (t, x) =ε -d/4 e i ε S-(t,t0,z0)+ i ε p-(t)(x-q-(t)) V -(t, Φ t,t0 -(z 0 )) × u -t, x -q -(t) √ ε + O ( √ εδ -1 + ε 3/2 δ -4 )(1 + | ln δ|) .
Using the minimal gap of the avoided crossing, δ c √ ε, we are left with error terms o(1).

5.2.2.

Passing through the gap region. In this section, we compute an approximation of ψ ε (t + δ), thanks to the representation of ψ ε as (64) which reduces the analysis to one of function u ε (s) satisfying (66). Then, by Lemma 4.8, it is possible to use Lemma 4.4 to link u ε (+s 0 ) and u ε (-s 0 ). Proposition 4.6 allow to identify the entering data at time s = -s 0 that we use in Lemma 4.4 : α 1 = 0 and α 2 satisfying (71). We define (α out 1 , α out 2 ) as

α out 1 (η) = -b(r -1/2 η • ω ⊥ )α in 2 (η) (76) α out 2 (η) = a(r -1/2 η • ω ⊥ )α in 2 (η).
This follows from the formula giving α out 1 α out 2 in Lemma 4.4. Besides, we know that when t =

t + δ = t + s 0 √ ε, ψ ε (t) satisfies (64) with u ε (s 0 , y) = e iΛ(s,η) α out 1 (η) V ⊥ ω + e -iΛ(s,η) α out 2 (y) V ω + O ( √ εδ -1 + ε 3/2 δ -4 + δ + Rδ 3 ε -1 )(1 + | ln δ|) .
This implies that for t = t + δ = t + √ εs 0 ,

ψ ε (t, x) = ψ ε + (t, x) + ψ ε -(t, x) + O ( √ εδ -1 + ε 3/2 δ -4 + δ + Rδ 3 ε -1 )(1 + | ln δ|) with ψ ε + (t, x) = e i ε S0(t,t ,z )+ i ε (x-q0(t))•p0(t) e -iΛ(s0,η(y)) α out 2 (η) y= x-q 0 (t) √ ε V ω , (77) ψ ε -(t, x) = e i ε S0(t,t ,z )+ i ε (x-q0(t))•p0(t) e +iΛ(s0,η(y)) α out 1 (η) y= x-q 0 (t) √ ε V ⊥ ω (78) in L 2 (R d ).
It remains to see why the functions ψ ε ± (t, x) can be approximated by wave packets associated with the curves Φ t,t ± (z ) respectively. For this, we study the asymptotics of the phase and of the profiles for t > t , as we did in Section 4.3 for times t < t .

Let us begin with the phases. We observe that the asymptotics of Lemma 2.1 and Lemma 2.2 imply that when t = t + √ εs with s > 0 and x = q 0 (t) + √ εy, we have the pointwise estimates

i ε S ± (t, t , z ) = i ε S 0 (t, t , z ) ∓ irs 2 + O( √ εs 3 ) and i ε p ± (t) • (x -q ± (t)) = i ε p 0 (t) ∓ √ εs t dw(q )ω + O(εs 2 ) • x -q 0 (t) ± ε 2 s 2 t dw(q )ω + O(ε 3/2 s 3 ) = i √ ε p 0 (t) • y ∓ isω • dw(q )y + O( √ εs 2 |y|) ± i 2 s 2 ω • dw(q )p 0 (t) + O( √ εs 3 ) + O(εs 3 ) We observe that ω • dw(q )p 0 (t) = ω • dw(q )p + O(s √ ε) = r + O(s √ ε). Therefore i ε p ± (t) • (x -q ± (t)) = i √ ε y • p 0 (t) ∓ isω • dw(q )y ± i 2 rs 2 + O( √ εs 2 |y|)) + O( √ εs 3 ). Then, i ε S ± (t, t , z ) + i ε p ± (t) • (x -q ± (t)) = i ε S 0 (t, t , z ) + i √ ε y • p 0 (t) ∓ i 2 rs 2 ∓ isω • dw(q )y + O( √ εs 2 |y|)) + O( √ εs 3 )
Given the definition of Λ(s, η), (70),

iΛ(s, η) = i 2r |ω • η + rs| 2 + i 4r |ω ⊥ • η| 2 ln(rs 2 ), we obtain iΛ(s, η) = i 2r |ω • η| 2 + 2rsω • dw(q )y + r 2 s 2 + i 4r |ω ⊥ • η| 2 ln(rs 2 ) = i 2r |ω • η| 2 + isω • dw(q )y + i 2 rs 2 + i 4r |ω ⊥ • η| 2 ln(rs 2 )
Using all of these ingredients together, we have the pointwise estimate

i ε S ± (t, t , z ) + i ε p ± (t) • (x -q ± (t)) = i ε S 0 (t, t , z ) + i √ ε y • p 0 (t) ∓ iΛ(s, η) ± i 2r |ω • η| 2 ± i 2r |ω ⊥ • η| 2 ln( √ rs) + O( √ εs 2 |y|)) + O( √ εs 3 )
At this stage of the proof, we are able to see the wave packet structure of the functions ψ ε ± (t + δ) defined in (77) and (78). Let us study more precisely ψ ε -(t, x), the computation for the other mode being similar. In view of the relations stated above, we have in

L 2 (R d ) ψ ε -(t, x) = e i ε S-(t,t ,z )+ i ε (x-q-(t))•p-(t)+ i 2r |ω•η| 2 + i 2r |ω ⊥ •η| 2 ln( √ rs) α out 1 (η) V ⊥ ω +O(( √ εs 2 |y| + √ εs 3 )(1 + | ln(s √ r)|)). Here again 1 r (ω ⊥ • η(y)) 2 ln(s √ r) = Γ 0 y • y ln(s √ r) = Γ 0 y • y ln(s √ ε) + 1 2r (ω ⊥ • η(y)) 2 ln( r ε ).
and we obtain for t

= t + δ = t + s 0 √ ε ψ ε -(t, x) = V ⊥ ω Exp i ε S -(t, t , z ) + i ε (x -q -(t)) • p -(t) × Exp i 2 Γ 0 y • y ln(s √ ε) Exp i 4r (ω ⊥ • η(y)) 2 ln(r/ε) + i 2r (ω • η) 2 α out 1 (η) y= x-q 0 (t) √ ε + O(( √ εs 2 |y| + √ εs 3 )(1 + | ln(s √ r)|)) in L 2 (R d ). Using the regularity of α out 1 , we deduce α out 1 x-q0(t) √ ε = α out 1 x-q-(t) √ ε + O( √ εs 2 ) with O( √ εs 2 ) = O(δ 2 ε -1/2 ), we identify a wave packet approximation in L 2 (R d ) ψ ε -(t, x) = e i ε S-(t,t ,z ) WP ε Φ t,t -(z ) e i 2 Γ0y•y ln(s √ ε) e i 4r (ω ⊥ •η(y)) 2 ln(r/ε)+ i 2r (ω•η) 2 α out 1 (η) V ⊥ ω +O( √ εs 2 (1 + |y|)) + O( √ εs 3 ). For t ∈ [t -δ, t + δ], O( √ εs 2 (1 + |y|)) + O( √ εs 3 ) = O(ε -1/2 δ 2 (1 + |y|)) + O(ε -1 δ 3
). Using y = x-q(t) √ ε for this region, we are left with the error terms O(δ 3 ε -1 ). In view of [START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF], this suggests that we set

u out -(y) = Exp i 4r (ω ⊥ • η(y)) 2 ln(r/ε) + i 2r |ω • η| 2 α out 1 (η) = -Exp i 4r (ω ⊥ • η(y)) 2 ln(r/ε) + i 2r |ω • η| 2 b(r -1/2 η • ω ⊥ )α in 2 (η) 
A similar computation for the plus-mode gives

u out + (y) = Exp - i 4r (ω ⊥ • η(y)) 2 ln(r/ε) - i 2r |ω • η| 2 α out 2 (η), = Exp - i 4r (ω ⊥ • η(y)) 2 ln(r/ε) - i 2r |ω • η| 2 a(r -1/2 η • ω ⊥ )α in 2 (η).
In view of (71), we deduce

u out + (y) = e i ε S -a(r -1/2 η • ω ⊥ )u in -(y), u out -(y) = -e i ε S -Exp i 2r (ω ⊥ • η(y)) 2 ln(r/ε) + i r |ω • η| 2 b(r -1/2 η • ω ⊥ )u in -(y).
which is equivalent to (23).

5.2.3.

Leaving the gap region. We define u ± (t, y) for t ≥ t +δ as the solution of ( 18) satisfying [START_REF] Gérard | Homogenization limits and Wigner transforms[END_REF]. Then, we have ( 27) when t = t +δ and the result for [t ∈ t +δ, T ] comes by applying Proposition 3.1.

5.3.

Proof of Corollary 1.13. Since for t ∈ (t , t + T ), we have Φ t,t + (z ) = Φ t,t -(z ), any Wigner measure of (ψ ε (t)) ε>0 is of the form [START_REF] Lasser | Discretising the Herman-Kluk Propagator[END_REF]. Besides the coefficients c + and c -are limits in ε of u + (t) 2 L 2 and u -(t) 2 L 2 respectively. We focus on c + (the proof for c -is similar). We have

u + (t) 2 L 2 = u out + 2 L 2 = a(η 2 )u in + 2 L 2 + b(η 2 )u in - 2 L 2 -2Re e i ε (S + -S -) γ ε with γ ε = R d a(η 2 (y))b(η 2 (y))u in + (y)u in -(y)e iθε(η(y)) dy. In view of |b(η 2 )| 2 = 1 -a(η 2 ) 2 , we have b(η 2 )u in - 2 = 1 -a(η 2 )u in - 2
. Moreover, by (26) and using b(0) = 0, the term γ ε writes γ ε = η 2 (y)f (y)e -i 2r η2(y) 2 ln ε dy for some smooth function f . Together with η 2 (y) = ω ⊥ • dw(q )y where dw(q ) of rank 2, one writes

R d η 2 (y)f (y)e -i 2r η2(y) 2 ln ε dy = r i ln ε R d | t dw(q )ω ⊥ | -2 t dw(q )ω ⊥ • ∇ y f (y)e -i 2r η2(y) 2 ln ε dy, which implies c + = a(η 2 )u in + 2 + 1 -a(η 2 )u in - 2 .
Appendix A. Semi-classical pseudo-differential calculus

This section contains results about semi-classical pseudo-differential operators. We consider matrix-valued functions a ∈ C ∞ (R 2d , C 2,2 ) which are bounded, as well as their derivatives. Then, one defines the Weyl semi-classical pseudo-differential operator of symbol a as

(79) op ε (a)f (x) = (2πε) -d R 2d e i ε ξ•(x-y) a x + y 2 , ξ f (y)dy dξ, ∀f ∈ S(R d , C 2 ).
The reader may found proofs of the results presented here in [START_REF] Dimassi | Spectral asymptotics in the semi-classical limit[END_REF][START_REF] Zworski | Semiclassical analysis[END_REF][START_REF] Fermanian-Kammerer | Opérateurs pseudo-différentiels semi-classiques[END_REF], for instance. In the following, we denote by z = (x, ξ) ∈ R 2d the variable of the functions a ∈ C ∞ (R 2d , C 2,2 ). The Calderón-Vaillancourt Theorem [START_REF] Calderón | On the boundedness of pseudo-differential operators[END_REF] ensures the existence of constants C d , n d > 0 such that for every a ∈ C ∞ (R d , C 2,2 ), bounded with bounded derivatives, one has Using these relations and the estimates in L 2 (R d ), it is possible to prove estimates in Σ k ε that are uniform in ε. One then concludes by starting the recursive argument from (80) and using (81).

(1) For all n 0 , k ∈ N, there exists a constant C k such that op ε (a) WP ε z0 (ϕ) -WP ε z0 P (n0) a

(z √ ε)ϕ Σ k ε ≤ C k ε n 0 +1 2 N ε d+k+n0+1 (d n0+1 a) ϕ Σ k+n 0 +1
where z → P (z √ ε))ϕ) Σ k ε . There exists a constant C k such that for all profiles ϕ ∈ S(R d ),

WP ε z0 (ϕ) Σ k ε ≤ C k ϕ Σ k hence WP ε z0 (( a(z 0 + √ εz) -P (n0) a (z √ ε))ϕ) Σ k ε ≤ C k ( a(z 0 + √ εz) -P (n0) a (z √ ε))ϕ Σ k .
We have a(z 0 + √ εz) -P We deduce

op 1 (b( √ εz)z α )f Σ k ε ≤ op 1 (b( √ εz)z α-1j ) L(Σ k+n ε ,Σ k ε ) x j f Σ k+n ε + 1 2 √ ε op 1 (∂ ξj b( √ εz)z α-1j ) L(Σ k+n ε ,Σ k ε ) f Σ k+n ε + 1 2 op 1 (b( √ εz)z α-1j -1 j+d ) L(Σ k+n ε ,Σ k ε ) f Σ k+n ε ,
where the last term is there only if the (j + d)-th component of α -1 j is non zero. One then deduces the result from the recursive assumption, which concludes the proof of the claim, and thus of Point [START_REF] Bily | Propagation d'états cohérents et applications[END_REF].

Finally, to prove Point (2), we only need to observe that since a is identically equal to 1 close to z 0 , its Taylor polynomial P Lemma C.2. There exist matrix-valued functions P

(1)

± , P (2) 
± , Ω

± and Ω

± , that are smooth outside Υ and such that the function

Π ε ± (x, ξ) = Π ± (x) + εP (1) 
± (x, ξ) + ε 2 P

(2)

± (x, ξ), satisfies

(85) Π ε ± ε H = (h ± + ε Ω (1) 
± + ε 2 Ω

(2)

± ) ε Π ε ± + ε 3 R ε (x, ξ).
Besides, for all α, β ∈ N d , there exists constants C α,β , p α > 0 such that for all (x, ξ) ∈ R 2d \ Υ, 

± (x, ξ) = Ω(x, ξ) where P and Ω are the linear functions in ξ defined respectively in (59) and (56). They are homogeneous functions in w of degree -1 and -2 respectively.

(2) The matrices P 

± H + 1 2i {P (2) 
± , H} + d ± ) + ε 3 r 1 ,

(h ± + ε Ω (1) 
± + ε 2 Ω

(2)

± ) ε Π ε ± = h ± Π ± + ε(h ± P (1) 
± + 1 2i {h ± , Π ± } + Ω (1) 
± Π ± ) + ε 2 (h ± P (2) 
± + 1 2i {h ± , P

± } + 1 2i {Ω (1) 
± , Π ± } + Ω

(1)

± P

± + Ω

(2)

± Π ± + d ± )
where r 1 and r 2 involves derivatives of order 3 of Π ± , of order 2 of P

± and of order 1 of P

± and d ± comes from the computations

|ξ| 2 2 ε Π ± = |ξ| 2 2 Π ± + ε 2i |ξ| 2 2 , Π ± + ε 2 d ± , Π ± ε |ξ| 2 2 = |ξ| 2 2 Π ± - ε 2i |ξ| 2 2 , Π ± + ε 2 d ± .
and [START_REF] Kammerer | Semiclassical analysis of generic codimension 3 crossings[END_REF] for example). Note however that a special attention has to be attached to the diabatic basis used at the crossing point because the eigenvectors are now complex-valued.

  (72) u R (-s 0 ) = e iΛ(-s0,η) α in 2 (η)χ 0 (y/R) V ω This cut-off allows us to use the scattering results of Lemma 4.4 for u R . As noticed in Remark 4.1, we shall use the norms Σ k ε introduced in (65).

  (80) op ε (a) L(L 2 (R d ,C 2 )) ≤ C d N ε d (n d = M dfor some constant M ≥ 1 (see[START_REF] Zworski | Semiclassical analysis[END_REF] for example). It is then easy to check that, since ε ∈ (0, 1],(81) √ εN ε d (∂ zj a) ≤ N ε d+1 (a) for all j ∈ {1, • • • , 2d}.Matrix-valued pseudodifferential operators enjoy a symbolic calculus:Proposition A.1. Let a, b ∈ C ∞ 0 (R d , C 2,2 ), then op ε (a)op ε (b) = op ε (ab) + εR (1) ε (a, b) = op ε (ab) + ε 2i op ε ({a, b}) + ε 2 R (2) ε (a, b), with {a, b} = d j=1 ∂ ξj a ∂ xj b -∂ xj a ∂ ξj b and R (j) ε (a, b) L(L 2 (R d ,C 2 )) ≤ C sup |α|+|β|=j N ε d (∂ α ξ ∂ β x a)N ε d (∂ β ξ ∂ α x b), j ∈ {1, 2},for some constant C > 0 independent of a, b and ε.Remark A.2. When a = 1 on the support of b, pushing the Taylor expansion at larger order, one gets forN ∈ N * , op ε (a)op ε (b) = op ε (b) + ε N R (N ) ε (a, b) with R (N ) ε (a, b) L(L 2 (R d ,C 2 )) ≤ C sup |γ|=|γ |=N N ε d (∂ γ z a)N ε d (∂ γ z b).Remark A.3. For general (non-commuting) symbols a and b, Lemma A.1 implies[op ε (a), op ε (b)] = op ε ([a, b]) + ε 2i (op ε ({a, b}) -op ε ({b, a})) + ε 2 (R (2) ε (a, b) -R (2) ε (b, a)).However, the term of order ε 2 in this expansion has symmetries so that if a and b commutes, for example because a is scalar valued,[op ε (a), op ε (b)] = ε i op ε ({a, b}) + O ε 3 sup |γ|=|γ |=3 N ε d (∂ γ z a)N ε d (∂ γ z b) .Note also that for 1 ≤ j ≤ d the commutation relations between x j or εD xj and op ε (a) writes (82) [x j , op ε (a)] = εiop ε (∂ ξj a) and [εD xj , op ε (a)] = -εiop ε (∂ xj a).

Lemma A. 4 . 1 ε≤ 1 ε≤ 1 ε)ε 1 ε)

 41111 Let ε ∈ (0, 1] and k ∈ N. There exist constants C d,k and c k such that for alla ∈ C ∞ 0 (R d ), we have in Σ k ε : (83) op ε (a) L(Σ k ε ) ≤ C d,k N ε d+k (a).Proof. The proof is based on (82) and a recursive argument. Fora ∈ C ∞ 0 (R d ), f ∈ S(R d ) and j ∈ {1, • • • d}, x j op ε (a)f Σ k-op ε (a)(x j f ) Σ k-1 ε + ε op ε (∂ ξj a)f Σ k-1 ε , ε∂ xj (op ε (a)f ) Σ k-op ε (a)(ε∂ xj f ) Σ k-1 ε + ε op ε (∂ xj a)f Σ k-1 ε .Therefore, there exists a constant c such that op ε (a)f Σ k ε ≤ c op ε (a) L(Σ k-op ε (∂ ξj a) L(Σ k-+ op ε (∂ xj a) L(Σ k-

2 ∇( 2 )

 22 is the Taylor polynomial at order n 0 of a in z 0 :P (n0) a (z) = a(z 0 ) + ∇a(z 0 ) • z + 1 2 a(z 0 )z • z + ... + 1 (n 0 )! d n0 a(z 0 )[z] n0 . Moreover, assume that a(z) = 1 for |z -z 0 | ≤ 1 and a(z) = 0 if |z -z 0 | > 2.Then, for any n ∈ N, there exists a constant C k,n such thatWP ε z0 (ϕ) -op ε (a) WP ε z (ϕ) Σ k ε ≤ C k,n ε n/2 N ε d+k+n (d n a) ϕ Σ k+n . Proof. Let us prove Point (1). Applying Lemma B.1, op ε (a) WP ε z0 (ϕ) -WP ε z0 ( P (n0) a (z √ ε)ϕ) Σ k ε = WP ε z0 (( a(z 0 + √ εz) -P (n0) a

n 0 ! 1 0dξ α d+1 1 .2i op 1 ∂

 111 z] n0+1 where r ∈ C ∞ (R 2d ) is a smooth tensor of order n 0 + 1 that is bounded with bounded derivatives r(z) = 1 (n0+1) a(z 0 + sz)(1 -s) n0 ds.We state the following auxiliary claim: " Consider a smooth function b that is smooth, bounded with bounded derivatives. Then, for all k, n ∈ N there exists a constant c k,n such that for all |α| ≤ n,(84) op 1 (b( √ εz)z α ) L(Σ k+n ε ,Σ k ε ) ≤ c k,n N ε d+k+n (b). " Applying the claim to r( √ εz)[z] n0+1 , with n = n 0 + 1, we obtain op 1 (r( √ εz)[z] n0+1 ) L(Σ k+n 0 +1 ε ,Σ k ε ) ≤ c k N ε d+k+n0+1 (d n0+1 a), which is enough to complete the proof of Point[START_REF] Bily | Propagation d'états cohérents et applications[END_REF].We now turn to the proof of the claim. It relies on a recursive argument on n. When n = 0, the estimate (83) givesop 1 (b( √ εz)) L(Σ k ε ) ≤ c k N 1 d+k (b( √ ε•)) ≤ c k,0 N ε d+k (b).Let us now assume that we have proved the estimate (84) for all indices smaller than some n ∈ N and let us consider α ∈ N 2d with |α| = n + 1. Then, α has at least one non-zero component. Let α j be such a component, with j ∈ {1, • • • , 2d}. Either j ∈ {1, • • • , d} and z 1 j = x j , or j ∈ {d + 1, • • • , 2d} and z 1 j = ξ j . We consider the first case and a similar argument will work in the other one. For α ∈ N 2d , we havez α = x α1 1 . . . x α d d . . ξ α 2d d so that z α = z α-1j z 1 j = z α-1j x j .Using (82) and Proposition A.1, we then write for f ∈ S(R d ), op 1 (b( √ εz)z α )f = op 1 (b( √ εz)z α-1j ) (x j f ) -1 ξj b( √ εz)z α-1j f.

C. 2 .

 2 (n) a (z) is equal to 1 for all n ∈ N. We then apply Point[START_REF] Bily | Propagation d'états cohérents et applications[END_REF] withn 0 = n -1.whence the first formula. Then, we writeΠ -(x)ξ • ∇Π + (x) -Π + (x)ξ • ∇Π + (x) = -ξ • ∇w(x) ∧ w(x) 2|w(x)| 3 Π -(x)A(w ⊥ (x)) -Π + (x)A(w ⊥ (x)) = -ξ • ∇w(x) ∧ w(x) 2|w(x)| 4 A(w(x))A(w ⊥ (x)) = -ξ • ∇w(x) ∧ w(x) Superadiabatic projectors.In this section we use the semi-classical pseudodifferential operators introduced in Appendix A and we denote by a ε b the symbol of the operator op ε (a)•op ε (b).

1 )±

 1 ξ R ε (x, ξ)| ≤ C α,β x (|α|+3)(1+n0) |w(x)| -|α|-5(where n 0 controls the gap at infinity, see (5)). Moreover, the following properties hold (1) One has P ((x, ξ) = ±P(x, ξ), Ω

±

  are polynomial functions of order 2 of the variable ξ and for(x, ξ) ∈ R 2d \ Υ, for all α, β ∈ N d , there exists C α,β > 0 such that |∂ α x ∂ β ξ P (2) ± (x, ξ)| ≤ C α,β ξ 2 x (|α|+2)(1+n0) |w(x)| -|α|-4 , |∂ α x ∂ β ξ Ω (2) ± (x, ξ)| ≤ C α,β ξ 2 x (|α|+2)(1+n0) |w(x)| -|α|-3 . Proof.We use the calculus of a ε b detailed in Proposition A.1 and the observations of Remark A.3. We have Π ε± ε H = Π ± H + ε(P H}) + ε 2 (P

  The profile u -(t) built for t ∈ [t 0 , t ), thanks to Proposition 1.6 with data u -

	t,t + (z ) built in Proposition 1.3.
	• The time-dependent eigenvectors Y -(t) associated with Y 0 by Proposition 1.4 for t ∈ [t 0 , t ],
	and the pair of time-dependent eigenvectors ( Y + (t), Y -(t)) of Proposition 1.5 on [t , t 0 + T ]
	with (17)
	•

  Ṽ , with t → A(t), B(t), Ã(t), B(t) are smooth on [t 0 , t ) and integrable on [t 0 , t ]. The change of unknown has contributed to improve the integrability of the functions of the right-hand side of the system. It allows us to conclude thanks to an energy estimate and Grönwall lemma. As a consequence, there exists a constant C > 0 such that

  and the localization properties of ψ ε -,app (see Lemma B.2 (2)), the latter relation writes op ε

Appendix B. Localization of wave packets

The wave packets defined in [START_REF] Combescure | Coherent states and applications in mathematical physics[END_REF] enjoy localization properties. We use here the notations introduced in Appendix A and we use the notation a for denoting (non semiclassical) pseudodifferential operators, a = op 1 (a).

Lemma B.1. Let z 0 = (q, p) ∈ R 2d , ϕ ∈ S(R d ) and a ∈ C ∞ (R 2d ). Then,

Proof. The result comes from change of variables.

This Lemma has several important consequences.

Lemma B.2. Let ε ∈ (0, 1], z 0 = (q, p) ∈ R 2d , ϕ ∈ S(R d ) and a ∈ C ∞ (R 2d ) bounded together with its derivatives. Then, we have the following properties:

For w = (w 1 , w 2 ) ∈ R 2 and u = (u 1 , u 2 ) ∈ R 2 , the matrices A(u) and A(w) defined in [START_REF] Lu | Frozen Gaussian approximation with surface hopping for mixed quantumclassical dynamics: A mathematical justification of fewest switches surface hopping algorithms[END_REF] satisfy

C.1. The B ± matrices. We look more closely at the matrices B ± introduced in (13). We recall

, a straightforward computation gives

We deduce that in order to realize equation (85), we only need to equalize the terms of order ε and ε 2 on both developments (indeed Π ± H = h ± Π ± ). We obtain two equations that it is convenient to put on the form

where F ± depends on P (1) and Ω

(1) ±

± , Π ± } + Ω

(1)

± -

± , H}. For solving these equations, we multiply them on both sides by Π + or Π -, which gives four relations each time.

Let us perform the computation for the plus-mode. Multiplying (87) on the right by Π + and on the left successively by Π + and Π -, we obtain two relations

Using that we want to find Ω

+ self-adjoint, we deduce that we can choose Ω

(1)

Similarly, for the minus-mode

Multiplying (87) on the left by Π + and on the right by Π -, we end up with

+ self-adjoint, we obtain

We argue in a similar way for the minus-mode and find

Let us now determine P

+ and Ω

+ . We first decompose F + as the sum of a self-adjoint matrix and a skew-symmetric one: F + = F +,aa + F +,ss with

We have used {M, N } * = -{N, M } for smooth matrix-valued function M and N . We also obtain (89) Π ± F +,ss Π ± = 0, which is required from (88) (when multiplied on both side by Π ± ). These relations come from PΩ = ΩP,

Then, multiplying (88) by Π + on the right, we deduce

One then chooses ( 90) Ω

(2)

+ , we multiply (88) by Π -on the right (h + -h -)P

+ Π -= -F + Π -, and we obtain (91) P

(2)

The polynomial features of these matrices in the variable ξ and their properties as functions of w come from their explicit formula. These aspects determine their behavior at ∞ and close to Υ.

Remark C.3. As already observed in the literature ( [START_REF] Bily | Propagation d'états cohérents et applications[END_REF][START_REF] Martinez | Twisted pseudodifferential calculus and application to the quantum evolution of molecules[END_REF][START_REF] Nenciu | On the adiabatic theorem of quantum mechanics[END_REF][START_REF] Nenciu | Linear adiabatic theory. Exponential estimates[END_REF][START_REF] Teufel | Adiabatic perturbation theory in quantum dynamics[END_REF], it is possible to push these asymptotics at any order by constructing a sequence of matrices (Ω (j)

± ) j∈N that will satisfy controls of the form

. As a consequence of the computations above, we also have the following result.

Lemma C.4. Let Φ t ,t ± (z ) be a trajectory reaching the point z ∈ Υ at time t with the conditions of (1.1). Then, we have for t close to t , Ω

Appendix D. Generalization to time-dependent Hamiltonian

We consider a Hamiltonian

with subquadratic growth and polynomial control of the gap at infinity (as in ( 5)). The crossing set is the subset of R × R d given by

We denote as before by h + and h -the eigenvalues of H and Π + and Π -the associated eigenprojectors. Following [START_REF] Kammerer | A Landau-Zener formula for non-degenerated involutive codimension 3 crossings[END_REF], a point (t , z ) ∈ Υ is a non-degenerate crossing point if and only if Rk dw(t , z ) = 2 and E(t , z ) := ∂ t w(t , z ) + {v, w}(t , z ) = 0.

With such a point, we associate the vector

By Proposition 1 in [START_REF] Kammerer | A Landau-Zener formula for non-degenerated involutive codimension 3 crossings[END_REF], there exists a pair of generalized trajectories passing through nondegenerate crossing points and we denote them by Φ t,t ± (z ).

Time-dependent eigenvectors along the trajectories. Starting from a point (t 0 , z 0 ) ∈ R×R 2d such that Φ t ,t0 ± (z 0 ) = z , we associate with these trajectories time-dependent eigenvectors by solving the differential equation

and Y 0 is an eigenvector of H(t 0 , z 0 ) for the ±-mode. One can then prove that the vectors Y ± (t), t < t can be continued up to t = t . Profile equations. The profile equations associated with the trajectory Φ t,t0 ± (z 0 ) write

Close to t , we have the asymptotics

which allow to define ingoing profiles u in ± by

Note that in the case we have studied, the function w only depends on x and thus the operator Γ 0 is an operator of multiplication.

Transition formulas. The transitions formula are now operator-valued. The function η(y) inside the coefficients of Theorem 1.9 have to be replaced by the operator

Then, the transition rules are the same as in Theorem 1.9. The Hermitian case. Such an approach extends to Hermitian Hamiltonians with crossings that have the geometric feature of [START_REF] Kammerer | A Landau-Zener formula for non-degenerated involutive codimension 3 crossings[END_REF], the so-called generic involutive codimension 3 crossing (see also [START_REF] Verdière | The level crossing problem in semi-classical analysis II, The hermitian case[END_REF]). Assume

The strategy developed in this article extends to crossing points (t , z ) close to Υ, where the latter is a codimension 2 or 3 manifold, with E(t, z) • B(t, z) identically equal to 0 in a neighborhood of (t , z ) and |E(t , z )| > [B(t , z )|. Even though this situation is not generic, it contains for example the case where w = w(x). More intricate phenomena appear in the generic setting (see [START_REF] Kammerer | A non commutative Landau-Zener formula[END_REF] (C. Fermanian Kammerer) Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France, Univ Gustave Eiffel, LAMA, F-77447 Marne-la-Vallée, France
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