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Abstract 

In this paper, we tackle the task of similar question retrieval (QR) which is essential for 

Commu- nity Question Answering (cQA) and aims to retrieve historical questions that 

are semantically equivalent to the new queries. Over time, with the sharp increase of 

community archives and the accumulation of duplicated questions, the QR problem has 

become increasingly challenging due to the shortness of the community questions as 

well as the word mismatch problem as users can formulate the same query using 

different wording. Although many efforts have been devoted to address this problem, 

existing methods mostly relied on supervised models which significantly depend on 

massive training data sets and manual feature engineering. Such methods are chiefly 

constrained by their specificities that ignore the word order and do not capture enough 

syntactic and semantic information in questions. In this paper, we rely on Neural 

Networks (NNs) which use a deep analysis of words and questions to take into 

consideration the semantics as well as the structure of questions to predict the semantic 

text similarity. We propose a deep learning approach based on a Siamese architecture 

with Long Short-Term Memory (LSTM) networks, augmented with an attention 

mechanism to let the model give different words different attention while modeling 

questions. We also explore the use of Convolutional Neural Networks (CNN) nested 

within the Siamese architecture to retrieve relevant questions. Different similarity mea- 

sures were tested to predict the semantic similarity between the the pairs of questions. To 

evaluate the proposed approach, we conducted experiments on large-scale datasets in 

English and Arabic. 
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1. Introduction 

Along with the meteoric rise in popularity of web 2.0, community Question 

Answering (cQA) sites have emerged as a viable method for seeking information 

online. CQA sites such as 
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Yahoo! Answers1, Stackoverflow2, Quora3, WikiAnswers4, and Google Ejabat5, give 

people the ability to post their various questions and get them answered by other users. 

Interestingly, users can directly obtain short and precise answers rather than a list of 

potentially relevant documents. Community sites are exponentially growing over time, 

building up very huge archives of previous questions and their answers. However, 

multiple questions with the same meaning can make information seekers spend more 

time searching for the best answer to their question. Therefore, retrieving similar 

questions could greatly improve the QA system and benefit the community. Detecting 

similar previous questions that best match a new user’s query is a critical and 

challenging task in cQA, known as question retrieval. When good matches are detected, 

the answers to similar previous questions can be used to answer a new query. This could 

dodge the lag time incurred by waiting for new answers, thus enhancing user 

satisfaction. Owing to its importance, the question retrieval task has recently received 

wide attention [30, 3, 2, 26, 34, 32]. One big challenge for this task is the word mismatch 

between the new posted questions and the existing ones in the community archives 

[30]. Word mismatch means that similar questions can mean the same thing but they 

may differ lexically and syntactically. For instance, the questions How can I protect 

myself from the Coronavirus? and What preventative measures should be taken to 

reduce the risk of getting COVID-19? have nearly the same meaning but include 

different words and then may be regarded as dissimilar. This constitutes a barricade to 

traditional Information Retrieval (IR) models since users can phrase the same question 

using different wording. Furthermore, community questions have different lengths, 

mostly short and usually have sparse representations with little word overlap. Although 

numerous attempts have been made to tackle this problem, most existing methods focus 

on a unique domain and/or language and rely on the bag of-words (BOWs) 

representations which are constrained by their specificities that put aside the word order 

and ignore semantic and syntactic relationships. Recent advances in natural language 

and particularly question retrieval have been achieved using Neural Networks (NNs) [16, 

24, 12, 11, 5] which perform a deep analysis of words and consider the semantics and 

the structure of questions in order to detect similar questions. In this paper, we propose 

an approach based on NNs to detect the semantic similarity between the questions. 

Neural networks are preferred as they generally tend to perform better than traditional 
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2 http://stackoverflow.com/ 
3 https://fr.quora.com/ 
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machine learning models. They also do not rely on linguistic features and consequently 

can be easily applied to languages other than English. The proposed approach is based 

on a Siamese architecture with LSTM networks, augmented with an attention 

mechanism. This latter is an additional layer, which make the model give different 

attention to different words while representing the questions in order to explicitly 

aggregate states with weights. The Siamese neural network architecture is well known 

for its ability to compute similarity requiring less training data. We also implement a 

Siamese CNN- based model to explore its efficiency on the question retrieval task. We 

tested different similarity measures to compare the final hidden states of the LSTM 

layers. Our experimental results have proven that our approach is significant for 

identifying relevant questions in English and Arabic. 

 

2. Related Work 

Recently, a whole host of methods have been proposed to address the question 

retrieval task. Early works were based on the vector space model referred to as VSM to 

calculate the cosine similarity between a query and archived questions [8, 3]. 

Nevertheless, the main limitation of VSM is that it favors short questions, while cQA 

services can handle a wide variety of questions not limited to factoïd questions. In order 

to overcome this shortcoming, Okapi BM25 (BM stands for Best Matching) has been 

used by search engines to estimate the relevance of questions to a given search query 

taking into account the question length [3].  Language Models (LM)s 

[4] have been also used to model queries as sequences of terms instead of sets of 

terms. LMs estimate the relative likelihood for each possible successor term taking into 

account relative positions of terms. However, such models might not be effective when 

there are few common words between the questions.   In order to handle the vocabulary 

mismatch problem faced by LMs, a model based on the concept of machine translation, 

referred in the following as translation model, was employed to learn correlation 

between words based on parallel corpora and it has obtained significant performance 

for question retrieval. The intuition behind translation-based models is to consider 

question-answer pairs as parallel texts then, relationships of words can be built by 

learning word-to-word translation probabilities like in [30, 2]. Within this context, Zhou 

et al. [36] attempted to enhance the word-based translation model by adding some 

contextual information when translating the phrases as a whole, instead of translating 

separate words. Singh et al. [26] extended the word-based translation model by 

integrating semantic information and explored strategies to learn the translation 

probabilities between words and concepts using the cQA archives and an entity catalog. 

Even though the above-mentioned basic models have yielded interesting results, 

questions and answers are not parallel in practice, rather they are different from the 

information they contain [34]. Further methods based on semantic similarity were 

proposed for question retrieval toward a deep understanding of short text to detect the 

equivalent questions. For instance, there have been a handful of works that have 



exploited the available category information for question retrieval such as in [4, 3, 37]. 

Although these attempts have proven to improve the performance of the language 

model for question retrieval, the use of category information was restricted to the 

language model. Wang et al [28] used a parser to build syntactic trees of questions, and 

rank them based on the similarity between their syntactic trees. Nonetheless, such an 

approach requires a lot of training data and existing parsers are still not well-trained to 

parse informally written questions. Latent Semantic Indexing (LSI) was also used to 

address the given task like in [23]. Although LSI has proven to be effective in addressing 

the polysemy and synonymy by mapping terms related to the same concept close to 

each other, the efficiency of LSI depends on the data structure and both its training and 

inference are computationally expensive on large vocabularies. Other works focused on 

the representation learning for questions, relying on a Word Embedding for learning 

distributed representations of words in a low-dimensional vector space. As we believe 

that the representation of words is crucial for retrieving similar questions, we rely on 

word embeddings to represent the community questions. Along with the popularization 

of word embeddings and its capacity to produce distributed representations of words, 

advanced NN architectures such as Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN) and LSTM have proven effectiveness in extracting higher-level 

features from the constituting word embeddings. For instance, Dos Santos et al. [7] 

employed CNN and bag-of-words (BOW) representations of the questions to calculate 

the cosine similarity scores. Within the same context, Mohtarami et al. [16] developed a 

bag-of- vectors approach and used CNN and attention-based LSTMs to capture the 

semantic similarity between the community questions and rank them accordingly.  

LSTM model was also used in [24] with an attention mechanism for capturing long 

dependencies in questions. Interestingly, the weights learned by the attention model 

were exploited for selecting important segments and enhancing syntactic tree-kernel 

models. More recently, the question retrieval task was modeled as a binary classification 

problem in [12] using a combination of LSTM and a contrastive loss function to 

effectively memorize the long term dependencies. In our work, we use a siamese 

adaptation of LSTM [17] for pairs of variable-length sentences named MaLSTM. This 

latter has accomplished excellent outcomes in the semantic text similarity task and 

inspire us in our question retrieval problem. It is worth noting that work on cQA has been 

mostly carried out for other languages than Arabic. The most promising approach [16] 

used text similarities at both sentence and word level based on word embeddings. The 

similarities were computed between new and previous question, and between the new 

question and the answer related to the previous question. A tree-kernel-based classifier 

was employed in [1] where the authors used supervised and unsupervised models that 

operated both at sentence and chunk levels for parse tree based representations. A 

supervised learning approach was adopted in [15] where learning-to-rank models were 

trained over word2vec features and covariance word embedding features produced 

from the training data. More recently, the given task was investigated by Romeo et al. 

[25] using advanced Arabic text representations made by applying tree kernels to 



constituency parse trees along with word embeddings and textual similarities. 

3. Description of the proposed ASLSTM approach 

 

In order to improve the QR task, we propose an Attentive Siamese LSTM approach 

for question retrieval, referred to as ASLSTM to retrieve the semantically similar 

questions in cQA [21]. As illustrated in Figure 1, our approach is composed of three 

main modules namely, question preprocessing, word embedding learning and 

Manhattan LSTM (MaLSTM). 

 

Figure 1: ASLSTM pipeline for question retrieval in cQA 

 

The basic principle underlying the ASLSTM approach is to map every question word 

token into a fix-sized vector. The word embeddings of the questions are therefore fed 

to the Siamese LSTM with the aim of representing them in final hidden states encoding 

the semantic meaning of the questions. An attention mechanism is integrated in the 

Siamese architecture to determine which words should give more attention on than 

other words over the question. Community questions are then ranked by means of the 

Manhattan similarity function based on the vector representation of each question. A 

previous posted question is considered to be semantically equivalent to a queried 

question if their corresponding LSTM representations lie close to each other according 

to the Manhattan similarity measure. The historical question with the highest Manhattan 

score will be returned as the most similar question to the new posted one. The 

components of ASLSTM are detailed below. 

 

3.1. Question preprocessing 

Pre-processing is important to make the question collections cleaner and easier to 



process. The question preprocessing module aims to filter the natural language community 

questions an extract the useful terms in order to represent them in a formal way.  This module 

comprises text cleaning, tokenization, stopwords removal and stemming. Punctuation marks, 

non letters, diacritics, and special characters are removed. English letters are lowercased 

while dates are normalized to the token date and numerical digits are normalized to the token 

num. For the Arabic question collection, in addition to the aforementioned tasks, orthographic 

normalization was applied, including diacritics removal, stretching removal and Letter 

normalization. 

 

3.2. Word Embedding Learning 

Word embeddings are low-dimensional vector representations of words, learned by 

harness- ing large amounts of text corpora using shallow neural networks. The use of word 

embeddings allows to effectively detect the syntactic and semantic similarities between 

words. Particularly, we resorted to the Continuous Bag-of-Words (CBOW) model which has 

proven to outperform Skip gram on our datasets [19]. Recall that CBOW consists in 

estimating a pivot word according to its context using a window of contextual words around 

it, while Skip gram does the inverse predicting the contextual words given a current word in 

a sliding window. In our word embedding learning module, we map every word into a fix-

sized vector using the Word2Vec model. 

 

3.3. LSTM 

Long Short-Term Memory (LSTM) [10], is a powerful type of RNN widely used in deep 

learning, and has proven its capacity to capture short and long-term dependencies and model 

sequential data. Interestingly, LSTM helps prevent the vanishing gradient problem [9] which 

is the main limitation of RNN. Gradient descent is an optimization algorithm that uses an 

iterative process to minimize a given function and improve the deep learning. The basic 

intuition is to adjust the weights of the model by determining the error function derivatives 

according to each member of the weight matrices in the model. To minimize the total loss, 

the gradient descent updates each weight in proportion to the derivative of the error with 

respect to that weight. LSTM is endowed with a memory cell that is capable of maintaining 

its state over time, and internal mechanisms called gates to regulate the information flow. 

The major reason for relying on LSTM in our approach is its proven performance in handling 

variable-length sequential data. 

Given input vector xt, hidden sate ht and memory state ct, the updates in LSTM are performed 

as follows: 

 



 

where it, ft, ot are input, forget, and output gates at time t, respectively. Wk, Uk are LSTM 

pa- rameterized weight matrices, bk represents the bias vector for each k in {i, f , c, o} and 

(⊙) denotes an element-wise product of matrices, known as the Hadamard product 

which is an entrywise multiplication. 

 
3.4. Siamese Manhattan LSTM 

The overall aim of this module is to compare a pair of sentences to decide whether or 

not they are semantically equivalent. We used the Siamese network [17] architecture 

which is known to have identical sub-networks LSTM left and LSTM right that are passed 

vector representations of two text sequences and return a hidden state encoding 

semantic meaning of the sequences. These hidden states are then compared using a 

similarity metric to return a similarity score as depicted in Figure 2. 
 

 
Figure 2: General architecture of the MaLSTM model 

 

 

Note that we decided to use LSTM for each sub-network, but it is also possible to 

swap LSTM with GRU (Gated Recurrent Unit). GRU is a variation on the LSTM, also 

aiming to solve the vanishing gradient problem which comes with a standard RNN. GRU 

is almost similar to LSTM in terms of design, although they have two gates, namely reset 

gate and update gate. Reset gate determines how to combine new input with previous 

memory while update gate is what input gate and forget gate were in LSTM, determining 

how much of the previous state to keep Although GRU has less parameters and then 

might take less time to train, LSTM empirically remembers longer text sequences than 

GRU and usually outperforms them in tasks requiring modeling long-distance relations. 

This is the reason why we opted for LSTM rather than GRU. 

In our work, Siamese LSTM was adapted to the context of question retrieval, that is 



to say, the sentence pairs become pairs of questions. 

LSTM learns a mapping from the space of variable length sequences din and encode 

the input sequences into a fixed dimension hidden state representation drep. More 

concretely, each question represented as a word vector sequence (e.g., Q1 is 

represented by x1, x2, x3) is fed into the LSTM, which updates, at each sequence-index, 

its hidden state. The final state of LSTM for each question is a drep-dimensional vector, 

denoted by h in figure 2, which holds the inherent semantic meaning of the question. 

Once we have the two vectors that capture the underlying meaning of each question, 

the semantic similarity between the questions is computed using the following 

Manhattan similarity measure: 

𝑦 = 𝑒−||ℎ(𝑙𝑒𝑓𝑡)−ℎ(𝑟𝑖𝑔ℎ𝑡)||1 (7) 

Note that since we have an exponent of a negative, the Manhattan function scores 

will be between 0 and 1. It is worth mentioning that we tested different similarity metrics, 

namely Manhattan, cosine and Euclidean distances and the best results were obtained 

with the Manhattan distance as will be seen later in the next section. 

 

3.5. Attention Mechanism 

Attention mechanism with Neural networks have recently achieved tremendous 

success in several NLP tasks [40, 6, 29]. We assume that every word in a question 

contributes to the meaning of the whole question but the words do not have equal 

influential information. Thus, we should assign a probability to every word to determine 

how influential it is to the entire question. Note that we adopted an attention mechanism 

as in [31]. Siamese LSTM model employs only the last hidden states of sequence pair 

e.g. h(a) and h(b), which may ignore some information. To  remedy this problem, in our 

attention layer, we used all hidden states H = {h1, h2, ..., hT }, where hi is the hidden 

state of the LSTM at time step i summarizing all the information of the question up to  xi 

and T denotes the length of the question. The general architecture of the proposed 

Siamese Manhattan LSTM model augmented with an attention layer is illustrated in 

Figure 3, where the different constituent layers are shown from the input (question 

words) to the output (similarity score). 

Note that α(a) and α(b) denote the weights of LSTMa and LSTMb, respectively. 

Basically, the attention mechanism measures the importance of a word through a 

context vector uh. It computes a weight αi for each word annotation hi according to its 

importance. The final question representation r is the weighted sum of all the word 

annotations using the attention weights, 

 

 

 



 
 

Figure 3: General architecture of our Siamese Manhattan LSTM model with attention mechanism 

 

 

 

computed by equation 10. In the attention layer, a context vector uh is introduced, which 

is randomly initialized and can be viewed as a fixed query, that allows to identify the 

informative words. 

 

 

where Wh, bh , and uh are the learnable parameters with Wh is a weight matrix and bh is 

a bias vector used to project each context vector into a common dimensional space and 

L is the size of each LSTM. 

 

4. Siamese Manhattan CNN 

 

We also tested the Siamese architecture with CNN for the question retrieval task as 

depicted in Figure 4. CNN was widely used to model text sequences, taking as input the 

word embedding of words of text sequences aligned sequentially, and summarizing the 

meaning of a sequence through layers of convolution and pooling, until reaching a fixed 

length vector representation. CNN has the advantage of maintaining the word order 

information which is important for short sequences. Moreover, non linear activation in 

the convolutional neural networks can learn more latent characteristics about the text 

sequences. The Siamese CNN based approach is composed of two parallel identical 

convolutional structures CNN right and CNN left that receive vector representations of 



two questions and each convolutional structure returns the question level 

representations. A similarity measure is then used to calculate the similarity between 

the pair of convolutional structures. Each convolutional structure includes a 

convolutional layer and max pooling layer and a fully connected layer. The convolutional 

layer is fed with a matrix, where each row is the vector representation of a word in the 

question. In the convolution layer, numer- ous filters slide over the rows of the matrices. 

The learned output vector from the fully connected layer will be then employed to 

compute the similarity using the Manhattan distance which has outperformed the cosine 

and Euclidean distances. 

 

 

 
Figure 4: General architecture of the Siamese Manhattan CNN model 

 
 

4.1. Convolution layer 

The convolutional layer aims to extract patterns, such as discriminative word 

sequences in the input questions that are common throughout the training instances. 

This layer applies a set of m convolutional filters to a sliding window of width w over the 

matrix of previous embedding layer to extract new local w-gram features. The structure 

of convolution used for text classification [13] is shown in Figure 5. Let F∈ ℜw×d be a filter 

matrix. The result of each filter F will be a feature map denoted f, where the i-th element 

of f is learnt as follows: 

 
fi  =  fct(Ti:i+w−1 ○ F + b) (11) 

Where fct denotes a non linear activation function, ◦ represents a convolution 

operation, Ti:i+w−1 denotes the token vectors ti, ti+1, , ti:i+w−1 (if k > N, tk= 0), and b∈ℜ 

is a bias term. We used the Rectified Linear Unit (ReLU) activation function [18] which 

is the most popu- lar activation function for neural networks, especially CNNs mainly 

owing to its representational sparsity, computational simplicity and linear behavior. It 

was chosen because it simplifies back- propagation, speeds up learning and avoids 



saturation. Note that we applied multi-channel CNN using multiple convolving filters to 

extract active local n-gram features in different sizes. Token vectors are padded before 

convolution in order to keep identical size for outputs of different filters. 

 

 
Figure 5: Convolutional Neural Networks for sentence classification [13] 

 

 

 

4.2. Max-pooling and Dropout Layer 

The pooling layer aggregates the vectors in the feature map matrix by taking the 

maximum value for each feature vector learned in the convolutional layer. This reduces 

the representation of both questions. We uses max rather than mean pooling as the 

salient feature represents the most distinguishing trait of a question. Max-pooling allows 

to reduce the computation for upper layers by eliminating non-maximal values. We 

applied a dropout layer [27] after both a convolution and max-pooling layer to prevent 

overfitting. 

 

4.3. Fully-connected Layer 

The fully connected layer is the terminal layer of the convolutional neural networks. 

It converts the output of the previous layers and the result of ReLU into a fixed-length 

semantic vector encoding the input to the network. 

 

5. Experiments 

 
5.1. Datasets 

In order to evaluate the proposed approach, we performed experiments using the 

same dataset released by [35] for evaluation. The questions of the community collection 

were harvested from all categories in the popular Yahoo! Answers community platform, 

and then were randomly splitted into two sets while maintaining their distributions in all 



categories. The first set is a question repository for question search containing 1,12M 

questions, while the second is the test set containing 252 queries and 1624 manually 

annotated related questions. Each original query in the test set, has an average of 15 

candidate related questions. Note that 60% of these related questions are relevant to the 

queries and then annotated as positive. The community questions in the collection are 

in various structures, different lengths varying from 2 to 20 words as shown in Figures 6 

and 7 and belonging to diverse categories e.g., Health, Sports, Computers and Internet, 

Diet and Fitness, Pets, Travel, Business and Finance, Entertainment and Music, 

Education and Reference, etc. 

 

 

For our experiments in Arabic, we resorted to the same English collection translated 

using Google Translation with a careful manual verification, as there is no large Arabic 

dataset avail- able for the question retrieval task. The Arabic collection includes exactly the 

same number of questions as the English set. We randomly checked a number of questions 

and verified that the Google tranlation result is satisfactory for the question similarity task. It 

is worth mentioning that in the context of the question answering, even if the question is 

poorly translated, what matters most is that it keeps its semantics.Therefore,  it is possible to 

answer a question even    if it is poorly translated In order to train word2vec for Arabic, we 

resorted to a sizeable data  set from cQA sites, namely the Yahoo!Webscope dataset6, 

translated into Arabic using Google Translation, including 1 256 173 questions with 12 512 

034 distinct words. For Siamese LSTM training, we employed the publicly available Quora 

Question Pairs dataset7. The given collection encompasses 400 000 samples of question 

duplicate pairs, where each sample has a pair of questions along with ground truth about their 

corresponding similarity (1: similar, 0: dissimilar). It is worth noting that data preprocessing 

was performed using Python NLTK. 

 

5.2. Word Embedding Learning 

For English word embedding training, we resorted to the publicly available word2vec8 

                                                      
6 http://research.yahoo.com/Academic Relations 
7 www.kaggle.com/quora/question-pairs-dataset 
8 https://code.google.com/p/word2vec 



vectors, with dimensionality of 300, that were trained on 100 billion words from Google 

News. Since no Arabic version of Google News vectors yet exists, we train the translated 

Yahoo!Webscope dataset using the CBOW model, as it has proven through 

experimentation to be more efficient and performs better than Skip-gram with our data. 

The training parameters of the CBOW model on the Arabic collection were set after 

several tests as follows: 

 Size=300: feature vector dimension. Note that we tested different values in 

the range  [50, 500] but did not get significant difference in terms of precision 

values. The best pre- cision was reached with size=300. 

 Sample=1e-4: down sampling ratio for the words that are very redundant in the 
corpus. 

 

 Negative samples=25: number of noise words 
 

 min-count=1: minimum number of words which we set to 1 to make sure we 

do not throw away anything. 

 Context window=5: fixed window size. 
 

5.3. LSTM Training 

During LSTM training, we applied the Adadelta method [33] for weights optimization 

to automatically decrease the learning rate. Gradient clipping was also used with a 

threshold value of 1.25 to avoid the exploding gradient problem [22]. Our LSTM layers’ 

size is 50 and embedding layer’s size is 300. We employed the back propagation and 

small batches of size equals 64, to reduce the cross-entropy loss and we resorted to 

the Mean Square Error (MSE) as a common regression loss function for prediction. We 

trained our model for several epochs to observe how the results varied with the epochs. 

We found out that the accuracy changed with the variation of the number of epochs but 

stabilized after epoch 25. The given parameters were set based on several empirical 

tests; each parameter was tuned separately on a development set to pick out the best 

one. For implementing our model we used Keras9 and Scikit-learn10. Note that we used 

the same LSTM configuration for both languages. 

 
5.4. CNN Training 

The parameters of the CNN network were tuned on the validation dataset. The values  

of the parameters for which we obtained the best results are as follows: We ran a total of 

25 epochs and the batch size of each epoch is 128. The Adam [14] optimizer was used 

as it is known to perform very well on deep neural networks. During the optimization, we 

set the learning rate to be 0.01. We set the number of Filters to 32, the kernel size of the 

three repeated convolutional layers are set as 3, Pool size to 2, Sliding window to 3 and 

Dropout to 0.5. 

                                                      
9 https://keras.io/ 
10 https://scikit-learn.org 



 

5.5. Evaluation Metrics 

To evaluate our approach, we used Mean Average Precision (MAP), Precision@n 

(P@n) and Recall as they are the most widely used metrics for assessing the performance 

of question retrieval in cQA. We remind that MAP assumes that the user is interested in 

finding many relevant questions for each query and then rewards methods that not only 

return relevant questions early, but also get good ranking of the results. Precision@n 

gives an idea about the classifier’s ability of not labeling a positive sample as a negative 

one.  It returns the proportion of the top-n retrieved questions that are equivalent. Recall 

is the measure by which we check how well the model is in finding all the positive samples 

of the dataset. It returns the proportion of relevant similar questions that have been 

retrieved over the total number of relevant questions. We also used Accuracy, which 

returns the proportion of correctly classified questions as relevant or irrelevant. 

 
5.6. Results and Discussion 

In order to test the performance of ASLSTM, we compare it against our previous 

approach called WEKOS as well as the competitive state-of-the-art question retrieval 

methods tested by Zhang et al. in [35] on the same dataset. The methods being compared 

are recalled below: 

 WEKOS [20]: A word embedding based method which transforms words in 

each question into continuous vectors. The questions are clustered using 

Kmeans and the similarity between them was measured using cosine 

similarity based on their weighted continuous valued vectors. 

 TLM [30]: A translation based language model which uses a translation-

based lan- guage model with a query likelihood approach for the question 

and the answer parts respectively. TLM integrates word-to-word translation 

probabilities learned by using different sources of information. 

 ETLM [26]:  An entity based translation language model, which is an 

extension   of TLM where the major difference is the replacement of the word 

translation with entity translation in order to integrate semantic information 

within the entities. 

 PBTM [36]: A phrase based translation model which uses machine 

translation probabilities assuming that QR should be performed at the phrase 

level. PTLM learns the probability of translating a sequence of words in a 

historical question into another word sequence of words in a given query. 

 WKM [39]: A world knowledge based model which integrates the knowledge 

of Wikipedia into the questions by deriving the concept relationships that 

allow to identify related topics between the queries and the previous 

questions. A concept thesaurus was built based on the semantic relations 



extracted from Wikipedia. 

 M-NET [38]: A continuous word embedding based model, which integrates 

the category information of the questions to get a category based word 

embedding, sup- posing that the representations of words belonging to the 

same category should be semantically equivalent. 

 ParaKCM [35]: A key concept paraphrasing based approach which explores 

the translations of pivot languages and expands queries with the 

paraphrases. It assumes that paraphrases give additional semantic 

connection between the key concepts in the queried question and those of 

the historical ones. 

Table 2 gives a comparison of the performance of ASLSTM against the 

aforementioned models on the English Yahoo! Answers dataset. The results in 

Table 2, show that PBTM outperforms TLM which demonstrates that detecting 

contextual information in modeling the translation of entire phrases or consecutive 

word sequences is more effective than translating separate words, as there is a 

dependency between adjacent words in a phrase. 

 
Table 2: Question retrieval performance comparison of different models in English. 

 
 

 TLM ETLM PBTM WKM M-NET ParaKCM WEKOS ASLSTM 

P@5 0.3238 0.3314 0.3318 0.3413 0.3686 0.3722 0.4338 0.5033 

P@10 0.2548 0.2603 0.2603 0.2715 0.2848 0.2889 0.3647 0.4198 

MAP 0.3957 0.4073 0.4095 0.4116 0.4507 0.4578 0.5036 0.5799 

 

 

 

 

ETLM performs as well as PBTM, which proves that entity translation is more efficient 

than the word translation for ranking and could enhance the performance of the translation 

language model.  WKM is based on Wikipedia as an external knowledge resource to 

derive the concept relationships, but its performance is limited by the low coverage   of 

the Wikipedia concepts on the diverse users’ questions. ParaKCM achieves good 

precision by exploring the translations of pivot languages and expanding queries with the 

produced paraphrases for question retrieval. M-NET, also based on word embeddings, 

performs well owing to the use of metadata of category information to derive the properties 

of words. WEKOS based on word embedding too along with TF-IDF weighting and 

kmeans, achieves comparable results and further proves that the use of word embeddings 

get benefits from dense word representation and mitigate the negative impact of word 

mis- match by capturing semantic relations between words, while the other methods 

mostly do not capture enough information about the semantic similarity. 
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As illustrated in Table 2, the proposed approach ASLSTM outperforms in English all 

the compared methods on all criteria by successfully returning a significant number of 

similar questions among the retrieved ones. This good performance indicates that the use 

of Siamese LSTM along with attention mechanism Manhattan similarity is effective for the 

QR task. Word embeddings allow to obtain an efficient input representation for LSTM, 

capturing syntactic and semantic information in a word level. Interestingly, ASLSTM does 

not require an extensive feature generation owing to the use of a pre-trained model. The 

results show that the Siamese based approach performs better than the translation and 

knowledge based methods, which provides evidence that the question representations 

made by the Siamese LSTM sub-networks can learn the semantic relatedness between 

pairs of questions and then are more adequate for representing questions in the question 

similarity task. The Siamese network was trained using backpropagation-through-time 

under the MSE loss function which compels the LSTM sub-networks to detect textual se- 

mantic difference during training. A key virtue of LSTM is that it can accept variable length 

sequences and map them into fixed length vector representations which can over- come 

the length and structure’s problems in cQA. 

Another significant finding is the effectiveness of the attention mechanism which was 

able to improve the performance of the approach by getting better contextual meaning of 

the questions. We assume that the attention mechanism managed to boost the similarity 

learning process by assigning a weight to each element of the question. This weights will 

then allow to compute which element in the sequence the neural network should more 

attend. 

WEKOS averages the weighted embeddings, which is one of the most simple and 

widely used techniques to derive sequence embedding but it leads to losing the word 

order, while in our approach, the LSTMs update their state to get the main context 

meaning of the text sequence in the order of words. The goal of the Siamese architecture 

is to learn a function which can map a question to an appropriate fixed length vector which 

is favor for similarity measurement. Interestingly, it offers vector representation for a very 

short text fragment that should grasp most of the semantic information in that fragment. 

To properly assess the MaLSTM model performance on our similarity prediction 

problem, we plot training data vs validation data accuracy and loss using the Matplotlib 

library. The training history of the model is often used to diagnose its behavior and to 

check whether it is a good fit for the data or could perform better with a different 

configuration. The loss is computed on training and validation and it shows how well the 

model is doing for these two sets. It denotes the sum of the errors made for each instance 

in training or validation sets. Loss is often used to determine the best parameter values 

for the given model. Obviously, the lower the loss, the better a model is. Once we find the 

optimized parameters, the accuracy allows to evaluate how accurate our model’s 

prediction is com- pared to the true data. The training accuracy shows how much the 

model learns to map the input and output, while the validation accuracy tells about its 
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generalizing ability. For instance, a decreasing validation accuracy means low 

generalization over the training data. 
 

(a) Results on the English dataset (b) Results on the Arabic dataset 

 
Figure 8: Epochs vs Loss of Siamese LSTM on the English and Arabic dataset 

 

From Figures 8a and 8b which depict the training and validation set loss 

against the number of epochs11, we can see that for both English and Arabic there 

is no considerable difference between the training and validation loss. The training 

loss keeps decreasing after every epoch which means that the model is learning to 

recognize the specific patterns. Similarly, the validation loss continues to decrease 

reaching 0.132 and 0.129 for English and Arabic respectively thus, our model is 

generalizing well on the validation sets. We can say that we have a good fit since 

both the train and validation loss decreased and leveled off around the same 

points. 

From the plots of accuracy given in Figures 9a and 9b, we observe that we 

get about 82% and 81% accuracy rate on the validation data for English and Arabic 

respectively. The model has comparable consistent accuracy on both train and 

validation sets. Both training and validation accuracy continue to increase without 

a sudden decrease of the validation accuracy, indicating a good fit. Therefore, we 

can admit that, whilst the performance on the training set is slightly better than 

that of the validation set in terms of both loss and accuracy, the model has 

converged to a stable value without any typical overfitting signs such as the 

continuous improvement of the training performance, while validation performance 

worsens. 

It is worth mentioning that the accuracy used in the epochs-accuracy plots, is 

the binary accuracy calculated by Keras, and it implies that the threshold is set at 

0.5 so, everything above 0.5 will be considered as correct. 

                                                      
11 Epoch is when the full dataset is passed both forward and backward through the neural network only once. It usually 

contains a few iterations 
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We utilized the simple Manhattan distance which forces the LSTM model to 

entirely detect the semantic differences during training. In practice, our results are 

fairly stable across different similarity functions, namely cosine and Euclidean 

distances. We found that the Manhattan distance has outperformed them on both 

the English and Arabic datasets as depicted in Tables 3a and 3b which 

demonstrates that it is the most relevant measure for the case of high dimensional 

text data. 

 

 
 

  
 

(a) Results on the English dataset (b) Results on the Arabic dataset 

 
Figure 9: Epochs vs Accuracy of Siamese LSTM on the English and Arabic dataset 

 

 

Table 3: Comparison between similarity measures 
 

(a) Results on the English dataset (b) Results on the Arabic dataset 
 

 

The cosine distance has outperformed the Euclidean distance which proves 

that it is better at catching the semantic of the questions, considering that the 

direction of the text points can be thought as its meaning, texts with similar 

meanings will have similar cosine score. Another reason is that cosine distance is 

calculated using the dot product and magnitude of each vector. Thus, it is only 

affected by the words the two vectors have in common, whereas the Euclidean 

measure has a term for every dimension which is non-zero in either vector. We can 

therefore say that the cosine distance has meaningful semantics for ranking texts, 

based on mutual term frequency, whereas Euclidean distance does not. 

Moreover, we remarked that ASLSTM could find the context mapping between 

certain expressions mostly used in the same context such as bug and error 

 P@5 Recall 

Manhattan 0.5033 0.5477 

Cosine 0.3893 0.4345 

Euclidean 0.3393 0.3843 

 

 P@5 Recall 

Manhattan 0.3702 0.4146 

Cosine 0.2562 0.3006 

Euclidean 0.2062 0.2506 
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message or also need help and suggestions. In addition, ASLSTM was able to 

retrieve similar questions containing certain common misspelled terms like receive 

instead of receive, but it failed to capture other less common spelling mistakes like 

relyable or realible instead of reliable. Such cases show that the proposed 

approach can address some lexical disagreement problems. Furthermore, there 

are few cases where ASLSTM fails to detect semantic equivalence, including 

queries having only one similar question and most words of this latter do not 

appear in a similar context with those of the query. 

Table 4: Question retrieval performance of ASLSTM in Arabic 

 
 

 WEKOS ASLSTM 

P@5 0.3444 0.3702 

P@10 0.2412 0.2872 

MAP 0.4144 0.4540 

Recall 0.3828 0.4146 

 
Table 4 shows that ASLSTM outperforms in Arabic the best compared system 

which gives evidence that it can also perform well with languages having some 

specificities. 

Nevertheless, a major limitation of the presented pipeline is that it ignores the 

morphological structure of Arabic words. As a matter of fact, the Arabic language 

is a morphologically-rich and complex language which expresses multiple levels 

of information at the word level. The variation in character forms appearing in 

handwritten Arabic has a notable impact on the generation of word embeddings. 

Therefore, harnessing the word internal structure is crucial to capture semantically 

similar words. Accordingly, endowing word embeddings with grammatical 

information such as, the person, gender, number and tense could help to obtain 

more meaningful embeddings that detect morphological and semantic similarity. In 

terms of recall, ASLSTM reaches 0.4136 for Arabic which implies that the number 

of omitted similar questions is not big. As shown in table 5a, Siamese CNN 

achieves a MAP of 49% and performs better than the state-of- the-art methods, 

which indicates that it is capable of capturing more informative features, such as 

the salient words or the sequential structures of questions. 

Table 5: Question retrieval performance of Siamese LSTM and CNN 

 

(a) Results on the English dataset (b) Results on the Arabic dataset 
 

 

CNN could extract syntactic and semantic information from both local 

 Siamese LSTM Siamese CNN 

P@5 0.5023 0.4943 

P@10 0.4188 0.4107 

MAP 0.5739 0.5658 

Recall 0.5389 0.5288 

 

 Siamese LSTM Siamese CNN 

P@5 0.3692 0.3292 

P@10 0.2854 0.2454 

MAP 0.4513 0.4113 

Recall 0.4136 0.4136 
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semantic pat- terns and hierarchical structures of the questions. Both CNN and 

LSTM models are able to preserve the semantics of question words and extract 

the hidden features from the textual content by means of multiple hidden layers. 

Siamese LSTM (without the attention layer) performs slightly better than Siamese 

CNN on both precision and recall. One possible rea- son is that information at 

question -level is more important than information at word-level for the question 

similarity task. From table 5b, we can see that the performance on the Arabic 

dataset are slightly worse than English. The reason behind this could be that there 

are some errors in Arabic word segmentation. 

 
Table 6: Comparison between similarity measures on Siamese LSTM and CNN 

 

(a) Results on the English dataset (b) Results on the Arabic dataset 
 

 

As shown in the table 6a and 6b, the performance of the Manhattan similarity 

metric is better than the cosine and Euclidean similarities in terms of precision and 

recall. Therefore, we adopted the Manhattan distance as it allowed to achieve 

faster convergence and it is the most relevant one for the dataset we used. 

6. Conclusion 

In this paper, we proposed an attentive Siamese LSTM-based approach for 

English and Arabic question similarity learning. We also explored the use of 

Siamese CNN for the same task. Experiments conducted on large scale 

Yahoo!Answers datasets have shown that Siamese LSTM outperforms Siamese 

CNN and some competitive state-of-the art methods. Interestingly, we verified that 

the proposed approach is capable of modeling complex semantics and covering 

the context information of question pairs. The use of word embedding helped to 

fully capture the semantic information at word-level, and obtain the contextual 

word vector representations of each question pair. An attention mechanism was 

integrated to let the model give different attention to different words while modeling 

the questions. In the future, we look forward to building a hybrid deep learning 

Siamese architecture combining CNN as a feature extractor and LSTM as a 

classifier to improve the question retrieval performance. In addition, we will 

conduct experiments on Siamese Transformer using BERT to generate word 

embeddings. 

 

 

 Siamese LSTM Siamese CNN 

P@5 Recall P@5 Recall 

Manhattan 0.5033 0.5477 0.4943 0.5288 

Cosine 0.3893 0.4345 0.3802 0.4156 

Euclidean 0.3393 0.3843 0.3302 0.3656 

 

 Siamese LSTM Siamese CNN 

P@5 Recall P@5 Recall 

Manhattan 0.3702 0.4146 0.3292 0.4136 

Cosine 0.2562 0.3006 0.2151 0.2997 

Euclidean 0.2062 0.2506 0.1651 0.2497 
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