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MONGE-AMPÈRE FUNCTIONALS FOR THE CURVATURE

TENSOR OF A HOLOMORPHIC VECTOR BUNDLE

JEAN-PIERRE DEMAILLY

Abstract. Let E be a holomorphic vector bundle on a projective manifold X such that detE is
ample. We introduce three functionals ΦP related to Griffiths, Nakano and dual Nakano positivity
respectively. They can be used to define new concepts of volume for the vector bundle E, by means
of generalized Monge-Ampère integrals of ΦP (ΘE,h), where ΘE,h is the Chern curvature tensor of
(E, h). These volumes are shown to satisfy optimal Chern class inequalities. We also prove that
the functionals ΦP give rise in a natural way to elliptic differential systems of Hermitian-Yang-Mills
type for the curvature, in such a way that the related P -positivity threshold of E⊗ (detE)t, where
t > −1/ rankE, can possibly be investigated by studying the infimum of exponents t for which the
Yang-Mills differential system has a solution.
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1. Introduction

Let X be a projective n-dimensional manifold, and E → X a holomorphic vector bundle equipped
with a smooth hermitian metric h. Putting rankE = r, the Chern curvature tensor ΘE,h = i∇2

E,h

can be written

(1.1) ΘE,h = i
∑

1≤j,k≤n, 1≤λ,µ≤r
cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ

in terms of holomorphic coordinates (z1, . . . , zn) on X and of an orthonormal frame (eλ)1≤λ≤r of

E. There is an associated quadratic form Θ̃E,h on TX ⊗ E defined by

(1.2) Θ̃E,h(γ) :=
∑

1≤j,k≤n, 1≤λ,µ≤r
cjkλµγjλγkµ, γ =

∑
j,λ

γjλ
∂

∂zj
⊗ eλ ∈ TX ⊗ E,

so that we have in particular

Θ̃E,h(ξ ⊗ v) := 〈ΘE,h(ξ, ξ) · v, v〉h =
∑

1≤j,k≤n, 1≤λ,µ≤r
cjkλµξjξkvλvµ.

As is well known, the dual hermitian bundle (E∗, h∗) has a curvature tensor that is the opposite of
the transpose of ΘE,h, and for γ =

∑
j,λ γjλ

∂
∂zj
⊗ e∗λ ∈ TX ⊗ E∗ we have

−ΘE∗,h∗ = TΘE,h =
∑

1≤j,k≤n, 1≤λ,µ≤r
cjkµλdzj ∧ dzk ⊗ (e∗λ)∗ ⊗ e∗µ,(1.3)

−Θ̃E∗,h∗(γ) = T Θ̃E,h(γ) =
∑

1≤j,k≤n, 1≤λ,µ≤r
cjkµλγjλγkµ > 0.(1.4)

Let us recall the following standard positivity concepts.
1
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1.5. Definition. The hermitian bundle (E, h) is said to be

(a) Griffiths positive if Θ̃E,h(ξ ⊗ v) > 0 for all decomposable nonzero tensors ξ ⊗ v ∈ TX ⊗ E,
(b) Nakano positive if Θ̃E,h(γ) > 0 for all nonzero tensors γ ∈ TX ⊗ E,
(c) dual Nakano positive if T Θ̃E,h(γ) > 0 for all nonzero tensors γ ∈ TX ⊗ E∗.
One says that E itself has one of these three positivity properties if it possesses a smooth hermitian
metric h satisfying the corresponding positivity assumption.

This definition gives rise to well known implications

E Nakano positive =⇒
E Griffiths positive =⇒ E ample.

E dual Nakano positive =⇒

The last implication comes from the Kodaira embedding theorem [Kod54] and the easy verification
that the Griffiths positivity of ΘE,h implies the positivity of the curvature of the induced metric on
the tautological line bundle OP(E)(1), where P(E) is the projectivized bundle of hyperplanes of E.
A basic problem raised by [Gri69, Problem (0.9)] is

1.6. Griffiths problem. Does it hold that E ample⇒ E Griffiths positive ?

One might wonder whether the ampleness of E would even imply the Nakano or dual Nakano
positivity of E, but it turns out that none of these implications holds true. In fact the tangent
bundle E = TX of the complex projective space X = Pn is ample but not Nakano positive (the
fact that Hn−1,n−1(Pn,C) = Hn−1(X,KX ⊗ TX) 6= 0 would contradict the Nakano vanishing
theorem [Nak55]), and the cotangent bundle E = T ∗X of a ball quotient X = Bn/Γ is ample but
not dual Nakano positive, since IdE ∈ H0(X,Ω1

X ⊗ E∗) 6= 0 contradicts the dual version of the
Nakano vanishing theorem ([Nak55], [DemB]). The latter fact, that was very briefly mentioned in
[LSY13, p. 304], had been overlooked in [Dem21], where we proposed an approach to investigate
the dual Nakano positivity of an ample vector bundle. However, as we will see here, the above
counterexample raises new interesting problems and does not invalidate the approach of [Dem21].
We thank Dr Junsheng Zhang for pointing out to us the observation made in [LSY13].

In section 2, we introduce three functionals ΦN (ΘE,h), ΦN∗(ΘE,h), ΦG(ΘE,h) and corresponding
integrated Monge-Ampère volumes MAVolN (E), MAVolN∗(E), MAVolG(E) that are related respec-
tively to Nakano, dual Nakano and Griffiths positivity. One can check that these Monge-Ampère
volumes reach their maximum value if and only if the bundle E is projectively flat – see Corol-
lary 2.7 for a detailed statement. The corresponding densities are determinants of the curvature
tensor that can be used to define global scalar equations for the curvature. In section 3, extending
the approach proposed in [Dem21], we show that it suffices to add a trace free Hermite-Einstein
condition to a scalar determinantal equation to yield families of elliptic systems of Yang-Mills type,
denoted respectively YMN,β(t), YMN∗,β(t), YMG,β(t), depending on a time parameter t and a
suitable positive constant β, where the unknown is a time dependent hermitian metric ht on E.
These solutions could hopefully help in the study of the Griffiths’ problem if one could obtain an
appropriate existence theorem. On a more differential geometric side, if (E, h) is a hermitian vector
bundle and t ∈ R a real number, we consider formally the curvature tensor of E⊗ (detE)t, namely

(1.7) ΘE,h + tΘdetE,deth ⊗ IdE = ΘE,h + t trE ΘE,h ⊗ IdE ,

where ΘdetE,deth is the (1, 1)-curvature form of the determinant bundle detE = ΛrE and trE the
trace operator on Hom(E,E). We introduce the following threshold values, defined for any vector
bundle possessing an ample determinant.

1.8. Definition. Let E → X be a holomorphic vector bundle such that detE is ample. We define
the Nakano, dual Nakano, Griffiths and ample thresholds, denoted respectively

τN (E), τN∗(E), τG(E), τA(E),



MONGE-AMPÈRE FUNCTIONALS FOR A HOLOMORPHIC VECTOR BUNDLE 3

to be the infimum of values t ∈ R such that there exists a smooth hermitian metric h for which
ΘE,h + tΘdetE,deth ⊗ IdE is Nakano, dual Nakano, Griffiths positive, respectively the infimum of
t ∈ Q such that E ⊗ (detE)t is ample (i.e. OP(E)(1) ⊗ π∗(detE)t is a Q-ample line bundle on the
total space of the projectivized bundle π : P(E)→ X).

Notice that Nakano and dual Nakano positivity are stronger than Griffiths positivity, the latter
being itself stronger than ampleness, hence we always have

(1.9) τN (E) ≥ τG(E) ≥ τA(E), τN∗(E) ≥ τG(E) ≥ τA(E).

Since E⊗(detE)−1/r has trivial determinant, no positivity property can hold for it, and we conclude
that τA(E) ≥ −1/r. The equality may however occur, e.g. when E = A⊕r is the direct sum of r
copies of an ample line bundle A. In fact, the following fact is easy to prove.

1.10. Proposition. Let E → X be a holomorphic vector bundle such that detE is ample.
If τG(E) = −1/r, then F = E ⊗ (detE)−1/r is numerically flat, in other words, as a Q-vector

bundle, we have E = F ⊗A where F is numerically flat of rank r, and A = (detE)1/r is an ample
Q-line bundle (one will refer to this situation by saying that E is projectively numerically flat, see
Definition 2.8). Then we have

τN (E) = τN∗(E) = τG(E) = τA(E) = −1

r
.

In this setting, the Griffiths problem translates into the conjectural implication

(1.11) E ample ⇒ τG(E) < 0 ?

On the other hand, in the counterexamples E = TPn (resp. E = T ∗Bn/Γ) just mentioned for Nakano

(resp. dual Nakano) positivity, one can check that E is in fact Griffiths positive and Nakano (resp.
dual Nakano) semipositive, hence we have τG(E) < 0, while τN (E) = 0 (resp. τN∗(E) = 0). By
investigating the curvature of direct images of adjoint positive line bundles, Berndtsson [Ber09]
(see also Mourougane-Takayama [MoT07]) has proved that

(1.12) E ample ⇒ SmE ⊗ detE = π∗(OP(E)(m)⊗KP(E)) Nakano positive for all m ∈ N.

We infer from this that E ample implies τN (E) < 1 and τN (SmE) < r
rm

where rm is the rank of

SmE, namely rm =
(
m+r−1
r−1

)
. Furthermore, we know that SmE generates its jets for m ≥ m0 large,

hence τN∗(S
mE) < 0 for m ≥ m0. In [LSY13, Cor. 4.12], it is further proved that

(1.13) E ample ⇒ SmE ⊗ detE dual Nakano positive for all m ∈ N,

hence we have as well τN∗(E) < 1 and τN∗(S
mE) < r

rm
when E is ample. The only counter-

examples we know about still leave room for the following question.

1.14. Question. Assume that E is an ample vector bundle. Are there examples for which
τN (E) > 0, τN∗(E) > 0 or τG(E) ≥ 0 ?

Of course finding an example with τG(E) ≥ 0 would be equivalent to answer negatively Griffiths’
problem 1.6. On the PDE side, our main result is as follows (see section § 3).

1.15. Theorem. Given any value t0 such that E ⊗ (detE)t0 >P 0, one can always arrange the
corresponding differential systems YMN,β(t), YMN∗,β(t), YMG,β(t) to be elliptic invertible and to
have unique solutions that depend continuously (and even differentiably) on t on a small interval
[t0 − δ0, t0 + δ0], δ0 > 0.

The proof depends only on the theory of elliptic equations and on the implicit function theorem. In
the end, checking the ellipticity is just a sophisticated exercise of linear algebra. A natural problem
is whether such Yang-Mills type equations can be used to compute the positivity thresholds, by
trying to get solutions for t ∈ ]− 1/r, t0] as small as possible.
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1.16. Question. Can one design the Yang-Mills systems YMN,β(t), YMN∗,β(t), YMG,β(t) so
that the infimum of times tinf for which a smooth solution exists on ]tinf , t0] coincides respectively
with the positivity thresholds τN (E), τN∗(E), τG(E), for suitably chosen initial data at t = t0 (or
whatever they are ) ?

Getting tinf = tinf(β) to converge to the positivity threshold τP (E) as β → +∞ instead of being
equal to τP (E) would be good as well. In the above question, we somehow expect that the differen-
tial systems can be made invertible elliptic throughout an almost maximal interval [tP (E) + δ, t0],
0 < δ � 1, and not just on a small interval [t0 − δ0, t0].

Acknowledgment. We warmly thank Vamsi Pritham Pingali and Junsheng Zhang for enlighten-
ing exchanges that contributed to clarify some of our ideas. The reader is referred to [Pin20] and
[Pin21] for related results.

2. Monge-Ampère functionals for vector bundles

Let E → X be a holomorphic vector bundle equipped with a smooth hermitian metric h. If
the Chern curvature tensor ΘE,h is Nakano positive, then the 1

r -power of the (n × r)-dimensional
determinant of the corresponding hermitian quadratic form on TX ⊗ E can be seen as a positive
(n, n)-form

(2.1) ΦN (ΘE,h) = detTX⊗E(ΘE,h)1/r = det(cjkλµ)
1/r
(j,λ),(k,µ) idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn.

Moreover, this (n, n)-form does not depend on the choice of coordinates (zj) on X, nor on the
choice of the orthonormal frame (eλ) on E (but (eλ) must be orthornormal). Similarly, if the
Chern curvature tensor ΘE,h is dual Nakano positive, we can consider the (n × r)-dimensional
determinant of the hermitian quadratic form on TX ⊗ E∗, namely

(2.2) ΦN∗(ΘE,h) = detTX⊗E∗(
TΘE,h)1/r = det(cjkµλ)

1/r
(j,λ),(k,µ) idz1 ∧ dz1 ∧ . . . ∧ idzn ∧ dzn,

and view it as a positive (n, n)-form. Finally, if ΘE,h is Griffiths positive, the most natural substitute
for (2.1) and (2.2) is

(2.3) ΦG(ΘE,h) = inf
v∈E,
|v|h=1

1

n!

(
〈ΘE,h · v, v〉h

)n
= inf
|v|=1

1

n!

( ∑
1≤λ,µ≤r

cjkλµ vλvµ idzj ∧ dzk

)n
.

It is easy to see that the three volume forms coincide when (E, h) is projectively flat, namely
when ΘE,h = α⊗ IdE where α is a positive (1, 1)-form on X (which is then equal to 1

r trE ΘE,h =
1
rΘdetE,deth). In this case, we clearly have

(2.4) ΦN (ΘE,h) = ΦN∗(ΘE,h) = ΦG(ΘE,h) =
1

n!
αn =

1

n! rn
(ΘdetE,deth)n.

In general, we have the following inequalities.

2.5. Proposition. Let (E, h) be a hermitian vector bundle.

(a) If ΘE,h is Nakano positive, then ΦN (ΘE,h) ≤ 1

n! rn
(ΘdetE,deth)n.

(b) If ΘE,h is dual Nakano positive, then ΦN∗(ΘE,h) ≤ 1

n! rn
(ΘdetE,deth)n.

(c) If ΘE,h is Griffiths positive, then ΦG(ΘE,h) ≤ 1

n! rn
(ΘdetE,deth)n.

In all three cases, the equality of volume forms occurs if and only if (E, h) is projectively flat
and ΘdetE,deth > 0.
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Proof. (a) We take h to be a hermitian metric on E such that ΘE,h is Nakano positive, and consider
the Kähler metric

ω = ΘdetE,deth = trE ΘE,h.

If (αj)1≤j≤nr are the eigenvalues of the associated hermitian form Θ̃E,h with respect to ω ⊗ h, we
have

detTX⊗E∗
(
ΘE,h

)1/r
=

(∏
j

αj

)1/rωn

n!

and
(∏

j αj
)1/nr ≤ 1

nr

∑
j αj by the inequality between the geometric and arithmetic means. Since∑

j

αj = trω
(

trE ΘE,h

)
= trω ω = n,

we obtained the asserted inequality

detTX⊗E
(
ΘE,h

)1/r ≤ ( 1

nr

∑
j

αj

)nωn
n!

=
1

n! rn
ωn.

(b) In the case of dual Nakano positivity, the proof is almost identical, except that we take the

αj ’s to be the eigenvalues of T Θ̃E,h with respect to ω⊗ h∗ on TX ⊗E∗. In both cases, the equality
of volume forms occurs if only if all eigenvalues αj are equal at all points, and then we must have
αj = 1

r , hence ΘE,h = 1
r ω ⊗ h.

(c) When (E, h) is Griffiths positive, we pick an h-orthonormal frame (eλ)1≤λ≤r of E and observe
that we have by definition

(∗) ΦG(ΘE,h) ≤ 1

n!

(
〈ΘE,h · eλ, eλ〉h

)n
, 1 ≤ λ ≤ r.

We view this inequality as a comparison between positive real numbers by referring to the volume
form dV = 1

n!ω
n of the metric ω = ΘdetE,deth. Let us consider the (1, 1)-form Aλ = 〈ΘE,h · eλ, eλ〉h

on (TX , ω) ' (Cn, std) as a hermitian form (or matrix) on Cn. Then we have 1
n! 〈ΘE,h · eλ, eλ〉nh =

detAλ dV . We use the well-known fact that the function A 7→ (detA)1/n is concave on the cone of
positive hermitian (n× n)-matrices. This implies

1

r

r∑
λ=1

(detAλ)1/n ≤

(
det

(
1

r

r∑
λ=1

Aλ

))1/n

,

in other words

1

r

r∑
λ=1

(
1

n!
〈ΘE,h · eλ, eλ〉nh

)1/n

≤

(
1

n!

(
1

r

r∑
λ=1

〈ΘE,h · eλ, eλ〉h

)n )1/n

=

(
1

n!

(1

r
ω
)n )1/n

.

By (∗), the left hand side is greater or equal to ΦG(ΘE,h)1/n, and by taking the n-th power of the

above inequality, we find ΦG(ΘE,h) ≤ 1
n! rn ω

n, as desired. The only line segments that lie in the

graph of A 7→ (detA)1/n project into rays of the cone of positive hermitian matrices. Therefore,
the equality case may occur only when the hermitian forms Aλ are proportional and we have
ΦG(ΘE,h) = 1

n! 〈ΘE,h ·eλ, eλ〉n for each λ. This forces the (1, 1)-forms Aλ to be equal, and therefore

equal to 1
rω, for any choice of h-orthonormal frame (eλ). It follows that (E, h) must be projectively

flat.

By considering their integrals over X, the above functionals give rise to interesting concepts of
volume for vector bundles.
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2.6. Definition. Let E → X be a holomorphic vector bundle. If E is P -positive, where P is any
of the symbols N,N∗ or G, we define the related Monge-Ampère volume of E to be

MAVolP (E) = sup
h

1

(2π)n

∫
X

ΦP (ΘE,h),

where the supremum is taken over all smooth metrics h on E such that ΘE,h is P -positive.

By Proposition 2.5, the supremum is always finite, and in fact we immediately get the following
upper bound from the fact that 1

2πΘdetE,deth is a (1, 1)-form representing the first Chern class
c1(detE) = c1(E).

2.7. Corollary. For any P -positive vector bundle E, we have

MAVolP (E) ≤ 1

n! rn
c1(E)n.

Moreover, the equality occurs, with the supremum being a maximum, if and only if E is projectively
flat.

It may happen that the equality occurs for the supremum, without E being projectively flat. In
fact, one has to take account the following more general situation.

2.8. Definition. We say that a rank r vector bundle E is numerically projectively flat if
F = SrE ⊗ (detE)−1 is numerically flat, i.e; both F and F ∗ are nef vector bundles. An equiv-

alent condition is that the Q-line bundles OP(E)(1) ⊗ π∗(detE)−1/r over P(E) and OP(E∗)(1) ⊗
π∗(detE∗)−1/r over P(E∗) are both nef.

If detE happens to admit an r-th root (detE)−1/r that is a genuine line bundle on X, then the

numeric projective flatness of E is equivalent to F = E⊗(detE)−1/r being numerically flat. In that
case, we know by [DPS94, Theorem 1.18] (assuming X to be projective), that this is equivalent to
the existence of a filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = F by vector bundles Fj such that the graded
pieces Fj/Fj−1 are hermitian flat for 1 ≤ j ≤ k, i.e. given by representatons of π1(X) into the a
unitary group U(rj). Since there always exists a finite morphism Y → X such that the pull-back
of detE to Y admits an r-th root on Y , we can always obtain such a filtration by pulling back E
itself. The above considerations lead to the following fact.

2.9. Proposition. Assume that E is numerically projectively flat, that detE is ample and admits
an r-th root on X. Then

MAVolN (E) = MAVolN∗(E) = MAVolG(E) =
1

n! rn
c1(E)n.

Proof. The proof proceeds by showing that there exist smooth metrics h̃ε on the numerically flat
bundle F = E⊗ (detE)−1/r, such that the curvature tensor ΘF,h̃ε

is arbitrarily small in L∞ norm.

This is a standard fact, resulting from the property that the filtered bundle F deforms to its graded
bundle G =

⊕
1≤j≤k Fj/Fj−1. In fact, it is enough to fix a C∞ splitting of the filtration (Fj) and

hermitian flat metrics hj on the graded pieces Fj/Fj−1. We can then use h̃ε =
⊕

1≤j≤k ε
k−jhj on

F ' G (as a C∞ vector bundle). An easy check shows that the second fundamental forms of the
Chern connections become arbitrarily small in L∞ norms. We take a metric of positive curvature
η on detE, and consider the metrics hε = h̃ε ⊗ η1/r on E. One can then see that the supremum of
the Monge-Ampère integrals over the family (hε) reaches the equality in 2.9. When the filtration
is non split, the supremum is never a maximum, as this would imply E to be projectively flat by
Proposition 2.5.

2.10. Complements. (a) The argument used in the proof of Proposition 2.9 also implies Proposi-

tion 1.10, even without assuming that the n-th root (detE)1/r exists on X. In fact, we can extract
the n-th root of detE by pulling back via a finite morphism µ : Y → X. We then get a family
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of metrics h̃ on µ∗E achieving the desired threshold −1/r over Y . We define a metrich on E (or
rather h∗ on E∗) by putting

|ξ|2h∗(x) =
∑

y∈µ−1(x)

|ξ|2
h̃∗(y)

, ξ ∈ E∗x, x ∈ X, y ∈ Y,

where the sum is counted with multiplicity at branched points. Since Griffiths sempositivity
is equivalent to the plurisubharmonicity of |ξ|2h∗ on E∗, this process preserves Griffiths (semi)-
positivity; in general the metric h∗ is just continuous, but we can apply a Richberg regularization
process to make it smooth. The armument is complete for the Griffiths threshold τG. For the
Nakano and dual Nakano positivity, we use the fact that E is a subbundle of µ∗µ

∗E (and likewise
for E∗), Nakano seminegativity being preserved by going to subbundles.

(b) In the case of a completely split bundle E =
⊕r

j=1Ej with ample factors Ej of rank 1, equipped

with a split metric h =
⊕r

j=1 hj , Yau’s theorem [Yau78] allows us to normalize the metrics hj to
have proportional volume forms ( 1

2πΘEj ,hj )
n = βjω

n for any Kähler metric ω ∈ c1(E), βj > 0 being
a suitable constant. We then get βj = c1(Ej)

n/c1(E)n, and find

1

(2π)n

∫
X

ΦN (ΘE,h) =
1

(2π)n

∫
X

ΦN∗(ΘE,h) =

(
r∏
j=1

βj

)1/r ∫
X

ωn

n!
=

1

n!

(
r∏
j=1

c1(Ej)
n

)1/r

.

For P = N,N∗, the inequality of Corollary 2.7 then reads(
r∏
j=1

c1(Ej)
n

)1
r

≤ 1

rn
c1(E)n.

It is an equality when E1 = · · · = Er, thus Corollary 2.7 is optimal as far as the constant 1
n! rn is

concerned. For a completely split bundle E =
⊕

1≤j≤r Ej with arbitrary ample factors, it seems
natural to conjecture that

MAVolN (E) = MAVolN∗(E) =
1

n!

(
r∏
j=1

c1(Ej)
n

)1
r

,

i.e. that the supremum is reached for split metrics h =
⊕
hj . In the case of the Griffiths functional,

it is easy to see that

(2.11) MAVolG(E) =
1

(2π)n

∫
X

ΦG(ΘE,h) = min
1≤j≤r

βj

∫
X

ωn

n!
=

1

n!
min

1≤j≤r
c1(Ej)

n.

In fact, ΦG(ΘE,h) is obtained by picking vectors v in the component Ej for which βj is minimum.
Moreover, for any G-positive metric h on E, even a non split one, (b1) is proved by arguing with
the induced metric h|Ej on Ej , which is again G-positive as a quotient of the metric of E by the
projection E → Ej .

(c) It would be interesting to characterize the “extremal metrics” h achieving the supremum in
MAVolN (E), MAVolN∗(E), when a maximum exists (we have seen in the proof of Proposition 2.9
that this is not always the case). Suitable calculations (see §3 for this) would show that they satisfy
a certain Euler-Lagrange equation

(2.12)

∫
X

(det θ)1/r · trTX⊗E∗
(
θ−1 · T

(
i∂h∗⊗h∂u

))
= 0 ∀u ∈ C∞(X,Herm(E)),

where θ is the (n× r)-matrix representing TΘE,h. After integrating by parts twice, freeing u from
any differentiation, we get a fourth order nonlinear differential system that h has to satisfy. Such
a system is somewhat akin to the equation for cscK metrics, in the special case E = TX .
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(d) When r = 1, we clearly have

(2.13) ΦN (ΘE,h) = ΦN∗(ΘE,h) = ΦG(ΘE,h) =
1

n!
(ΘE,h)n,

and we infer that the integrals 1
(2π)n

∫
X ΦP (ΘE,h) = 1

n! c1(E)n do not depend on h. In the case of

ranks r > 1, it is natural to ask what is the infimum

inf
h

1

(2π)n

∫
X

ΦP (ΘE,h)

for the three types of functionals. Let us consider the split case (E, h) =
⊕

(Ej , hj). By [Yau78]
again, we can renormalize ΘEj ,hj to get volume form equalities (2π)−nΘn

Ej ,hj
= fjω

n with arbitrary

functions fj > 0 such that
∫
X fjω

n = c1(Ej)
n. Then

1

(2π)n

∫
X

ΦN (ΘE,h) =
1

(2π)n

∫
X

ΦN∗(ΘE,h) =

∫
X

(f1 · · · fr)1/r ω
n

n!
,(2.14)

1

(2π)n

∫
X

ΦG(ΘE,h) =

∫
X

min
1≤j≤r

fj
ωn

n!
,(2.15)

and these integrals become arbitrarily small if we take the fj ’s to be large on disjoint open sets,
and very small elsewhere. This example leads us to suspect that for r > 1 and any P = N,N∗, G,
one always have

(2.16) inf
h

1

(2π)n

∫
X

ΦP (ΘE,h) = 0.

(e) In example (2.15), we have ΦG(ΘE,h) = min1≤j≤r fj . This shows that the functional ΦG fails
to be differentiable in general, even though it is clearly Lipschitz continuous. In order to mitigate
this difficulty, it suffices to take a large parameter p > 0 and to consider the family of functionals

(2.17) ΦG,p(ΘE,h) =

(∫
v∈E, |v|h=1

1(
(〈ΘE,h · v, v〉h)n

)p dσ(v)

)−1/p

where dσ is the unitary invariant probability measure on the unit sphere. Then ΦG,p ≥ ΦG and
ΦG,∞ = limp→+∞ΦG,p = ΦG. A differentiation under the integral sign shows that ΦG,p is a
differentiable functional whenever p <∞.

(f) One desirable property for our functionals ΦP (ΘE,h) is that the conditions ΘE,h ≥P 0 and
ΦP (ΘE,h) > 0 should enforce ΘE,h >P 0, thus preventing the P -positivity of ΘE,h to degenerate.
This is clearly the case for ΦN , ΦN∗ , ΦG. This will be also the case for ΦG,p for large p, at least if we
assume |ΘE,h|Cα to be uniformly bounded in some Hölder norm Cα, α ∈ ]0, 2] : if 〈ΘE,h · v, v〉h ≥ 0
and (〈ΘE,h · v, v〉h)n ∈ Cα vanishes at some point (x0, v0) ∈ E, then (〈ΘE,h · v, v〉h)n = O(|v− v0|α)

near v0, and if we take p ≥ 2r−1
α , we conclude that the integral (2.17) is divergent on the (2r − 1)-

dimensional unit sphere of Ex0 . This shows that ΦG,p(ΘE,h)(x0) = 0 for p ≥ 2r−1
α .

3. Hermitian-Yang-Mills equations and positivity thresholds

Following the strategy suggested in [Dem21], we propose here to study certain differential systems
of Yang-Mills type, that could be useful to obtain information on the positivity thresholds of a
holomorphic vector bundle. Throughout this section, we assume that X is a complex projective
manifold of dimension n, and that E → X is a rank r holomorphic vector bundle such that detE is
ample. Then there exists t0 > 0 such that E ⊗ (detE)t0 has all positivity properties P = N,N∗, G
we may desire. If E itself is assumed to be ample, we know by [Ber09] and [LSY13] that one can
take t0 = 1. We consider time dependent smooth metrics (ht)t∈]t1,t0] on E, such that

(3.1) ΘE,ht + tΘdetE,detht ⊗ IdE >P 0.
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We start at t = t0 and try to decrease t as much as we can, eventually going down to the positivity
threshold tinf = τP (E). In any case, we can find a P -positive metric on E ⊗ (detE)t0 , and since
det(E ⊗ (detE)t0) = (detE)1+rt0 , we can derive from it a metric ht0 on E satisfying (3.1). In the
sequel, we also set

(3.2) ωt = ΘdetE,detht .

By our assumption (3.1), ωt is a Kähler metric that lies in the Kähler class 2π c1(E). We wish
to enforce suitable differential equations on (ht) so that the family (ht) is uniquely determined,
running t backwards as long as possible. One natural condition is to require

ΦP

(
ΘE,ht + tΘdetE,detht ⊗ IdE

)
= some positive volume form on X,

in the hope of enforcing the P -positivity of the tensor ΘE,ht + tΘdetE,detht ⊗ IdE . Let Ω ∈
C∞(X,Λn,nT ∗X) be a fixed positive volume form on X. For reasons that will become apparent
later, we introduce a new parameter β ∈ R+ and the differential equation

(3.3) ΦP

(
ΘE,ht + tΘdetE,detht ⊗ IdE

)
= ft

(
Ω

ωnt

)β
Ω, ft > 0, ft ∈ C∞(X,R).

In the case of Griffiths positivity, we take ΦP = ΦG,p with p large, according to the discussion
conducted in 2.10 (e,f). As was pointed out in [Dem21], equality (3.3) yields only one scalar
differential equation, whereas ht is represented by r2 unknown real coefficients. Therefore we need
to couple (3.3) with an additional matrix equation of real rank r2−1 to achieve exact determinacy.
It turns out that r2− 1 is precisely the real dimension of trace free hermitian endomorphisms of E.
It is therefore natural to consider trace free Hermite-Einstein equations of the form

(3.3◦) ωn−1
t ∧Θ◦E,ht = gt ω

n
t , gt ∈ C∞(X,Herm◦ht(E,E)),

expressed in terms of the direct sum decomposition

Herm◦h(E,E) =
{
u ∈ Hermh(E,E) ; tr(u) = 0

}
,(3.4)

Hermh(E,E) = Herm◦h(E,E)⊕ R IdE , u = u◦ +
1

r
tr(u)⊗ IdE , tr(u◦) = 0.(3.4′)

In the above notation, Θ◦E,h is the curvature tensor of E ⊗ (detE)−1/r, namely

(3.5) Θ◦E,h = ΘE,h −
1

r
ΘdetE,deth ⊗ IdE ∈ C∞(X,Λ1,1

R T ∗X ⊗Herm◦h(E,E)).

By the fundamental work of [Don85] and [UhY86], we know that (3.3◦) can be solved with gt = 0 if E
is c1(E)-polystable, and with a suitable choice of the right hand side gt = G(ht) otherwise; as shown
by [UhY86], it suffices to take for G an appropriate matrix functional, for instance G(h) = −ε log h
in suitable coordinates, with ε > 0 arbitrary. The “friction term” gt ω

n
t = −ε log ht ω

n
t helps in

getting a priori bounds for the solutions, and in our case, we will possibly need to take ε large.
The following simple observation is essential.

3.6. Observation. As long as t 7→ ht is continuous with values in C2(X,Hom(E,E)) and we
start with an initial value ht0 such that ΘE,ht + tΘdetE,detht⊗ IdE >P 0 at time t = t0, complement
(2.10 f) shows that the positivity property P is preserved on the whole interval ]tinf , t0] where the
solution exists. One would therefore need to show that the solution persists to times t < 0 to
conclude that 0 ∈ ]tinf , t0] and (E, h0) >P 0.

Now, the differential system (3.2, 3.3, 3.3◦) can be considered with arbitrary right hand sides ft,
gt of order at most 1 in ht, i.e. of the form

ft(z) = F (t, z, ht(z), Dzht(z)) > 0,(3.7)

gt(z) = G(t, z, ht(z), Dzht(z)), gt ∈ C∞(X,Herm◦ht(E,E)).(3.7◦)
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These right hand sides do not affect the principal symbol of the system, which is or order 2, as we
will see very soon. At this stage, our first concern is whether the above (fully non linear) differential
system is actually elliptic. It is a priori exactly determined in the sense that there are exactly as
many equations as unknowns, namely r2 scalar coefficients for ht(z).

3.8. Theorem. Let E → X be a holomorphic vector bundle such that detE is ample and t ∈ R such
that E⊗ (detE)t >P 0. Then there exist explicit distortion functions βP,t,h in C0(X,R+) such that
for any metric ht on E satisfying ΘE,ht+tΘdetE,detht⊗IdE >P 0 and any β > supX βP,ht,t, the sys-
tem of differential equations (3.2, 3.3, 3.3◦) possesses an elliptic linearization in a C2 neighborhood
of ht, whatever is the choice of right hand sides ft = F (t, z, ht, Dzht) > 0, gt = G(t, z, ht, Dzht) ∈
Herm◦ht(z)(Ez, Ez).

Proof. The proof is similar to the one given in [Dem21], although we have somewhat extended our
perspective and allowed more flexible equations. For simplicity of notation, we put h = ht and, in
general, we set

M := Herm(E) = hermitian forms E × E → C, M+ = positive ones in M,

Mh := Hermh(E,E) = hermitian endomorphisms E → E with respect to h ∈M+,

M◦h := Herm◦h(E,E) = trace free hermitian endomorphisms E → E.

The system of equations (3.2, 3.3, 3.3◦) is associated with the nonlinear differential operator

Q : C∞(X,M+)→ C∞(X,R⊕M◦h), h 7→ Q(h)

defined by Q = QR ⊕Q◦ where

(3.9)


ωh := ΘdetE,deth > 0,

QR(h) :=
(
ωnh/Ω)β Ω−1 ΦP

(
ΘE,h + t ωh ⊗ IdE

)
,

Q◦(h) := (ωnh)−1
(
ωn−1
h ∧Θ◦E,h

)
.

By definition, it is elliptic at h if its linearization dQ(h) is an elliptic linear operator, the exact
determinacy being reflected in the fact that M and R⊕M◦h have the same rank r2 over the field R
of real numbers. Our goal is to compute the principal symbol

σ2(dQ(h)) ∈ C∞(X,S2T R
X ⊗Hom(M,R⊕M◦h))

of the linearized operator dQ(h), and to check that σ2(dQ(h))(ξ) ∈ Hom(M,R⊕M◦h) is invertible
for every non zero vector cotangent vector ξ ∈ T ∗X . For the calculation in coordinates, we fix locally
on X a holomorphic frame (ε0

λ)1≤λ≤r of E, and denote by H0 the trivial hermitian metric for which
(ε0
λ) is orthonormal. Any hermitian metric h is then represented by a hermitian matrix, denoted

again h = (hλµ), such that the corresponding inner product is 〈h•, •〉H0 . It is well known that the
Chern curvature tensor ΘE,h is given locally by the matrix of (1, 1)-forms

ΘE,h = i∂(h−1∂h).

Next, we pick an infinitesimal variation δh of h in C∞(X,M). It is convenient to write it under
the form δh = 〈u •, •〉h = 〈hu •, •〉H0 with u ∈ Mh = Hermh(E,E). In terms of matrices in a fixed
H0-orthonormal frame, we thus have δh = hu, i.e., u = (uλµ) = h−1δh is some sort of “logarithmic
variation of h”. In this setting, we first evaluate (dΘE,h)(δh). We have h + δh = h(I + u) and
(h+ δh)−1 = (Id− u)h−1 modulo O(u2). As an abuse of notation, we will write dΘE,h(u) what we
should write dΘE,h(δh), and likewise for the other differentials; of course this makes no difference in
terms of matrices if at the end of the calculation we express the result in an h-orthonormal (rather
than H0-orthonrmal) frame of E, in which h is represented by the unit matrix. We obtain

dΘE,h(u) = i∂
(
(I − u)h−1∂(h(I + u)

)
− i∂(h−1∂h) mod O(|u|2 + |du|2),
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that is,

(3.10) dΘE,h(u) = ∂(h−1∂(hu))− i∂(uh−1∂h) = −∂∂u+ ∂((h−1∂h)u)− i∂(u(h−1∂h)).

As a consequence, the order 2 part (•)[2] of the linearized operator d(ΘE,h), in other words its
principal symbol is simply given by

(3.10′) (dΘE,h)[2](u) = −i∂∂u.

Since dωh(u) = tr(dΘE,h(u)), we find

(dωh)[2](u) = −i tr ∂∂u = −i∂∂ tr(u), (dΘ◦E,h)[2](u) = −i∂∂u◦,(3.11)

(d logωnh)[2](u) = n (ωnh)−1ωn−1
h ∧ (dωh)[2](u).(3.11′)

In order to compute dQ, we need the differential of the functional ΦP . In the case P = N,N∗, we
have to consider the (nr × nr)-matrix θt(h) of the hermitian form on TX ⊗ E defined by

θt(h) ' ΘE,h + t ωh ⊗ IdE >P 0

(or its transpose), and the logarithmic differential of det(θt(h))1/r is 1
r tr

(
θt(h)−1dθt(h)

)
where

θt(h)−1 = (det θt(h))−1 T (θt(h)cof) and θt(h)cof is the Hom(TX ⊗ E, TX ⊗ E)-cofactor matrix of
θt(h), T (•) the corresponding transposition operator. We pursue our calculations with respect to
ωh-orthonormal coordinates (zj)1≤j≤n on X at a given point z0 ∈ X, and also use later on an
h-orthonormal frame (eλ)1≤λ≤r of Ez0 . We then get respectively

dθt(h)[2](u) = −
(
∂2uλµ
∂zj∂zk

+ t δλµ
∑
ν

∂2uνν
∂zj∂zk

)
(j,λ),(k,µ)

,(3.12)

(d logωnh)[2](u) = −
∑
j,ν

∂2uνν
∂zj∂zj

,(3.13)

d log ΦN (θt)
[2]
h (u) =

−1

r det θt(h)

∑
j,k,λ,µ

θt(h)
cof

jkλµ

(
∂2uλµ
∂zj∂zk

+ t δλµ
∑
ν

∂2uνν
∂zj∂zk

)
,(3.14N )

d log ΦN∗(θt)
[2]
h (u) =

−1

r det T θt(h)

∑
j,k,λ,µ

(
T θt(h)

)cof

jkµλ

(
∂2uλµ
∂zj∂zk

+ t δλµ
∑
ν

∂2uνν
∂zj∂zk

)
(3.14N∗)

where
(
T θt(h)

)cof
is the Hom(TX ⊗ E∗, TX ⊗ E∗)-cofactor matrix of T θt(h). The calculation for

the functional ΦG,p requires a differentiation of (2.17) and is more involved. If we notice that the
differentiation of 〈•, •〉h in h does not contribute to the order 2 terms, we find

d log ΦG,p(θt)
[2]
h (u) =(3.14G)(∫

v∈E
|v|h=1

dσ(v)(
(〈θt(h) · v, v〉h)n

)p
)−1 ∫

v∈E
|v|h=1

n (〈θt(h) · v, v〉h)n−1 ∧ 〈dθt(h)[2](u) · v, v〉h dσ(v)(
(〈θt(h) · v, v〉h)n

)p+1
.

Notice that the p-th power of an (n, n)-form in the first integral and the quotient of an (n, n)-form
by the (p+1)-st power of an (n, n)-form in the second integral actually combine into a dimensionless

value. In normal coordinates, 〈dθt(h)[2](u) · v, v〉h is the (1, 1)-form

(3.15) 〈dθt(h)[2](u) · v, v〉h = −
∑
j,k,λ,µ

(
∂2uλµ
∂zj∂zk

vλvµ + t
∂2uλλ
∂zj∂zk

|vµ|2
)
dzj ∧ dzk.
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Let us begin with the case of Nakano positivity P = N . By the above identities, the logarithmic
differential of the first scalar component QR(h) of Q(h) has order 2 terms

QR(h)−1 (dQR,h)[2](u) = d log ΦN (θt)
[2]
h (u) + β (d logωnh)[2](u)

=
−1

r det θt(h)

∑
j,k,λ,µ

θt(h)
cof

jkλµ

(
∂2uλµ
∂zj∂zk

+ t δλµ
∑
ν

∂2uνν
∂zj∂zk

)
− β

∑
j,ν

∂2uνν
∂zj∂zj

,

=
−1

r det θt(h)

∑
j,k,λ,µ

θt(h)
cof

jkλµ

(
∂2u◦λµ
∂zj∂zk

+
(
t+

1

r

)
δλµ
∑
ν

∂2uνν
∂zj∂zk

)
− β

∑
j,ν

∂2uνν
∂zj∂zj

,(3.16N )

and we get a similar expression for ΦN∗ by (3.14N∗). Finally, we compute the order 2 terms in the
differential of the second component

h 7→ Q◦(h) = (ωnh)−1 (ωn−1
h ∧Θ◦E,h) ∈M◦h .

The above calculations imply

dQ◦(h)[2](u) = − n(ωnh)−2
(
ωn−1
h ∧ (dωh)[2](u)

)
·
(
ωn−1
h ∧Θ◦E,h

)
+ (n− 1) (ωnh)−1

(
ωn−2
h ∧ (dωh)[2](u) ∧Θ◦E,h

)
+ (ωnh)−1

(
ωn−1
h ∧ (dΘ◦E,h)[2](u)

)
.

If we denote Θ◦E,h =
∑

j,k,λ,µ c
◦
jkλµ dzj ∧ dzk ⊗ e∗λ ⊗ eµ at z0, this yields

dQ◦(h)[2](u) = +
1

n

∑
j,ν

∂2uνν
∂zj∂zj

·
∑
k,λ,µ

c◦kkλµ e
∗
λ ⊗ eµ

− 1

n

∑
j,k,λ,µ,ν

(
∂2uνν
∂zj∂zj

c◦kkλµ e
∗
λ ⊗ eµ −

∂2uνν
∂zk∂zj

c◦jkλµ e
∗
λ ⊗ eµ

)

− 1

n

∑
j,λ,µ

∂2u◦λµ
∂zj∂zj

e∗λ ⊗ eµ

=
1

n

∑
j,k,λ,µ,ν

∂2uνν
∂zk∂zj

c◦jkλµ e
∗
λ ⊗ eµ −

1

n

∑
j,λ,µ

∂2u◦λµ
∂zj∂zj

e∗λ ⊗ eµ.(3.16◦)

The principal symbol σ2(dQ(h)) at h, taken on a cotangent vector ξ ∈ T ∗X , is thus given by the two
components σ2(dQR(h)) and σ2(dQ◦(h)) such that

σ2(dQR(h))(ξ) · u
dQR(h)

=
−1

r det θt(h)

∑
j,k,λ,µ

θt(h)
cof

jkλµ ξjξk

(
u◦λµ +

(
t+

1

r

)
δλµ tr(u)

)
− β |ξ|2 tr(u),

(3.17, 3.17◦)

σ2(dQ◦(h))(ξ) · u = − 1

n

ωnh
Ω

∑
λ,µ

(∑
j 6=k

(
c◦kkλµ |ξj |2 − c◦jkλµξjξk

)
tr(u) + |ξ|2 u◦λµ

)
e∗λ ⊗ eµ.

By definition dQ(h) is elliptic if and only if σ2(dQ(h))(ξ) ∈ Hom(Mh,R ⊕M◦h) is injective for all

cotangent vectors ξ 6= 0. Now, since t + 1
r > 0 and since the cofactor matrix is hermitian positive

by the Nakano positivity assumption, we see that the vanishing of σ2(dQR(h))(ξ) · u implies by a
simple Cauchy-Schwarz argument that

(3.18) | tr(u)| ≤ 1

βr

|θt(h)cof |
det θt(h)

|u◦|,

where the norms of tensors are taken with respect to (E, h) and (TX , ωh). By plugging this in-
equality into σ2(dQ◦(h)), taking the inner product with u◦ =

∑
λ,µ u

◦
λµ e

∗
λ ⊗ eµ and using again
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Cauchy-Schwarz, we see that σ2(dQR(h))(ξ) · u = 0 entails

〈−σ2(dQ◦(h))(ξ) · u, u◦〉 ≥ 1

n

ωnh
Ω

(
|ξ|2 |u◦|2 − (

√
n− 1 + 1) |Θ◦E,h| |ξ|2 |u◦| | tr(u)|

)
,

hence

(3.18◦)
∣∣σ2(dQ◦(h))(ξ) · u

∣∣ ≥ 1

n

ωnh
Ω
|ξ|2 |u◦|

(
1−
√
n− 1 + 1

βr

|Θ◦E,h| |θt(h)cof |
det θt(h)

)
.

Let us introduce the “distortion function” βN,t,h ∈ C0(X,R+)

(3.19N ) βN,t,h =

√
n− 1 + 1

r

|Θ◦E,h| |θt(h)cof |
det θt(h)

computed at each point z ∈ X and, in a similar manner for dual Nakano positivity,

(3.19N∗) βN∗,t,h =

√
n− 1 + 1

r

|Θ◦E,h| |(T θt(h))cof |
det(T θt(h))

.

Then, for β > supX βN,t,h (resp. β > supX βN∗,t,h), inequalities (3.18) and (3.18◦) imply the
ellipticity of our differential system. In the case of ΦG,p, the identities (3.14G) and (3.15) yield

QR(h)−1 σ2(dQR,h)(u) · ξ = σ2(d log ΦG,p(θt)h)(u) · ξ + β σ2(d logωnh)(u) · ξ

= −β |ξ|2 tr(u)−

(∫
v∈E
|v|h=1

dσ(v)(
(〈θt(h) · v, v〉h)n

)p
)−1

×
∫

v∈E
|v|h=1

n (〈θt(h) · v, v〉h)n−1 ∧
(
〈u◦(v), v〉+ (t+ 1

r ) tr(u) |v|2
)
iξ ∧ ξ dσ(v)(

(〈θt(h) · v, v〉h)n
)p+1

.

By easy estimates left to the reader, this leads in the case of the Griffiths functional to the distortion
function

βG,p,t,h = (
√
n− 1 + 1) |Θ◦E,h|

×

(∫
v∈E
|v|h=1

dσ(v)(
(〈θt(h) · v, v〉h)n

)p
)−1 ∫

v∈E
|v|h=1

n (〈θt(h) · v, v〉h)n−1 ∧ ωh dσ(v)(
(〈θt(h) · v, v〉h)n

)p+1
,(3.19G)

where βG,p,t,h(z) is obtained by computing the integrals fiberwise on Ez. The proof of Theorem 3.8
is complete.

3.20. Remark. It the curvature tensor ΘE,h(z) happens to be just rescaled by a positive multipli-
cation factor at some point z ∈ X, the value of the above distortion function βP,t,h(z) can be seen
to remain invariant. In some sense, βP,t,h(z) measures the ratio of “eigenvalues” along directions of
maximum and minimum P -positivity for ΘE,h+ tΘdetE,deth⊗ IdE , at each point z ∈ X. Hopefully,
there might be a way of relating these distortion functions to simpler geometric invariants, such as
the slopes in the Harder-Narasimhan filtration of E with respect to c1(E).

Our next concern is to ensure that the existence and uniqueness of solutions hold, at least on
suitable subsets of R×C∞(X,M+), consisting of pairs (t, h) such that θE,h+tΘdetE,deth⊗IdE >P 0.
We fix such a pair (t0, h0) and use H0 = ht0 and ωt0 = ΘdetE,detht0

as the reference metrics on E

and TX respectively. For K ≥ K0 � 1, we consider the subset SK ⊂ ] − 1/r, t0] × C∞(X,M+) of
pairs (t, h) such that

(3.21) |h|C2 ≤ K, |h−1|C2 ≤ K, θE,h + tΘdetE,deth ⊗ IdE ≥P K−1 ω0 ⊗ IdE

with respect to (H0, ωt0). In the case of a rank one metric h = e−ϕ, it is well-known that the Kähler-
Einstein equation (ω0 + i∂∂ϕt)

n = etf+λϕtωn0 yields easily the openness and closedness of solutions
when λ is positive, as a consequence of the fact that the linearized operator ψ 7→ ∆ωϕt

ψ − λψ
is always invertible. Here we can still play the game of adjusting the right hand sides ft, gt in
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(3, 3, 3.3◦) to achieve the invertibility of the related elliptic operator Q̂, at least for (t, h) ∈ SK .
Before doing so, we introduce some notation. If h ∈ Herm(E) is a hermitian form, we have an
isomorphism

(3.22) Herm(E)→ Hermht0
(E,E), h 7→ h̃ such that h(v, w) = 〈v, w〉h = 〈h̃(v), w〉ht0 ,

and for h ∈ Herm+(E), we let log h̃ ∈ Hermht0
(E,E) be its logarithm as a hermitian endomorphism.

Finally, we define h̃(1) = (det h̃)−1/rh̃, so that det(h̃(1)) = 1 and

(3.23) log h̃(1) = (log h̃)◦ ∈ Herm◦ht0
(E,E)

is the trace free part of log h̃. One way to generalize the Kähler-Einstein condition to the case of
arbitrary ranks r ≥ 1 is to consider pairs (t, h) satisfying a differential equation of the form (3.3)
with a factor ft(z) = (detht0(z)/ deth(z))λ, namely

(3.24) ΦP

(
ΘE,h + t ωh ⊗ IdE

)
=

(
detht0
deth

)λ( Ω

ωnh

)β
Ω, where ωh = ΘdetE,deth, λ, β > 0,

and the volume form Ω > 0 is chosen so that equation (3.24) is satisfied by (t0, ht0). The choice
λ > 0 has the advantage that the right hand side gets automatically rescaled when multiplying h
by a constant (while the left hand side remains untouched), thus avoiding a trivial non invertibility
issue. When r = 1, one easily sees that equation (3.24) actually reduces to the usual Kähler-
Einstein equation. By Uhlenbeck-Yau [UhY86], if one chooses for the right hand side of (3.3◦) a

“friction term” gt of the type gt(z) = −ε a(t, z) log h̃(1)(z), a(t, z) > 0, then the Hermite-Einstein
equation always has a solution, although it usually blows up as ε → 0 when E is unstable. This
leads to couple (3.24) with a trace free Hermite-Einstein equation of the form

(3.24◦) ω−nh
(
ωn−1
h ∧Θ◦E,h

)
= −εA(deth) log h̃(1),

where A ∈ C∞(]0,+∞[ ,R+) is a positive function; one could also use more generally a factor
A(detu(z), z) where A ∈ C∞(]0,+∞[ × X,R+), such as A(s, z) = (detht0(z)/s)µ, µ ∈ R. The
precise form of A is irrelevant here, provided that A > 0; one could just take A ≡ 1. The right
hand sides used in (3.24, 3.24◦) do not depend on higher derivatives of h, thus Theorem 3.8 ensures
the ellipticity of the differential system as soon β > supX βP,t,h (see (3.19P )).

3.25. Theorem. Consider the differential operator Q̂ : C∞(X,M+)→ C∞(X,R⊕M◦h) defined by

Q̂R(h) =

(
deth

detht0

)λ
QR(h) =

(
deth

detht0

)λ(ωnh
Ω

)β
Ω−1 ΦP

(
ΘE,h + t ωh ⊗ IdE

)
,(YM)

Q̂◦(h) = Q◦(h) + εA(h) log h̃(1) = ω−nh
(
ωn−1
h ∧Θ◦E,h

)
+ εA(deth) log h̃(1).(YM◦)

where Q = QR ⊕ Q◦ is the operator introduced in the proof of Theorem 3.8. There exist bounds
β0(K) := sup(t,h)∈Sk supX βP,t,h, ε0(K,β) and λ0(K,β) such that for any choice of constants

β > β0(K), ε > ε0(K,β) and λ > λ0(K,β), the elliptic operator defined by (YM, YM◦) pos-
sesses an invertible elliptic linearization dQ̂(h) for all (t, h) ∈ SK . As a consequence, there exists
an open interval [t0− δ0, t0], δ0 > 0, such that the solution ht of the system (Q̂R(h), Q̂◦(h)) = (1, 0)
exists and is unique for t ∈ [t0 − δ0, t0]. This solution ht depends differentiably on t.

Proof. Here, we have to keep an eye on the linearized operator dQ̂ itself, and not just its principal
symbol. We let again u = h−1δh ∈ Hermh(E,E) and use the formulas established for dQ(h) in the
proof of Theorem 3.8. The logarithmic derivative of Q̂R(h) is

(3.26) Q̂R(h)−1 dQ̂R(h)(u) = QR(h)−1 dQR(h)(u) + λ tr(u).

For Q̂◦, we need the fact that, when viewed as a hermitian endomorphism, h◦ = h · (deth)−1/r

possesses a logarithmic variation

(h̃(1))−1δh̃(1) = u◦ = u− 1

r
tr(u) · IdE .
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By the classical formula expressing the differential of the logarithm of a matrix, we have

(d log g)(δg) =

∫ 1

0

(
(1− s)Id + sg

)−1
δg
(
(1− s)Id + sg

)−1
ds

(g and δg need not commute here!), which implies

d log h̃(1)(δh) =

∫ 1

0

(
(1− s)Id + s h̃(1)

)−1
h̃(1)u◦

(
(1− s)Id + s h̃(1)

)−1
ds.

If (αλ)1≤λ≤r are the eigenvalues of h(1) with respect to ht0 and we use an orthonormal basis of
eigenvectors, we obtain in coordinates

d log h̃(1) : δh 7−→ Lh(u◦) =
(
γλµu

◦
λµ

)
1≤λ,µ≤r, γλµ =

αµ
αµ − αλ

log
αµ
αλ
,

where u = (uλµ)1≤λ,µ≤r = h−1δh and the coefficient γλµ > 0 is to be interpreted as 1 if αλ = αµ.
In the end, we obtain

(3.26◦) dQ̂◦(h)(u) = dQ◦(h)(u) + ε
(
A(h)Lh(u◦) +A′(deth) deth tr(u) log h̃(1)

)
.

In order to check the invertibility, we compare the operators

d logQR(h)⊕ dQ◦(h) and d log Q̂R(h)⊕ dQ̂◦(h).

The principal symbol calculations (3.17, 3.17◦) show that for β > β0(K) = sup(t,h)∈Sk supX βP,h,t,

the linearized operator d logQR(h) ⊕ dQ◦(h) is elliptic and essentially positive for all (t, h) ∈ SK .
We consider the natural L2 metric on L2(X,M) ' L2(X,R⊕M◦h) defined by

‖u‖2 = ‖ tr(u)‖2 + ‖u◦‖2,
using the hermitian metric h∗ ⊗ h on Hermh(E,E) and the volume element ωnh/n! on X. By the
ellipticity of dQ(h) and an elementary case of G̊arding’s inequality, there exist constants C,C ′ > 0
such that

(3.27) 〈〈d logQR(h)(u)⊕ dQ◦(h)(u), tr(u)⊕ u◦〉〉R⊕M◦h ≥ C ‖∇hu‖
2 − C ′‖u‖2.

Moreover, the estimate is valid with constants C = C(K,β), C ′ = C ′(K,β), uniformly for all
(t, h) ∈ SK . In such a C2 bounded set, we also have bounds

(3.28)

{
〈A(h)Lh(u◦), u◦〉 = A(h)

∑
1≤λ,µ γλµ|u◦λµ|2 ≥ C ′′ |u◦|2,

|A′(deth) deth log h̃(1)| ≤ C ′′′

with C ′′ = C ′′(K), C ′′′ = C ′′′(K) > 0. Estimates (3.26, 3.26◦), (3.27, 3.28) and the Cauchy-Schwarz
inequality imply

〈〈d log Q̂R(h)(u)⊕ dQ̂◦(h)(u), tr(u)⊕ u◦〉〉R⊕M◦h
≥ C ‖∇hu‖2 − C ′‖u‖2 + λ‖ tr(u)‖2 + ε

(
C ′′ ‖u◦‖2 − C ′′′ ‖ tr(u)‖ ‖u◦‖

)
≥ C ‖∇hu‖2 +

(
λ− C ′ − 2(C ′′′)2

2C ′′

)
‖ tr(u)‖2 +

(
1

2
εC ′′ − C ′

)
‖u◦‖2(3.29)

by the inequality ‖ tr(u)‖ ‖u◦‖ ≤ C′′′

2C′′ ‖ tr(u)‖2 + C′′

2C′′′ ‖u
◦‖2. If we take

(3.30) ε > ε0(K,β) =
2C ′

C ′′
, λ > λ0(K,β) = C ′ +

2(C ′′′)2

2C ′′
,

we conclude from (3.29) that d log Q̂R(h)⊕dQ̂◦(h) is an invertible elliptic operator W s+2 →W s for
all Sobolev spaces W s, s ≥ 0. The proof of Theorem 3.25 is achieved by applying standard results
in the theory of elliptic operators and the implicit function theorem.

3.31. Remark. Theorem 3.25 is somehow purely local. The main point would be to obtain more
uniform estimates with respect to the metric h, especially in terms of the distortion fonctions, so
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that one could keep control on the solution throughout the expected maximal interval of time.
This obviously requires a finer analysis than the one we conducted here. If βP,t,h could be better
understood, explicit expressions of the constants C,C ′, C ′′, C ′′′ and thus of ε0(K,β) and λ0(K,β)
would perhaps become accessible by looking more in depth at the Bochner formula.
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