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Department of Applied Mechanics, 24 rue de l’épitaphe, 25000 Besançon, France
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Abstract

The main objective of this work is to study the impact of the choice of in-
put uncertainty models on robustness evaluations for probabilities of failure.
Aleatory and epistemic uncertainties are jointly propagated by considering
hybrid models and applying random set theory. The notion of horizon of
uncertainty found in the info-gap method, which is usually used to assess the
robustness of a model to uncertainty, allows to compare the bounds on the
probability of failure obtained from different epistemic uncertainty models
at increasing levels of uncertainty. Info-gap robustness and opportuneness
curves are obtained and compared for the interval model, the triangular and
trapezoidal possibility distributions, the probabilistic uniform distribution
and the parallelepiped convex model on two academic examples and one in-
dustrial use-case. A specific demand value, as introduced in the info-gap
method, is used as a value of information metric to quantify the gain of in-
formation on the probability of failure between less informative uncertainty
models and a more informative ones.

Keywords: hybrid structural reliability, epistemic uncertainty, robustness,
info-gap, random sets

1. Introduction1

Structural reliability [1] is of particular interest for risk-sensitive indus-2

trial applications such as power generation [2] where system performance,3
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and therefore safety, is subject to uncertainty. In this context, the safety is4

assessed by estimating reliability-oriented quantities of interest such as a low5

probability of failure or a high-order quantile on a specific output variable6

of interest. Two types of uncertainty are commonly distinguished, namely7

aleatory and epistemic [3]. Aleatory uncertainty is associated to natural ran-8

domness while epistemic uncertainty is understood as ignorance due to a9

lack of knowledge and is therefore potentially reducible. High-risk systems10

models are typical cases where epistemic uncertainty can be found as they11

often represent events that are rarely or never encountered. However, the12

potential impact of lack of knowledge must still be accounted for in order to13

make an informed decision on the safety of the system.14

The notion of robustness has many interpretations and mathematical15

representations [4]. It is defined in this paper as the capacity of the system16

to fulfill a criterion despite differences between its predicted and operational17

behaviors which is a key point in engineering and more specifically in safety18

assessment. The info-gap framework [5] proposes a metric that quantifies19

the robustness of a possible decision to epistemic uncertainty by calculating20

its worst performance at increasing levels of uncertainty in order to privilege21

tolerance to unexpected situations over performance at a poor estimate of22

the system’s environment [6]. Info-gap may be applied in a wide range of23

fields where decisions under severe uncertainty need to be made such as24

in structural design under seismic loads [7], climate policies [8] or water25

resource planning [9]. Its application to reliability quantities of interest such26

as probabilities of failure has been studied less. One example concering27

the reliability of penstocks can be found in [10] where epistemic uncertainty28

affects physical variables and input distribution parameters which can be29

seen as a parametric probability box problem.30

While aleatory uncertainty is systematically treated using the probabilis-31

tic framework, many different, yet potentially related, representations are32

used to deal with epistemic uncertainty. If the info-gap framework chooses33

to use convex models of uncertainty [11], other representations such as in-34

terval model (which is a special case of convex models), Dempster-Shafer35

structures [12], possibility distributions [13] or probability boxes [14] are also36

common. Beer et al. [15] and Zio and Pedroni [16] propose reviews for such37

methods. In many applications, both types of uncertainty coexist. There-38

fore, the standard reliability analysis for which only aleatory uncertainty is39

modeled must be transformed to hybrid reliability analysis (HRA). A gener-40

alized framework is thus required to estimate hybrid reliability quantities of41
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interest. Random set (RS) theory [17] provides such framework as it enables42

to represent and propagate combined uncertainty representations in order to43

estimate, for example, the bounds on the probability of failure.44

A robustness analysis depends on how the epistemic uncertainty is mod-45

eled. Two different convex models may lead to different values of probabilities46

of failure which in turn leads to the following question: to what extent does47

the choice of the epistemic uncertainty representation affect a robustness48

analysis? In this paper, in the context of HRA, a methodology is proposed49

to assess, within the info-gap framework, the robustness of small probabilities50

of failure with respect to the choice of a specific representation of epistemic51

uncertainty in the inputs. To do so, several epistemic uncertainty models are52

considered using RS theory. This methodology enables to compare info-gap53

metrics - the so-called robustness and opportuneness curves and a value of54

information metric defined as the demand value - obtained from different55

uncertainty representations but also to highlight their implicit relationships.56

The paper is organized as follows: Section 2 reviews the formulation of a57

HRA with the use of RS theory and ends with the main aspects of an info-gap58

analysis; Section 3 describes the framework that is used and how info-gap and59

RS theory are combined to compare uncertainty representations; Section 460

shows the results of the methodology applied to two academic examples and61

one industrial use-case that concerns the structural reliability of penstocks;62

finally Section 5 proposes some discussions about the presented work before63

concluding it in Section 6.64

2. Hybrid reliability analysis65

2.1. List of common epistemic uncertainty representations66

The probabilistic framework is a very powerful and detailed way to model67

and propagate aleatory uncertainty. Appendix A briefly recalls how such68

framework may be used for standard reliability analysis and more specifically69

for estimating a probability of failure. Nevertheless, the exact knowledge of70

the joint probability density function (pdf) fX requires the knowledge of71

the marginal pdf of each component Xi and the dependence structure (i.e.,72

the copula) between components which is often not known especially when73

only limited data is available. Epistemic uncertainty characterizes the lack74

of information as it is potentially reducible by gathering more knowledge.75

As mentioned in the introduction, many types of epistemic models can be76

found in the literature depending on the nature of the uncertainty and the77
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available information. The main properties of the uncertainty representations78

investigated in this paper, namely interval model, convex model, evidence79

theory, possibility distributions and probability box (p-box) theory, are given80

in Appendix B and may be further investigated by the reader with the81

corresponding references. In order to maintain a coherence in the rest of the82

paper, the variables that are modeled by such representations are described83

by the vector Y = (Y1, Y2, . . . , YnY )>.84

Links between the different uncertainty models mentioned above. Fig. 1 sum-85

marizes the main links between the different uncertainty representations86

when considering structural reliability where each number has the follow-87

ing meaning:88

1. Adds the information of dependency with a convex model and its co-89

efficient of correlation;90

2. Assigns weights to subsets of the interval with the mass distribution ν;91

3. Assigns a possibility distribution π (·) in the interval;92

4. Y L = Y U ;93

5. Adds the information of the probability law;94

6. F Y = F Y ;95

7. F Y = Pl (Y ≤ y) and F Y = Bel (Y ≤ y) (see [18] for more information);96

8. Discretizes the support of the distribution into disjoint intervals of97

weight ν (]yi, yi+1]) = νi = Pr (Y ∈ ]yi, yi+1]) (see [18] for more infor-98

mation);99

9. F Y = N (Y ≤ y) and F Y = Π (Y ≤ y) (see [18] for more information);100

10. Discretizes the possibility distribution into nested intervals by equally101

discretizing the α-axis and assign the weight νi = αi − αi+1 to the102

corresponding interval
[
yi, yi

]
which is the αi-cut (see [18] for more103

information).104

The figure can be read from top to bottom in terms of added informa-105

tion and a solid line represents the path from a less informative model to a106

more informative one. The dotted lines represent a path from a model to107

another without adding information. Note that a solid line could be added108

from the interval to the probability boxes but has been removed here to make109

the diagram easier to read. The comparison in terms of degree of informa-110

tion cannot be made in the proposed context between two models with no111

solid line joining them. For example, a convex model and the free p-box112
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Figure 1: Diagram of various uncertainty representations.

representation are not directly comparable. Two groups of models may be113

distinguished in the diagram. On the left side, the uncertainty representa-114

tions are interval-based. If no information is added to the bounds of the115
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epistemic variables, the interval model and more generally the convex model116

may be used. DS structures and possibility distributions enable to divide the117

initial interval into more or less plausible smaller intervals based on expert118

knowledge. These representations reduce to a deterministic value with no119

epistemic uncertainty. On the right side, the uncertainty representations are120

probability-based. The path of information goes from the free to the para-121

metric p-box representations and finally reduces to the purely probabilistic122

representation. Although these two groups of models seem to be built on123

different theoretical frameworks, the dotted lines show how they may be re-124

lated in the context of reliability. Indeed, the following section explains how125

these models may be modeled in a common framework.126

2.2. Hybrid reliability analysis using random set theory127

This work falls in the scope of HRA, meaning that the input vector can
be divided into two vectors, namely X and Y where X is a random vector
with a fully determined pdf fX and Y contains the input variables subject to
epistemic uncertainty and described by one of the models mentioned previ-
ously. For a given realization of the random vector X, the hybrid limit-state
function g (X,Y) is also a random set. As such, it is not possible to compute
a single probability of failure as in standard reliability analysis but only its
bounds denoted by

[
Pf, Pf

]
where:

Pf = Pr [g (X,Y)] = Pr [max g (X,Y) ≤ 0] (1a)

Pf = Pr
[
g (X,Y)

]
= Pr [min g (X,Y) ≤ 0] . (1b)

In order to apply the existing probability of failure estimation methods128

to the hybrid problem, a framework that enables the propagation of random129

variables with a mixture of different epistemic models is needed. RS theory130

makes it possible [19, 20] as it generalizes probabilistic and epistemic models.131

A random set is very closely related to evidence theory and is defined by the132

function Γ:133

Γ :

∣∣∣∣ Ω −→ A
α −→ Γ (α)

(2)

where A is the focal set and Γ (α) is a focal element. In other words, a
random set is similar to a random variable whose realization is a set in A,
not a scalar. The event E is bounded by an upper probability and a lower
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probability that are quite similar to Eqs. (6.a) and (6.b):

PΓ (E) = PΩ ({α ∈ Ω : Γ (α) ⊆ E,Γ (α) 6= ∅}) (3a)

PΓ (E) = PΩ ({α ∈ Ω : Γ (α) ∩ E 6= ∅}) (3b)

with PΓ := PΩ ◦ Γ−1. This definition links RS with the different uncertainty134

representations mentioned before as presented in Table 1 which gives the135

corresponding RS for each uncertainty representation.

Table 1: The expression of ΓYi
(α) for each uncertainty representation.

Uncertainty model ΓYi (α)
Interval IYi
Convex C (IY ,ρ)
Possibility {y ∈ Yi : πYi (y) ≥ α}
Free p-box

[
F
−1

Yi
(α) , F−1

Yi
(α)
]

Probability F−1
Yi

(α)

136

A RS can also be obtained from evidence theory by relating it to the
p-box representation as shown in Fig. 1. The interval and convex models
are special cases where the RS is actually a constant set as the function does
not depend on α. The probability model is a special case where the random
set is a singleton. A sample of the random set in higher dimension than one
is obtained by sampling the vector α from a copula C and computing the
Cartesian product ×nαk=1Γk (αk) which is a nα-box with nα = nX + nY being
the number of input variables. The limit-state functions in Eqs. (11.a) and
(11.b) can be rewritten as follows:

g (X,Y) = g (α) = max
Γ(X,Y )(α)

g (α) (4a)

g (X,Y) = g (α) = min
Γ(X,Y )(α)

g (α) (4b)

which yields for the bounds on Pf:

Pf =

∫
Ω

1g(α)≤0dC (α) (5a)

Pf =

∫
Ω

1g(α)≤0dC (α). (5b)
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The HRA problem thus reduces to two standard reliability analyses for
which standard estimation methods may be used. It is important to notice, as
pointed out in [21], that when considering only interval or parametric p-box
models on Y, the bounds obtained using the RS framework are larger than
the ones obtained by applying a straightforward search for the maximum and
minimum of the probability of failure in the interval domain (on the physical
variables or the distributional parameters). For example, with the interval
model, the following equations hold:

Pr

[
max

Γ(X,Y )(α)
g (α) ≤ 0

]
≤ min

DY
Pr [g (X,Y) ≤ 0] (6a)

Pr

[
min

Γ(X,Y )(α)
g (α) ≤ 0

]
≥ max

DY
Pr [g (X,Y) ≤ 0]. (6b)

When estimating the bounds of the probabilities of failure when considering137

the interval or distributional p-box models in the following application cases,138

the results obtained by applying RS theory will be compared with those139

obtained by performing a global optimization on the probability of failure140

using DIRECT algorithm [22].141

2.3. Robustness analysis142

Robustness analysis is of particular interest in engineering applications.143

A system is considered robust if small variations on an expected state of op-144

eration do not considerably deteriorate the expected performance. A robust145

solution may be preferable over a non-robust optimal solution [6]. The info-146

gap framework aims at quantitatively measuring this notion of robustness147

in the context of decision making by introducing the following robustness148

function h∗IG given by:149

h∗IG = max
h

{
max

u∈U(h,
∼
u)
R (q,u) ≤ rc

}
(7)

where h∗IG is defined as the maximum amount of uncertainty that can be150

tolerated, i.e., for which the worst possible performance is still acceptable.151

Three components appear in the info-gap robustness function in Eq. (7):152

• the performance function R (q,u) that evaluates the quantity of in-153

terest of a system of characteristic vector q at specific values of the154

uncertain vector u;155
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• the critical performance rc which is the value that the quantity of inter-156

est must not exceed (to be distinguished with the threshold zth intro-157

duced in Eq. (A.1)). Its value may be determined or not in an info-gap158

analysis;159

• the uncertainty model U
(
h,
∼
u
)

which is usually a non-probabilistic160

convex set, as introduced in Section 2.2, of horizon of uncertainty161

h ∈ R+ containing the best estimation ũ (nominal value of u) of the162

uncertain vector u. For h = 0, U (h, ũ) reduces to ũ.163

A key feature of the convex uncertainty models is that they are nested as the164

illustrative example depicted in Fig. 2:165

U
(
h1,

∼
u
)
⊆ U

(
h2,

∼
u
)

for h1 ≤ h2. (8)

Therefore, the robustness function is monotonous with respect to the horizon166

of uncertainty and to the performance level.167

Uncertainty can also be beneficial as the real performance of the system168

may be better than the expected one. To illustrate this point, the oppor-169

tuneness function β∗IG is defined as:170

β∗IG = min
h

{
min

u∈U(h,
∼
u)
R (q,u) ≤ rw

}
(9)

where rw can be seen as a reward threshold. The idea with the IG framework171

is to compare the robustness values of different possible decisions d in order172

to retain the most robust one for a given critical performance value. The173

most robust decision may depend on the choice of the critical performance174

value as seen in Fig. 2 (right) where both curves cross each others. The175

decision d2 is more robust before the curves intersect but the decision d1 is176

more robust after. This crossing of robustness curves is called the preference177

reversal. Few hypotheses are required in an IG analysis as it can be conducted178

only with the choice of a non-probabilistic convex uncertainty model and the179

best guess of the uncertain vector u, e.g., its nominal value. However, both180

hypotheses may have an influence on the robustness evaluation. The effect181

of the uncertainty model on the robustness curve can be seen as a value182

of information (VoI) analysis [23] where the aim is to quantify the gain in183

robustness when using a more informative uncertainty model than another184
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one. An IG uncertainty model U1 is more informative than U2 if the following185

set inclusion is obtained:186

U1

(
h,
∼
u
)
⊂ U2

(
h,
∼
u
)
,∀ h ≥ 0. (10)

For a given critical performance rc, U1 will yield a higher robustness value.187

For a given horizon of uncertainty, the worst performance in U1 will be better188

than the one in U2. These comparisons are expressed respectively as the189

robustness premium ∆h∗ and the demand value ∆rc.190

Figure 2: Nested convex sets (left) and associated robustness curves with preference re-
versal (right).

3. A new framework for assessing robustness in hybrid reliability191

analysis192

3.1. HRA framework193

The goal in this work is to analyse the effect of the choice of an epistemic194

uncertainty model on the robustness of a reliability quantity of interest. Here,195

one considers the bounds of the probability of failure obtained by HRA as the196

two quantities of interest. As mentioned in Section 2, the limit-state function197

g (X,Y) depends on both vectors X and Y. The vector X contains the input198

variables Xi that are modeled as random variables. The joint distribution199

fX (x) is considered perfectly determined (no epistemic uncertainty). The200

vector Y contains the input variables Yi for which epistemic uncertainty201

does not allow a well defined deterministic or probabilistic modeling. As202

it was seen in Section 2, RS theory enables to model and propagate many203

different uncertainty models together (including probabilized inputs). In204
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order to compare the effect of each epistemic uncertainty model, the bounds205

on the probability of failure are estimated and compared for a same epistemic206

representation of each input variable Yi. The different epistemic models for207

which results are shown in this paper are:208

• interval model;209

• parallelepiped convex model;210

• possibility triangular distribution;211

• possibility trapezoidal distribution;212

• DS structures;213

• free and parametric p-boxes.214

Probabilistic uniform distributions on Yi are also added to the compar-215

ison. In order to estimate the bounds on the probability of failure, Eqs.216

(15.a) and (15.b) need to be evaluated. The inner loop which corresponds217

to the search of the minimum and maximum of the limit-state function for218

one realization of the random set Γ (α) may be performed using an opti-219

mization algorithm. The outer loop corresponds to the estimation method220

of the probability of failure. As an inner optimization loop is involved, HRA221

usually requires more evaluations of the limit-state function than a standard222

reliability analysis. Moreover, the lower bound of the probability of failure223

to be estimated may be very small (e.g., such that Pf < 10−5). Therefore,224

some estimation methods such as crude Monte Carlo sampling may not be225

practicable. In this paper, the outer loop is mainly performed with an Im-226

portance Sampling around the most probable failure point obtained with a227

FORM analysis [24]. The Subset Simulation algorithm [25] is also used in or-228

der to verify the results. However, note that several other advanced sampling229

methods could have been used here (e.g., directional sampling, line sampling)230

[26].231

3.2. Comparison by means of info-gap robustness and opportuneness curves232

As seen in Section 2.3, the IG framework quantifies the notions of ro-233

bustness and opportuneness to uncertainty by building nested convex sets234

around a nominal state which represents the analyst’s best guess. An in-235

teresting feature is that it enables to compare different possible decisions236
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in view of choosing the one that maximizes the robustness given a critical237

performance. IG analysis can also be used to assess the VoI induced by a238

more informative input model. Indeed, the different decisions can be directly239

linked to the choice of different uncertainty models Ui (h, ũ) that each has its240

own degree of information. Therefore, it is possible to compare robustness241

and opportuneness curves of different uncertainty models for Y by consider-242

ing the random set function Γi as the info-gap uncertainty model as follows:243

Ui

(
h, Ỹ

)
= Γi (α, h) (11)

with:244

Γi :

∣∣∣∣∣ [0, 1]nY × R+ −→ SuppY

(
h, Ỹ

)
(α, h) −→ Γi (α, h)

(12)

where [0, 1]nY is the unit hypercube and SuppY is the support of Y that gets245

wider when the horizon of uncertainty h increases:246

SuppY

(
h, Ỹ

)
=
{
Y : Ỹ (1− h) ≤ Y ≤ Ỹ (1 + h)

}
, h ≥ 0. (13)

The robustness function in Eq. (7) translates with the proposed method-247

ology to:248

h∗IG = max
h

{
P f (Γi) ≤ P cr

f

}
(14)

where P cr
f is the critical probability of failure that may or may not be known.249

In practice, instead of searching for h∗IG, the robustness curve can be plotted250

by estimating P f for a certain number nh of horizons of uncertainty that251

belong to a chosen interval hj ∈ [0, hmax] , j = 1, · · · , nh. The same method252

can be applied to plot the opportuneness curve by estimating several times253

P f. Note that in Eq. (12) the random set function is only applied on Y for254

the sake of conciseness. In the application cases, the random set function255

also takes into account the random variable X as in Eqs. (14.a) and (14.b).256

Whatever the type of uncertainty model that is used for Y, for a given257

level of horizon of uncertainty h, the same support is used to compare bounds258

obtained from each model which enables a meaningful comparison. Moreover,259

the fact that bounds are calculated for increasing horizons of uncertainty and,260

therefore, growing supports, enables a comparison in terms of robustness261

(upper bound Pf) and opportuneness (lower bound Pf) functions. The larger262

the support, the more impact the choice of the uncertainty model has on the263

bounds of the probability of failure. The following quantity R
(ij)

Pf
is defined264
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in this paper as the demand value between a less informative uncertainty265

model Ui and a more informative uncertainty model Uj and is used as the266

VoI metric:267

R
(ij)

Pf
= 1− Pf (Γi (α, h))

Pf (Γj (α, h))
(15)

The value of this metric, which is negative as Pf (Γi (h)) ≥ Pf (Γj (h)), shows268

how the added information from model Ui to model Uj diminishes, in terms269

of percentage, the upper bound of the probability of failure. A similar metric270

could be defined with the lower bound to quantify how a more informative271

model reduces the best possible outcome. This last metric is not used in272

this paper since, in the context of a reliability analysis, the main concern is273

to understand how the worst possible outcome may be reduced with more274

information.275

3.3. Sensitivity to the gain of information276

The field of sensitivity analysis has a very large background which is not277

discussed in this paper as it is not the main topic [27]. Sensitivity analy-278

sis aims at identifying the variables that have a significant impact on the279

quantity of interest in order to simplify the numerical model or to help the280

analyst decide where to judiciously allocate resources [28]. Many metrics281

exist depending on the analyst’s objective. In this paper, a simple metric is282

defined in order to identify the epistemic variables where added information283

contributes the most to the global gain of information on the bounds of the284

probability of failure. The idea is then to compare the demand value RPf
ob-285

tained by considering a more informative uncertainty representation on one286

variable at a time and compare it with the value obtained when considering287

all variables at once. The following metric is defined:288

S
(ij)
Yk

=
R

(ij)(k)

Pf

R
(ij)

Pf

. (16)

where:289

R
(ij)(k)

Pf
= 1− Pf (Γi (α, h))

Pf

(
Γ

(k)
j (α, h)

) (17)

with Γ
(k)
j = [Γi (α1, h) , · · · ,Γj (αk, h) , · · · ,Γi (αnY , h)]>. This metric gives290

the contribution of information gained from an uncertainty model to a more291
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informative one brought by each variable. The metric depends on the hori-292

zon of uncertainty which means that a variable may be informative for some293

range of horizon of uncertainty and less informative for other values. This294

characteristic can contribute valuable knowledge to the decision-making pro-295

cess.296

3.4. Proposed methodology297

This section aims at summarizing the steps that are followed to apply the298

proposed methodology to three reliability problems. The different steps are299

presented in Fig. 3 where each box is detailed as follows:300

1. Compute the limit-state function g (X,Y), build a comparison group301

G that contains different uncertainty models Mi to be compared, define302

the values of the horizon of uncertainty hj for which the bounds on the303

probability of failure will be estimated, associate the joint cumulative304

distribution function FX (x) to X and the nominal values Ỹ to Y;305

2. Get the random set function Γi that corresponds to the uncertainty306

model Mi as presented in Table 1;307

3. Compute the support SuppY

(
hj, Ỹ

)
as defined in Eq. 13 which en-308

ables to compute the random set function Γi (α, hj) as defined in Eq.309

12;310

4. For each discretized value hj, estimate the bounds on the probability311

of failure where each random variable αk follows the standard uniform312

distribution and each corresponding realization is either the maximum313

value of the limit-state function in Γi (α, hj) (estimation of Pf) or the314

minimum value (estimation of Pf) obtained with an optimization al-315

gorithm. The privileged method used to estimate the probabilities is316

FORM-IS but SS is also used as a verification method. More details317

on the optimization and probabilities estimation algorithms are given318

in Section 4.1;319

5. Once the bounds on the probability of failure are obtained for each320

discretized horizon of uncertainty hj and for each uncertainty model321

Mi, the VoI metric RPf
, as defined in Eq. 15, is evaluated;322

6. Show the robustness (Pf) and opportuneness (Pf) curves obtained with323

each uncertainty model Mi and show the surface plot RPf
(h) which324

is a function of h and the two different uncertainty models that are325

compared in terms of information;326
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Note that the sensitivity analysis is not present in Fig. 3. The only addition327

is the estimation of Pf

(
Γ

(k)
j (α, h)

)
in Eq. 17 which requires to consider the328

more informative model Mj on one variable Yk at a time and compute S
(ij)
Yk

329

as defined in Eq. 16.330

4. Applications331

4.1. Test cases and numerical tools used332

The methodology that is proposed throughout this paper is applied on333

two academic examples, or toy-cases, and one industrial case which is rel-334

evant to the French electricity supplier EDF. The two academic examples335

correspond to modified versions of the three-dimensional Rosenbrock func-336

tion and a two-degree-of-freedom oscillator system. The main objective is337

to compare robustness and opportuneness curves obtained from various un-338

certainty models with increasing level of informativeness. Therefore, the339

following groups of comparison are created:340

• M1: interval RS, interval DIRECT, trapezoidal possibility distribution,341

triangular possibility distribution, probabilistic uniform distribution;342

• M2: interval RS, parallelepiped convex model;343

• M3: free p-box, parametric p-box.344

The group M1 corresponds to added information represented by the solid345

lines 3 and 4 in Fig. 1 and the solid line that could have been plotted346

between the interval and probability boxes. When considering the interval347

model, a distinction is made between “interval RS” which means that the348

bounds on the probability of failure are estimated using RS theory (left side349

of the inequalities in Eq. (16)) and “interval DIRECT” which means that the350

bounds are estimated by using the global optimization algorithm DIRECT351

directly on the probability of failure (right side of the inequalities in Eq.352

(16)). The group M2 corresponds to added information represented by the353

solid line 1. The group M3 corresponds to added information represented by354

the solid line 5.355

Robustness and opportuneness curves are also presented in order to verify356

numerically the links between possibility distributions, DS theory, p-boxes357

and probability distributions. The following groups of comparison are defined358

for that purpose:359
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1: Initialization
g (X,Y) : limit-state function

M = [M1, · · · ,Mi, · · · ,MnM ]
h = [0, · · · , hj, · · · , hmax]
X → FX (x)

Y → Ỹ

2: Association of the RS function with the uncertainty model
Mi ←→ Γi

3: Computation of SuppY

(
hj, Ỹ

)
and Γi (α, hj)

4: Estimation of the bounds on Pf[
Pf (Γi (α, hj)) , Pf (Γi (α, hj))

]

5: Computation of the VoI metric R
(ij)

Pf

6: Graphs

Plot Pf (Γi (α, h)), Pf (Γi (α, h)), R
(ij)

Pf

j ← j + 1

i← i+ 1

Figure 3: Workflow of the proposed methodology.
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• M4: triangular possibility distribution, DS structures, free p-box;360

• M5: DS structures, probabilistic uniform distribution.361

The group M4 corresponds to the dotted lines 7, 9 and 10 in Fig. 1. The362

group M5 corresponds to the dotted line 8.363

Parametric p-box results are also obtained using the DIRECT algorithm364

in the hyperrectangle resulting from each uncertain hyperparameter of the365

distribution law represented as a interval. For all the other models, the366

bounds are estimated using the RS framework. Moreover, hybrid limit-state367

functions are shown with the Rosenbrock function and the previously defined368

sensitivity and VoI metrics are computed. The methodology was numerically369

implemented with Python using mainly the Scipy package to solve the op-370

timization problems (scipy.optimize module) arising from the hybrid limit-371

state functions, and the OpenTURNS software [29] to estimate probabilities372

of failure using mainly FORM-IS but also Subset Simulation for verification.373

When available, the robustness and opportuneness curves are given with their374

corresponding 95% confidence interval (dotted lines).375

4.2. Toy case 1: the Rosenbrock function376

The first toy case has the following limit-state function based on Rosen-377

brock function in three dimensions:378

g (X, Y ) = 100
(
Y −X2

2

)2
+(X2 − 1)2+100

(
X2 −X2

1

)2
+(X1 − 1)2−3 (18)

where X1 and X2 follow standard Gaussian distributions and Y is the only379

epistemic variable with a nominal value of Y C = 0.9. Robustness and oppor-380

tuneness curves are obtained by estimating the bounds
[
P f, P f

]
for nh = 15381

horizon levels for h ∈ [0, 0.19]. As Y has a single component, the convex382

model reduces to the interval model. The groups of uncertainty models on383

which results are provided are M1, M3, M4 and M5. The fact that the input384

dimension here is nα = nX + nY = 3 enables to draw the iso-lines of both385

limit-state surfaces g (α, h) = 0 and g (α, h) = 0 in the α-space for different386

values of h and different uncertainty models. Note that the α-space is the387

unit hypercube of dimension nX + nY and that αXi represents the quantile388

order of Xi.389
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M1 results. The isolines of the limit-state functions for the interval model on390

Y are shown in Fig. 4, where the failure domain lies in the ellipsoid shape.391

Since, for a given h, Y is a unique interval, its corresponding random set is392

the same interval and does not depend on αY . Therefore, for a given h, the393

failure domain is a surface. The isolines are given at increasing horizons of394

uncertainty h ∈ [0, 0.19] which is why the plot is three-dimensional. One can395

see how g (α, h) = 0 (used for Pf estimation) gradually expands with h while396

g (α, h) = 0 (used for Pf estimation) gradually reduces as expected.
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h
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0.100
0.125
0.150
0.175

g(α, h) = 0

g(α, h) = 0

Figure 4: Illustration of limit-state surfaces g (α, h) = 0 and g (α, h) = 0 for the interval
representation for the Rosenbrock function.

397

Fig. 5 compares the isolines of the limit-state surfaces between the tri-398

angular and trapezoidal distributions at a given horizon level h = 0.19. In399

this case, the dimension of α is 3 which means that the failure domain is400
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a volume which is why it is illustrated for a single value of h. For a given401

α, the corresponding random set induced by the triangular distribution is402

contained in the random set induced by the trapezoidal distribution. This403

explains why the failure volume obtained from the triangular model is con-404

tained in the one obtained from the trapezoidal model when considering the405

limit-state function g (α, h) = 0 while the opposite happens when considering406

the limit-state function g (α, h) = 0.
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Figure 5: Comparison of g (α) = 0 in (a) and g (α) = 0 in (b) for the triangular and
trapezoidal uncertainty models.

407

The analysis of the limit-state functions already gives a strong intuition408

on the inclusions of the bounds on the probability of failure obtained from409

the different uncertainty representations in M1. Fig. 7.(a) presents the410

robustness and opportuneness curves for the four different uncertainty mod-411

els. The expected inclusions are obtained. One can notice that the extreme412

probabilities of failure remain close to the nominal result except for the lower413

probabilities of failure obtained with the interval model and considering RS414

theory (i.e., interval RS). This could be expected looking at Fig. 4 as the415

ellipses shrink considerably when the horizon of uncertainty grows. Never-416

theless, computing the results of the interval model using the optimization417

method (i.e., interval DIRECT) yields very different results as the bounds418

on the probability of failure become very tight, even tighter than the bounds419
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Figure 6: Comparison of g (α) = 0 in (a) and g (α) = 0 in (b) for the triangular and
uniform uncertainty models.

obtained from the trapezoidal model. This is probably caused by the strong420

non-linearity of the limit-state function.
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Figure 7: Robustness and opportuneness curves for the groups M1 (a) and M3 (b) for the
Rosenbrock function.
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M3 results. Here, the free p-box and parametric p-box models are compared.421

It is recalled that, for an equivalent support, the parametric p-box model422

is more informative than the free p-box model which implies the bounds423

on the probability of failure of the second model to be contained in the424

bounds of the first model. The p-box models (free and parametric) are con-425

structed by considering a Gaussian distribution on Y : Y ∼ N (0.9, σ2) with426

σ ∈ [1− h, 1 + h]. The parametric p-box results are obtained by perform-427

ing an optimization using the DIRECT algorithm on σ. Fig. 7.(b) presents428

the robustness and opportuneness curves. One can see a strong difference429

in behavior as the bounds induced by the parametric p-box model barely430

expand. This difference can again be explained by the strong non-linearity431

of the model.432

M4 and M5 results. The M4 comparison aims, firstly, at numerically illus-433

trating the relation between the triangular possibility distribution and its434

equivalent free p-box representation and, secondly, the link between the tri-435

angular possibility distribution and its discretized DS model. The M5 com-436

parison aims at numerically illustrating the link between the probabilistic437

uniform cdf and its discretized DS model. Fig. 8 compares the limit-state438

functions between the triangular model and its equivalent p-box at h = 0.19.439

It does seem that the limit-state functions of both representations have the440

same volume, though having a different shape. Note that, even if the differ-441

ent scales make it hard to see, the failure domain g (α) ≤ 0 is still included442

in the failure domain g (α) ≤ 0 for both representations as expected.443

Fig. 9 compares the robustness and opportuneness curves for both com-444

parisons and numerically confirms the expected results, despite the noise445

induced by the probability of failure estimations.446

4.3. Toy-case 2: a non-linear oscillator system447

The second toy-case corresponds to an adapted version of a two-degree-448

of-freedom oscillator as shown in Fig. 10 and seen in [30, 31]. The system is449

composed of two masses mp and ms, two springs of stiffnesses kp and ks, two450

damping ratios ζp and ζs and is subjected to a white noise base acceleration451

of intensity S0. By denoting Fs as the force capacity of the secondary spring,452

the reliability of the system is expressed through the following limit-state453
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Figure 8: Comparison of g (α) = 0 in (a) and g (α) = 0 in (b) for the triangular and
triangular-pbox uncertainty models.
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Figure 9: Robustness curves for the groups M4 (a) and M5 (b) for the Rosenbrock func-
tion.

function:454

g (X,Y) = Fs − 3ks

√√√√ πS0

4ζsω3
s

[
ζaζs

ζpζs (4ζ2
a + r2) + γζ2

a

(
ζpω3

p + ζsω3
s

)
ωp

4ζaω4
a

]
(19)
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where γ = ms/mp is the mass ratio, ωp = (kp/mp)
1/2 and ωs = (ks/ms)

1/2
455

the natural frequencies, ωa = (ωp + ωs) /2 the average frequency ratio, ζa =456

(ζp + ζs) /2 the average damping ratio and r = (ωp − ωs) /ωa a tuning param-457

eter. The random vector X gathers nX = 3 independent random variables458

whose probabilistic modeling is given in Table 2. The epistemic vector Y459

is of dimension nY = 5 and its epistemic characteristics are given in Table460

3. One supposes here that nominal values are known for the stiffnesses, the461

damping ratios and the force capacity.462

Figure 10: Two-degree-of-freedom damped oscillator.

The horizon of uncertainty is discretized into 10 values in [0, 0.05]. The463

groups of comparison that are studied are M1 and M2.

Table 2: Input probabilistic modeling of X.

Variable Xi Distribution Mean µXi δ
X1 = mp (kg) Lognormal 1.5 10%
X2 = ms (kg) Lognormal 0.01 10%
X3 = S0 (m.s−2) Lognormal 100 10%

464

M1 results. Before showing the robustness and opportuneness curves for all465

representations, Fig. 11 compares these curves for the trapezoidal repre-466

sentation estimated using the FORM-IS and Subset Simulation algorithms.467

The curves obtained by evaluating the hybrid limit-state functions using the468

vertex method [32] (which states that the extreme values of the limit-state469

function are obtained at combinations of the extreme values of Yi) instead of470
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Table 3: Epistemic characteristics of Y.

Variable Yi Ỹi
Y1 = kp (N.m−1) 1
Y2 = ks (N.m−1) 0.01
Y3 = ζp (1) 0.05
Y4 = ζs (1) 0.02
Y5 = Fs (N) 11

an optimization algorithm are also given in the same figure. The curves sug-471

gest a high confidence in the results obtained with the FORM-IS algorithm472

and seem to confirm the hypothesis introduced with the vertex method.
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Figure 11: Pf estimators comparison for the oscillator case.

473

The robustness and opportuneness curves are given in Fig. 12.(a) and474

the corresponding VoI surface plot in Fig. 12.(b). Once again, the minimum475

probability of failure with the interval-RS model quickly decreases compared476

to the other representations including the interval-DIRECT model. This477

is not so much the case for the maximum probability of failure for which478
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the highest values of RP f
are obtained from the triangle representation to479

the uniform representation. Fig. 13.(a) gives the sensitivity measures from
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Figure 12: Robustness and opportuneness curves (a) and VoI metric (b) considering the
M1 group for the non-linear oscillator case.

480

the interval to the trapezoidal models and Fig. 13.(b) gives the sensitivity481

measures from the trapezoidal to the triangular models. It appears that the482

added information in Fs has, for both cases, the strongest influence on the483

robustness of the probability of failure even if it seems that kp also has a484

strong influence.485

M2 results. Here, the multi-parallelepiped uncertainty model is used to model486

the epistemic vector by considering an equal coefficient of linear correlation487

ρkpζp = ρksζs = ρ. Fig. 14 presents the robustness and opportuneness curves488

for different values of the coefficient of correlation. The 95% confidence in-489

tervals are not depicted for the sake of clarity. As expected, the higher the490

coefficient of correlation in terms of absolute value, the narrower the bounds491

on the probability of failure. Nevertheless, the bounds will shrink signifi-492

cantly as soon as a non-zero coefficient of correlation is given but the results493

between a low or high coefficient do not considerably differ.494
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Figure 13: Sensitivity analysis interval-trapezezoidal (a) and sensitivity analysis
trapezoidal-triangular (b) for the oscillator case.
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Figure 14: M2 comparison for positive coefficients of correlation (a) and M2 comparison
for negative coefficients of correlation (b)

4.4. Industrial use-case: reliability assessment of penstocks495

In this section, the methodology is applied to an industrial use-case rel-496

evant to the French electricity company EDF which concerns the reliability497
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study of penstocks [33, 34]. Note that this industrial application is illustra-498

tive: the choice of epistemic variables should be further substantiated. It is499

meant to demonstrate the feasibility of the methodology on a more complex500

industrial use-case. EDF operates more than 500 penstocks having a total501

length of over 300 km. Penstocks are pipes made of steel used to transport502

water under pressure from the water dam to the hydroelectric turbine. Due503

to thickness loss resulting from corrosion, their mechanical integrity must504

be justified. The usual justification relies on diagnoses involving thickness505

measurements and the evaluation of a deterministic margin factor MF.506

To optimize MF, a general reliability approach was developed to assess507

annual probabilities of failure at year N of a given penstock. Two failure508

modes have been investigated: plastic collapse (parent metal) and brittle509

failure (welds), due to the presence of cracks appearing during the welding510

process. In the present application, only the second failure mode is considered511

since its reliability analysis is more complex:512

• the limit-state function is locally non-differentiable and can be discon-513

tinuous;514

• the annual probability of failure estimated here is a conditional prob-515

ability considering that the penstock passed a hydraulic test after its516

production in the workshop.517

The conditional probability at year N can be expressed as:518

Pf = Pr (GN ∩GN−1 < 0 | Ght ≥ 0) =
Pr (GN ∩GN−1 ≤ 0 ∩Ght ≥ 0)

Pr (Ght ≥ 0)
(20)

where GN is the limit-state function at year N , GN−1 the limit-state func-519

tion at year N − 1 and Ght ≥ 0 is the event that the penstock successfully520

passed the hydraulic test. As the G-function decreases over time due to the521

monotonic corrosion degradation, an equivalent expression is as follows:522

Pf = Pr (GN ×GN−1 < 0 | Ght ≥ 0) =
Pr (GN ×GN−1 ≤ 0 ∩Ght ≥ 0)

Pr (Ght ≥ 0)
(21)

In this work, the last expression will be preferred as it is better to reduce523

the number of intersecting events (from 3 to 2). The expressions of GN ,524

GN−1 and Ght are analytical but depend on too many parameters to be525

detailed here except for the parameters considered in the probabilistic and526
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epistemic vectors. The failure criterion corresponds to the failure assessment527

diagram given in [35]. The probabilistic vector X is of dimension nX = 5528

and its characteristics are given in Table 4 where Rm is the ultimate tensile529

strength, ∆eextra the extra thickness added to the design thickness, ∆ecorr530

the thinning due to water and atmospheric corrosion, ε a parameter used to531

linearly express the yield strength in function of Rm and KIC the tenacity of532

the material.

Table 4: Input probabilistic modeling of X for the penstock use-case.

Variable Xi Distribution Param 1 Param 2 Param 3
X1 = Rm (MPa) Lognormal 480 24 -
X2 = ∆eextra (mm) Normal 0 0.25 -
X3 = ∆ecorr (mm) Normal 1 0.4 -
X4 = ε (MPa) Normal 0 16.816 -
X5 = KIC (MPa.

√
m) Weibull Min 90 4 20

533

The epistemic vector Y is of dimension nY = 3 and its characteristics are534

given in Table 5 where enom is the nominal thickness of the pipe, ∆ean the535

annual loss of thickness and a the height of the crack. It should be noted536

that the values of the parameters of the probabilistic and epistemic variables537

were chosen in a large panel of values that represent the variety of all the538

penstocks operated by EDF in order to have an industrially relevant type of539

penstock which has a nominal probability of failure between 10−9 and 10−8.

Table 5: Epistemic characteristics of Y for the penstock use-case

Variable Yi Ỹi
Y1 = enom (mm) 8
Y2 = ∆ean (mm) 0.06
Y3 = a (mm) 2

540

The standard reliability analysis containing uniquely probabilistic vari-541

ables is performed using FORM-IS with OpenTURNS. Other techniques542

could also have been used such as Subset Simulation. It should be pointed out543

that calculating a conditional probability using RS theory is not as straight-544

forward as in Eqs. (15.a) and (15.b). Indeed, one cannot express in a trivial545

way the maximum or the minimum of the probability of failure as a function546
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of the maximum or minimum of both limit-states GN ×GN−1 and Ght. Nev-547

ertheless in this case, as Y has a greater impact on GN × GN−1 than Ght,548

the following simplification is performed:549

P f ≈
Pr
[
minΓ(α) (GN ×GN−1) ≤ 0 ∩Ght (α∗) ≥ 0

]
Pr [Ght (α∗) ≥ 0]

(22)

where α∗ = arg min (GN ×GN−1). In this industrial use-case, only the max-550

imum probability of failure P f will be of interest. The results of the groups551

of comparison M1, M2 and M3 are given in the following.552

M1 results. The FORM-IS algorithm is, once again, the first choice to esti-553

mate the probabilities. Nevertheless, it is necessary to verify the results with554

another algorithm. Fig. 15 compares the robustness curves obtained with555

the FORM-IS and the Subset Simulation algorithms considering the interval556

model on Y. Despite being less smooth, the results obtained with the Subset557

Simulation algorithm are very similar to those obtained with FORM-IS.
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Figure 15: Pf estimators comparison for the penstock use-case.

558

Fig. 16.(a) shows the robustness curves of M1 and Fig. 16.(b) shows559

the corresponding VoI surface plot of the VoI metric RP f
. Once again, the560
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probabilistic information of a uniform distribution considerably reduces the561

maximum probability of failure and therefore improves the robustness. The562

difference between both interval results is also quite significant.
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Figure 16: Robustness curves (a) and VoI metric (b) considering the M1 group for the
penstock use-case.

563

Fig. 17 presents the sensitivity results from the interval to the trapezoidal564

representations. The classification of the most influential variables on the565

information is quite clear whatever the horizon of uncertainty as the added566

information on enom has a strong influence, on KIC a non-negligible influence567

and on ∆ean a very weak influence.568

M2 results. Fig. 18.(a) presents the results with the multi-parallelepiped569

model by considering a coefficient of correlation ρ = ρY1Y2 between enom and570

∆ean. It seems that a negative coefficient of correlation has no impact on the571

robustness while a positive coefficient has a very limited impact.572

M3 results. The p-box model is constructed by considering a Gaussian dis-573

tribution for Yi: Yi ∼ N
(
Ỹi, σ

2
i

)
with σi ∈ [σ̃i (1− h) , σ̃i (1 + h)] and574

σ̃ = [0.4, 0.003, 0.1]>. For this case, the horizon of uncertainty belongs to575

h ∈ [0, 0.5]. The parametric p-box results are still obtained by performing576
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Figure 17: Sensitivity analysis interval-trapezezoidal for the penstock use-case.
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Figure 18: Robustness curves for the groups M2 (a) and M3 (b) for the penstock use-case.

an optimization using the DIRECT algorithm on σ. Fig. 18.(b) presents the577

robustness curves for both representations. The added information in the578

parametric p-box improves the robustness as expected.579
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5. Discussions580

This section aims in a first place at summarizing all the results from581

above with respect to the objective of this work which is to analyse the effect582

of different models of uncertainty on a robustness analysis in the context of583

HRA. The use-cases enable to numerically translate the links presented in584

Fig. 1 by constructing and comparing opportuneness and robustness curves.585

These links, and therefore the comparison, are divided into two main groups.586

The first one, which involves the comparison groups M1, M2 and M3, shows587

in what extent a more informative uncertainty model may affect robustness588

and opportunity. Indeed, adding information will often lead to a gain in589

robustness (the model can tolerate more uncertainty) and a loss in oppor-590

tunity (more uncertainty is needed for a positive unexpected outcome). In591

the context of HRA, this notion is seen as a narrowing of the bounds of the592

probability of failure until reaching a unique value for purely probabilistic or593

deterministic models. The more the support of the epistemic variables grows594

the more narrowing is observed. On the other hand, the more informative595

a model is the more dependent the quantity of interest is on the hypothesis596

made. Nevertheless, the benefits of acquiring information strongly depend597

on the decision-making context. Indeed, in the case of safety assessment for598

which very small probabilities of failure are estimated, a gain of informa-599

tion is way more valuable if it affects the robustness curve rather than the600

opportuneness curve.601

The behavior of the numerical model (i.e., the limit-state functions in602

the case of HRA) with respect to the epistemic variables also has a key role603

on the value of information. For example, a monotonous behavior will yield604

the same bounds on the probability of failure whether free or parametric605

p-boxes are considered. A reduced convex set (i.e., more informative) will606

have no impact on the robustness curve if the worst performance was initially607

obtained at a point that is still contained in the more informative set. In608

most practical cases, such information may unfortunately only be available609

after the robustness analysis.610

The second main group concerns the comparison groups M4 and M5 which611

emphasize some links between different uncertainty models in the framework612

of this paper. More precisely, it numerically confirms that possibility distri-613

butions and DS structures may also be seen as free p-boxes and that proba-614

bility and possibility distributions may be considered as DS structures (with615

a loss of information that depends on the discretization process). This is616
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interesting for two main reasons. The first one is related to the fact that617

all these uncertainty models with different interpretations and mathematical618

foundations may be intimidating for an average decision maker. These links619

show how different models can be closely related in the context of HRA. The620

second reason is that it enables to widen the use of smart numerical methods621

initially established for a specific uncertainty framework such as p-boxes for622

which a lot of content is proposed.623

Additionally, this section wants to clarify the use of the proposed method-624

ology. The info-gap framework is initially built for taking robust decisions in625

the context of strong uncertainty. The present work does certainly not aim626

at ranking any uncertainty representation nor does it want to emphasize the627

proposed methodology for performing an info-gap analysis. The choice of628

an uncertainty model strongly depends on the available information and on629

the context in which a decision must be made (e.g., a safety requirement).630

The reader is referred to [16] for more insights into the use of the different631

uncertainty representations. The info-gap method brings an additional tool632

for confronting a decision to the hypotheses that were made in order to take633

that decision. Therefore, it is complementary with the probabilistic frame-634

work for decisions based on reliability quantities. The possible combination635

of the different uncertainty models considered through random set theory636

together with the info-gap framework offers a wide range of possibilities for637

conducting a suitable robustness analysis on reliability quantities.638

For example, in this work, the horizon of uncertainty is applied to the639

supports of the epistemic variables for comparison purposes. In some appli-640

cations, the support may be fixed but the uncertainty representation chal-641

lenged. One may consider a nominal precise cumulative distribution function642

that becomes a less informative DS structure (or wider p-box) at increasing643

horizons of uncertainty until finally reaching the interval model. The way of644

performing info-gap remains partially subjective as choices are made by the645

decision-maker. Our idea is to face uncertainty the most objectively in order646

to take a trustworthy decision.647

6. Conclusion648

In this paper, a methodology was proposed in order to analyse the robust-649

ness of the upper bound of a probability of failure with respect to different650

epistemic uncertainty representations in input. In the context of hybrid relia-651

bility analysis, the random set framework is suitable to model and propagate652
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different representations of uncertainty to estimate reliability quantities of653

interest such as bounds on a probability of failure. An info-gap robustness654

analysis was performed by considering each type of uncertainty model in an655

increasing support of the epistemic variables.656

This methodology enabled to compare robustness and opportuneness657

curves between uncertainty models that are more or less informative for658

two academic examples and one industrial use-case related to the reliabil-659

ity assessment of hydraulic penstocks. As expected, it is seen that increasing660

the support of the epistemic variables leads to increasing the effect of the661

choice of the uncertainty model on the bounds of the probability of failure662

and therefore on the robustness analysis. The objective of this study is not663

to determine the best representation of uncertainty, as this depends on the664

available information, but to provide insights about the impact (in terms of665

robustness) of the uncertainty model.666

Such comparison is limited to relatively simple implementations of the667

different components involved whether it is for the uncertainty models, the668

use-cases or the application of info-gap. Moreover, the case of dependencies669

within the random and epistemic variables and between both of them was670

omitted. This is contradictory with the fact of confronting strong hypoth-671

esis with the info-gap method. Finally, no comparison is given in terms of672

function evaluations. Yet, hybrid reliability analysis combined to info-gap673

requires a huge computational effort when no specific hypotheses are made674

as it demands a very large number of evaluations of the initial limit-state675

function. The question of feasibility with complex numerical codes should676

also be part of the analysis.677

Future work will compare the computational effort required as a function678

of the uncertainty model used in a robustness analysis. This comparison679

will depend on many factors and especially on hypotheses that are made680

(for example, the monotony of the limit-state function with respect to the681

epistemic variables), and the numerous strategies that have already been682

developed to reduce the computational burden (for example, combination of683

surrogate models with smart optimization algorithms).684

Appendix A. Standard reliability analysis685

The performance z ∈ R (assumed to be a scalar here for the sake of686

simplicity) of a system is evaluated via an analytical or numerical model687

M(x) where x ∈ RnX with nX the number of input variables. By considering688
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the convention that the performance must not exceed a given threshold zth ∈689

R, the limit-state function g (·) is defined such that:690

g(x) = zth −M (x) . (A.1)

It follows the definition of the failure domain F :691

F = {x ∈ DX, g (x) ≤ 0} (A.2)

with F0 = {x ∈ DX, g (x) = 0} the limit-state surface. In order to determine692

whether the system lies in the failure or safety domain, the uncertain input693

variables xi (i = 1, . . . , nX) are modeled using the probabilistic framework.694

The input vector is considered as a realization of the random vector X =695

(X1, X2, . . . , XnX )> to which a supposedly known joint probability density696

function (pdf) fX is attributed. One may then calculate a reliability quantity697

of interest such as the probability of failure Pf defined as:698

Pf = Pr [g (X) ≤ 0] =

∫
F
fX (x) dx =

∫
RnX

1F (x) dx (A.3)

where 1F is the indicator function that is equal to one when the event x ∈ F699

is realized and zero when it is not. Several techniques exist to evaluate Eq.700

(A.3) such as sampling methods [24] or approximation methods [26].701

Appendix B. Uncertainty models702

Interval model. The interval representation only uses bounds to model the703

uncertainty on an input quantity Yi. Therefore, the only hypothesis made704

here is that Yi belongs to the interval IYi =
[
Y L
i , Y

U
i

]
with Y L

i the lower705

bound and Y U
i the upper bound. Any value within the interval can be taken706

without any assumption about the fact that values are more likely than707

others. Note that it is totally different than assigning a uniform distribution708

over the interval since a uniform distribution is still a particular distribution709

and assumes an existing measure. When each Yi is represented as an interval,710

the input space becomes the nY -box represented by the Cartesian product711

IY = ×nYi=1IYi where nY is the number of interval variables. After propagation712

through the numerical modelM (·), the performance is also an interval with713

no additional information. The bounds
[
ZL, ZU

]
may be estimated using an714

optimization algorithm or the vertex method which states that the extreme715

values of the performance are obtained for combinations of the extreme values716

of Yi. Methods to treat hybrid reliability problems involving both random717

and interval variables can be found in [36, 37].718
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Convex model. Convex models [11] are also a non-probabilistic representa-719

tion of uncertainty which contains the interval model. It enables to add infor-720

mation concerning possible dependencies between the input variables. The721

ellipsoid and the parallelogram convex models are common examples. When722

the input variables are independent, the convex model reduces to the nY -723

box which characterizes the interval representation. In the same way as for724

the interval model, the bounds on the performance function can be obtained725

using an optimization algorithm in the convex set. The multi-parallelepiped726

model [38] is used in this paper as it has the advantage of combining depen-727

dent and independent variables. Moreover, a sample in this convex set can be728

obtained from a sample u = (u1, · · · , unY )> of the hypercube U = [−1, 1]nY729

with the following transformation:730

Yi =
Y W
i∑nY

j=1 |ρ (i, j)|

nY∑
k=1

ρikuk + Y C
i , i = 1, 2, ..., nY (B.1)

where Y C
i =

Y Ui +Y Li
2

is the center point of the interval, Y W
i = Y U

i − Y C
i is731

half the width of the interval and ρ is the correlation matrix. An example of732

hybrid representation with random and multi-parallelepiped convex variables733

can be found in [39] where bounds on the probability of failure are estimated734

using Importance Sampling.735

Evidence theory. Evidence theory (also called Dempster-Shafer (DS) theory)736

[12, 40] assigns weights to subsets A, also called “focal sets”, of the power737

set Ω (Y ) using the following mass distribution ν:738

ν :

∣∣∣∣ Ω (Y ) −→ [0, 1]
A −→ ν (A) s.t.

∑
A∈Ω(Y ) ν (A) = 1.

(B.2)

Two measures can then be defined, namely the belief function Bel (·) and
the plausibility function Pl (·), that bound the realization of any event E:

Bel (E) =
∑
A⊆E

ν (A) (B.3a)

Pl (E) =
∑

A∩E 6=∅

ν (A) . (B.3b)

The belief measure can be seen as an upper probability of the event E while739

the plausibility measure can be seen as a lower probability. When combin-740

ing evidence theory to a reliability analysis [41], the belief and plausibility741
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measures enable to bound the probability of failure by considering the event742

E = {Y ∈ F}. When the focal sets are singletons, the belief measure is equal743

to the plausibility measure and evidence theory reduces to probability theory.744

When there is only one focal set, it reduces to the interval representation.745

Possibility theory. Possibility theory is a special case of evidence theory when746

focal sets are nested. Moreover, it is defined with the following possibility747

distribution π:748

π : Ω (Y )→ [0, 1] s.t. sup
y∈Ω(Y )

π (y) = 1. (B.4)

The triangular and trapezoidal distributions are common examples of pos-
sibility distributions. It follows the definition of two measures, namely the
possibility Π (·) and the necessity N (·):

Π (E) = sup
y∈A

π(y) (B.5a)

N (E) = inf
y/∈A

(1− π (y)) (B.5b)

where E is any event. α-cuts are commonly associated to a possibility distri-749

bution as they may be seen as nested confidence intervals with the following750

expression:751 [
y
α
, yα

]
= {y, π (y) ≥ α} . (B.6)

Baudrit and Dubois [18] propose a method to jointly propagate probabilistic752

and possibilistic information. In [42], possibility distributions are assigned to753

the parameters of probability distributions to create fuzzy random variables754

and estimate fuzzy failure probabilities.755

Probability boxes. The probability box (p-box) framework assigns an impre-756

cise cumulative distribution function (cdf) to the uncertain variable Y . The757

true, yet uncertain cdf, is bounded by an upper cdf F Y and a lower cdf F Y758

such that:759

F Y (y) ≤ FY (y) ≤ F Y (y) . (B.7)

Two groups of p-boxes are distinguished, namely free p-boxes and parametric760

p-boxes. Free p-boxes do not make any further assumptions other than the761

bounds on the true cdf. Any shape that respects the bounds and the prop-762

erties of a cdf is possible. Parametric p-boxes assume that the distribution763
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type is known or, at the very least, belongs to a parametric family. The un-764

certainty lies in the parameters of the distribution (e.g., mean, variance) that765

are modeled using simple intervals. Therefore, for equal bounds, parametric766

p-boxes are more informative than free p-boxes by adding the information767

concerning the distribution type. A comparison between free and paramet-768

ric p-boxes in the context of surrogate modeling for reliability assessment769

is proposed by Schöbi and Sudret [43]. Many uncertainty models already770

mentioned can be represented as free p-boxes. Indeed, by considering the771

event {Y ≤ y}, plausibility and necessity measures can be seen as lower cdfs772

while belief and possibility measures can be seen as upper cdfs. Probability773

theory is retrieved when F Y (y) = F Y (y). Monte Carlo sampling with p-box774

variables can be performed by using inverse sampling as shown in [44]. A re-775

view on more advanced techniques used to reduce the computational burden776

when propagating p-box variables is available in [45].777
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