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Summary 
 
In the last two decades it has become increasingly evident that a large number of proteins are 
either fully or partially disordered. Intrinsically disordered proteins lack a stable 3D structure, 
are ubiquitous and fulfill essential biological functions. Their conformational heterogeneity is 
encoded in their amino acid sequences, thereby allowing intrinsically disordered proteins or 
regions to be recognized based on properties of these sequences. The identification of 
disordered regions facilitates the functional annotation of proteins and is instrumental for 
delineating boundaries of protein domains amenable to structural determination with X-ray 
crystallization. This article discusses a comprehensive selection of databases and methods 
currently employed to disseminate experimental and putative annotations of disorder, predict 
disorder and identify regions involved in induced folding. It also provides a set of detailed 
instructions that should be followed to perform computational analysis of disorder. 
 
Key words: intrinsic disorder, intrinsically disordered proteins, intrinsically disordered 
regions, induced folding, prediction methods, disorder databases and metaservers. 
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Introduction 
The last 20 years have seen an increasing amount of experimental evidence suggesting 

an abundance of protein disorder within the protein realm. Intrinsically disordered proteins 
(IDPs), or hybrid proteins possessing both intrinsically disordered protein regions (IDPRs) and 
ordered domains, are functional proteins or protein domains that fulfill essential biological 
functions despite not having a highly populated stable secondary and tertiary structure under 
physiological conditions.1 In fact, computational studies suggest that all proteomes of 
organisms in all kingdoms of life and all viral proteomes analyzed so far have considerable 
quantities of IDPs and IDPRs.2-8 It has also been shown that the length and frequency of 
disordered regions are both greater in organisms of higher complexity, with at least one third 
of all eukaryotic proteins containing long IDPRs4 and more than one tenth of these proteins 
being fully disordered.9 Furthermore, considerably less than 30% of the crystal structures in the 
Protein Data Bank (PDB) are known to have no disorder.10 Since regions of missing electron 
density are very frequent in PDB, this raises the question as to which is the minimal length of 
an IDPR. While previous reports set the limit to 20 residues,1 the minimal length of an IDPR in 
DisProt 7.0 (i.e. the database of experimentally validated IDPs/IDPRs, see below),11 is 5 
residues, and the minimal length of 4 residues was used to annotate disordered regions used in 
the CASP experiments.12, 13  

In protein science, the existence of intrinsic disorder in proteins has been known for a 
long time. This is in spite of the fact that it contradicts the classical protein sequence-structure-
function paradigm where the “lock-and-key” model is used to explain how a protein can achieve 
its biological function via folding into a unique, highly structured state determined by its amino 
acid sequence.14 IDPs and IDPRs constitute a part of the “dark proteome” that includes entire 
proteins or protein regions for which the molecular conformation is entirely unknown.15 
Traditional ordered proteins have a relatively stable 3-D structure possess Ramachandran 
angles that vary only slightly around their equilibrium positions with occasional cooperative 
conformational switches. On the other hand, IDPs/IDPRs, despite being biologically active, fail 
to form specific 3D structures and exist as highly dynamic structural ensembles, either at the 
secondary or at the tertiary level.5, 6, 16-21 Furthermore, intrinsic disorder is characterized by high 
structural heterogeneity. In fact, it is now recognized that IDPs/IDPRs may contain collapsed 
disorder (where the intrinsic disorder is present in a molten globular form) and extended 
disorder (where intrinsic disorder is present in a form of random coil or pre-molten globule) 
under physiological conditions in vitro.5, 20, 22 It has also been shown that, in addition to 
completely ordered and disordered regions, proteins may contain regions of semi-disorder; i.e., 
fragments that have ~50% predicted probability to be ordered or disordered.23 Such semi-
disordered regions have been shown to play key roles in protein aggregation, and to participate 
in protein-protein interactions involving induced folding.23 The currently available structural 
data has been used to suggest that the heterogeneous spatiotemporal structure of IDPs/IDPRs 
can be described as a set of foldons, inducible foldons, semi-foldons, non-foldons, and 
unfoldons.21, 24 The discovery of IDPs and IDPRs, which would not have been possible without 
bioinformatics, has drastically expanded the understanding of protein functionality, and 
exposed new and unexpected roles of dynamics, plasticity, and flexibility in the context of 
protein functions.  

Experimentally, IDPs/IDPRs can be identified by the variety of physicochemical 
methods elaborated to characterize protein structure and self-organization.20, 25-29 These 
methods include NMR spectroscopy;20, 26, 30-32 missing electron density in X-ray 
crystallography maps;33 optical rotatory dispersion spectroscopy (ORD);18, 34 circular dichroism 
spectroscopy in the near-UV35 and far-UV regions;18, 34, 36, 37 Raman spectroscopy and Raman 
optical activity;38 Fourier transform infrared spectroscopy (FTIR);18 gel-filtration, viscometry, 



 

 4 

small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), sedimentation, 
and dynamic and static light scattering;27, 39, 40 fluorescent spectroscopy;27, 40 aberrant mobility 
in SDS-gel electrophoresis;41, 42 limited proteolysis (including conventional limited 
proteolysis43-47, pulse proteolysis,48 limited proteolysis combined to combined mass 
spectrometry,49 and rapid and simple thermal proteolysis FASTpp assays;50 H/D exchange;27 
abnormal conformational stability;40, 51-54 immunochemical methods;55, 56 electron microscopy 
or atomic force microscopy (AFM),57, 58 interaction with molecular chaperones;40 and AFM-
based single-molecule force spectroscopy (SMFS)59 and the complementary single-molecule 
approach based on optical tweezers.60, 61 Finally, the spectacular rise of cryo-EM in the last 
decade62 presages of an increasing number of examples where protein flexibility will be 
documented by this powerful, fast-growing structural technique (for two such examples see 
refs.63, 64). 

While there are IDPs/IDPRs that are able to perform their function while remaining 
completely disordered (e.g. entropic chains), many such proteins and regions experience a 
disorder-to-order transition after binding to their physiological partner(s), known as “induced 
folding”.65 The functional relevance of disorder is the result of increased plasticity which allows 
for binding numerous and structurally distinct targets. Consequently, intrinsic disorder is a 
common and distinctive feature of "hub" proteins, with disorder acting as a measure of protein 
promiscuity.66 As such, the majority of IDPs are involved in functions that involve multiple 
partner interactions, such as molecular assembly, molecular recognition, signal transduction 
and transcription, and cell cycle regulation.67  

Recognizing the presence of IDPRs in a query protein it is becoming increasingly 
important. For instance, it facilitates functional annotation of proteins68 and is vital for 
delineating protein domains amenable to structural determination69-72 and for protein target 
selection73-75; the latter two are crucial for the most commonly used X-ray crystallography-
based approach to protein structure determination. The field of protein intrinsic disorder has 
materialized when bioinformatics techniques were used to transform a set of anecdotal 
examples of structure-less biologically active proteins, originally thought to be interesting 
outliers of the protein realm, into a quickly growing and vital branch of protein science which 
has already shown the natural abundance of IDPs/IDPRs. Statistical analyses revealed that 
amino acid sequences that encode disordered regions are significantly different from those of 
ordered proteins, which allows IDPs to be predicted accurately from the protein sequence alone. 
Extended IDPs can be summarized as follows: (i) they have a biased amino acid composition, 
namely, enriched in G, S, P and depleted in W, F, I, Y, V, and L; (ii) they have a low secondary 
structure content; (iii) they tend to have a low sequence complexity; (iv) they are, on average, 
much more variable than ordered proteins, as they are more tolerant of substitutions due to their 
lack of structural constraints.  

Various disorder predictors have been developed using the peculiar sequence features 
described above, (for detailed reviews of these predictors, see refs.12, 69, 71, 76-80). The availability 
of different types of predictors allows users to select various aspects of disorder prediction that 
are suitable to their current studies, and choose an appropriate predictor. 12 It has also been 
shown that, since different disorder predictors are based on different definitions of disorder, 
combining several predictions from different predictors reinforces the reliability of the overall 
predictions on a specific position or region.81-84 This reasoning has given rise to the 
development of metapredictors, which help users deal with the growing number of available 
disorder predictors and typically improve accuracy by combining the results of several different 
predictors. Some of these metapredictors also include the prediction of structured regions as a 
way to improve disorder predictions.  
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Computational analysis of intrinsic disorder can also be used to find potential functional 
regions. Since short regions of predicted order embedded within longer regions of predicted 
disorder have been shown to correspond to binding sites that fold upon complex formation,85, 

86 several specialized tools that identify short regions that undergo disorder-to-order transitions 
on binding (known as Molecular Recognition Features, MoRFs) were developed.86-91 Two 
models complementary to MoRF-like interactions, the Short Linear Motif (SLiM) and the 
Eukaryotic Linear Motif (ELM), are based on sequence motifs that are recognized by peptide 
recognition domains.92 A different approach is taken by the ANCHOR model, which identifies 
segments of disordered regions that are likely to fold in conjunction with a globular binding 
partner.93, 94 Furthermore, a novel computational method DisoRDPbind was recently introduced 
for high-throughput prediction of multiple functions of disordered regions that can be used to 
predict the RNA-, DNA-, and protein-binding residues located in IDRs of the input protein 
sequences.95, 96 One of the most recent methods, DFLpred, predicts disordered regions that serve 
as either intra-domain or inter-domain linkers.97 

Finally, it has been reported that sites of the enzyme-catalyzed posttranslational 
modifications, such as phosphorylation,98 acetylation, methylation, and ubiquitination99 are 
commonly located within the IDRs. Several computational tools utilizing this information have 
been developed, such as DisPhos (Disorder-enhanced Phosphorylation predictor), which can 
efficiently find IDR-located phosphorylation sites with 76% accuracy for serine, 81% for 
threonine, and 83% for tyrosine.98 More recently, another tool has been developed which is a 
unified sequence-based predictor of 23 types of PTM sites.99 

As the understanding of the pivotal importance of disordered regions in proteins (which 
includes functional interactions, binding, protein conformation, and molecular switch) grows, 
there is a growing interest in IDPs. Consequently, the number of requests submitted to servers 
hosting disorder prediction models has shot up exponentially, and due to the demanding 
resources required for predicting disorder, several research groups have built databases 
dedicated to storing annotations and predictions related to IDPs. These databases constitute 
valuable pools of information that can be utilized when seeking data on disordered regions of a 
protein of interest. They comprise experimentally assessed information and/or predictions from 
different disorder predictors, thereby fastening the identification of disordered regions. These 
databases allow fast and easy retrieval of annotated proteins, and allow the end user to search 
for these annotations using sequence of the query protein, its various identifiers, utilizing a 
sequence similarity-based search. While additional analyses are necessary to achieve a detailed 
description of the modular organization of a query protein in most cases, these databases 
nevertheless provide useful hints on the possible presence of disordered regions and some of 
their functions in a protein of interest.  

In this article, we present a general suggested procedure for disorder prediction based 
on the combination of various tools for protein disorder prediction. 

 

Materials 
1. Computer with the internet connection. 

2. Amino acid sequence of a query protein in FASTA format. 
 

Methods 
Retrieving sequence information from the UniProt database 
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The first step to using computational tools and to search biological databases is 
obtaining the sequence of a query protein. Arrive at the UniProt database by entering 
http://web.expasy.org/docs/swiss-prot_guideline.html in the Internet browser and selecting the 
“List of UniProtKB/Swiss-Prot (reviewed) entries” link located at the top of the front page. Use 
the following steps to download sequence information in FASTA format: 

1. In the Search window (located at the top of the page), type the protein name 
after reviewed:yes and click Search. 

2. On a Search in UniProt Knowledgebase page, choose a protein of interest 
from the list of hits and click corresponding link (which will be located in the 
column entitled Entry). 

3. On the left-hand side of the corresponding UniProtKB entry page, look for a 
blue bar containing a link to Sequence and click this link. In the section 
entitled Sequence, click the FASTA link located within the light blue box. 

4. Copy the content of the page, which includes a descriptive header related to 
the protein and a protein sequence. Keep this information as it will be used in 
the subsequent analysis. This can be done in Notepad or Microsoft Word. A 
separate document for each protein, which will store all the results of different 
analyses, is recommended.  

 

Searching databases dedicated to IDPs 
As a first step, it is recommended to check whether the protein of interest or a similar 

protein exists in publicly available databases dedicated to IDPs. The most efficient way to do 
this is to use the search engines by sequences that are provided by most of their interfaces. 

Obviously, the higher the level of similarity between the matching sequences from these 
databases and the query sequence, the more relevant the information that can be obtained on 
the query protein. 

- A search result with more than 90 % of sequence identity with a sequence 
from a database that contains experimental assessed information is the ideal 
case, but will rarely occurs since these databases still have only a few entries. 

- A similarly high sequence identity with an entry of a database for which 
annotations are based on predictions will have to be analyzed further: if all 
the disorder predictions stored are convergent with high confidence (i.e., with 
high probability) then the results obtained can be considered of sufficiently 
good quality. 

- In all other cases, it will be necessary to gather all the information that makes 
sense about the structured and disordered regions (boundaries) of the 
matching proteins which displays a reasonable level of similarity, and then to 
proceed to the next step (3.2) to complement the analysis by further 
predictions. 

In case the search returns distant homologs of the sequence query (note that even an E-
value – see below - inferior to 1.e-11 can be of interest), it is possible that the conserved and 
non-conserved regions can be identified, where the former will correspond to structured 
regions, and the latter will likely correspond to disordered regions, due to the higher selection 
pressure exerted on structured regions.100 
Obviously, one important question here is how to evaluate the degree of homology. In other 
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words, how can one conclude whether the alignment between the query sequence and a given 
sequence from the database reflect biological significance? To test whether an alignment score 
reflects biological relatedness BLAST uses the E-value. The E-value reflects the number of 
times you expect to see alignment score X by chance: the lower the E-value, the fewer times 
you expect to see alignment score X by chance. If the alignment is not due to chance, then it 
may be due to a biological relationship between the two sequences. The e-value thus is a 
measure of how many such alignments you would expect to find in a database of a given size 
by chance. When BLAST is run to search for distantly related sequences, a relatively high e-
value, typically 1.e-10, is used. Setting a threshold to 1.e-11 will therefore ensure retrieval of 
distant homologs.  
 
DisProt (http://www.disprot.org) is historically the first database on disorder101 and is also the 
largest publicly available database of disordered proteins whose disorder has been 
experimentally assessed. It has been recently upgraded and updated.11 The current release 
contains information on more than 800 entries and has been curated to remove conflicting cases. 
As such, the information stored therein is highly valuable since it is experimentally assessed. 

1. Paste the sequence in the "Search by sequence" field (raw format). 
2. Select the search program: Smith waterman (default), or PSI-Blast for a more 

sensitive search and submit. 
3. Check the score of the best blast hit on the result page (note that an E-value 

superior to 1.e-11 is probably not worth considering). 
4. If the score is consistent, analyze the alignment of the corresponding 

matching sequence and note the boundaries of matching/mismatching 
regions. 

5. Click on the reference of the entry of interest on top of the result page to 
display the details of the corresponding entries. 

6. Compare the annotations of the selected entry with the boundaries obtained 
in step 4. 

 
The Database of Disordered Protein Prediction (D2P2) (http://d2p2.pro/search)102 contains 
disorder predictions for protein sequences from 1,765 complete proteomes and their variants 
obtained via the following six predictors: PONDR® VSL2b, PONDR® VLXT, PV2, PrDOS, 
IUPred, and ESpritz. D2P2 is also linked with the DisProt and IDEAL databases which include 
experimentally confirmed information about disordered regions. It is worth noting that D2P2 
does not include results for viral proteomes, and does not cover all proteins from the currently 
covered organisms. 

D2P2 uses a "Meta" approach by combining the results from several predictors and 
databases dedicated to disordered regions in proteins. An example of D2P2 output is provided 
in Figure 1. Using D2P2 as a preliminary tool to search for disordered regions can help improve 
analysis of a query protein. 

1. Paste the sequence(s) (FASTA format as default) of interest in the 
"Sequences" field of the "Match Amino Sequence" section of the search page 
and click on the "Find proteins" button 

2. The result page displays the corresponding entries that are a 100% match for 
the query sequence(s). On the graphical part of the output, the matching 
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entries from the IDEAL and DisProt databases, as well as the predictions of 
disordered regions from the panel of predictors, are aligned. Hovering the 
cursor over the shape will display complementary information such as the 
boundaries. If IDEAL or DisProt entries are found, clicking on their 
representation shapes will lead the user to the corresponding entries in these 
databases. The bottom part of the graphic displays agreement regarding the 
predicted disorder (corresponding to regions predicted to be disordered by 
more than 75 % of the predictors) and show additional data such as 
phosphorylation sites or ANCHOR binding sites. 

3. Below the graphical output, click on the tab titled "Disorder regions" to see a 
summary of the predicted disordered regions in the corresponding matching 
sequence. The left side of the page will display the predicted regions for 
which at least 75 % of the predictors agreed, and the right part of the page 
will list all predictions per predictor. 

In case the search returns no result, the user can go back to the search page and use the 
second form in the "CS-BLAST Amino Sequence" and enter a sequence of interest in the 
"Single sequence" field (FASTA format as default) and click on CS-BLAST Proteins to proceed 
to the result page that will have the same format as described above. 

D2P2 (http://d2p2.pro/), much like MobiDB (see below), is a database of protein disorder 
predictions. Therefore, the result page contains a very useful picture containing the results of 
the multi-tool analysis of the disorder status of the query protein, as well as some disorder 
consensus bars, and multiple functional annotations. Note: this page also has useful information 
on the location of disordered and functional regions and PTM sites, which can be accessed by 
placing the cursor over the corresponding part of the plot. It is recommended to save the 
resulting figure since it serves as a useful illustration (see Figure 1). 

Interpreting D2P2 data is very simple. This database provides an easily interpretable 
visual output of pre-computed disorder predictions102 which use the outputs of PONDR® 
VLXT,103 two versions of IUPred (IUPred-S and IUPred-L),104 PrDOS,105 PONDR® 
VSL2B,106, 107 three versions of ESpritz (ESpritz-D, ESpritz-N, and ESpritz-X),108 and PV2.102 
The visual console of D2P2 displays nine colored bars representing the location of disordered 
regions as predicted by the different disorder predictors. It also provides information on the 
curated sites of various posttranslational modifications. The next two lines with colored and 
numbered bars show the positions of predicted domains. The green-and-white bar in the middle 
of the plot shows the predicted disorder agreement between these nine predictors, with green 
parts corresponding to disordered regions by consensus. The yellow bar shows the location of 
the predicted disorder-based binding site (MoRF region), whereas red, yellow, orange, blue, 
and violet circles at the bottom of the plots show the locations of phosphorylation, acetylation, 
glycosylation, methylation, and ubuquitylation sites, respectively. 

 
IDEAL (http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/blast.html) is the second oldest 
database, dedicated to proteins with experimentally assessed disorder.109 The current release of 
this database (as of June 2016) contains 713 proteins with 464,962 total residues and 23,207 
disordered residues. The IDEAL interface offers a blast engine that enables efficient retrieval 
of existing annotations pertaining to potential disordered regions within a query sequence. 

1. Paste the sequence (raw format) in the "Blast Search" field. 
2. Check the score of the best blast hit on the result page (note that an E-value 

superior to 1.e-11 is probably not worth considering). 
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3. If the score is consistent, analyze the alignment of the corresponding 
matching sequence and note the boundaries of matching/mismatching 
regions. 

4. Click on the reference of the entry of interest on top of the result page to 
display the details of the corresponding entries. The disordered regions of the 
current entry are displayed in red. Detailed information can be accessed by 
clicking on the colored shapes. 

5. Compare the annotations of the selected entry with the boundaries determined 
in step 3. 

 
MobiDB (http://mobidb.bio.unipd.it/) contains intrinsic disorder annotations for more than 80 
million  entries (covering the entire PDB and DisProt) and predictions from six disorder 
predictors: IUPred,ESpritz, GlobPlot, DisEMBL, JRONN, and PONDR® VSL2B.110  

Although MobiDB is devoid of a blast/sequence search engine, it is cross linked with 
UniProt, which means that search executed in UniProt will lead to the corresponding entry in 
MobiDB. In addition, MobiDB has a search engine which uses keywords that can also use 
UniProt search syntax to retrieve an entry. 

1. Enter the name of the protein of interest, or a more specific UniProt search 
syntax (e.g., name:"Alpha-synuclein" AND organism:"human"). 

2. On the result page, click on the protein that most corresponds to the query 
(the column titled "% LD" shows the percentage of residues involved in long 
disordered regions). 

3. Alternatively, an access to MobiDB can be obtained directly from the UniProt 
page corresponding to the protein of interest. At the left-hand side of the 
corresponding UniProtKB entry page, look for a blue bar containing a link to 
Structure and click this link. In the section titled Structure, locate the MobiDB 
pointer and click Search link next to it. This will redirect to the same results 
section as describe in step 2. 

4. The page displaying the protein annotations shows the regions of 
experimental and of predicted disorder in red and in orange, respectively. 
Hover the cursor over the colored shapes to get the boundaries and click on 
them or on the external databases references to get further details from the 
websites where annotations were picked up. The area entitled "predictors" 
lists all predictor results and displays a consensus of the predictions on the 
top of this list. For each prediction, the zoom icon enables retrieving the 
amino acid sequence in which the ordered and disordered regions are colored 
differently, thereby making it easy to copy/paste regions of interest. 

MobiDB contains outputs from six disorder predictors  (IUPred, ESpritz, GlobPlot, 
DisEMBL, JRONN, and PONDR® VSL2B includes information on the consensus disorder 
prediction, and provides the long IDPR annotation.110 In fact, the MobiDB result page includes 
a plethora of very useful information about the query protein that includes the results of the 
multi-tool analysis of the disorder status of the query protein, structural information with 
corresponding PDB IDs (if available), as well as some functional annotations (such as STRING-
based protein-protein interactions). Therefore, it is recommended to keep the content of the 
entire results page. 
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Interpretation of the MobiDB data is rather intuitive. The page starts with the general 
Sequence Annotations, where locations of long disordered regions and structure/disorder 
information from all available sources (e.g., structural data from the PDB in form of NMR and 
X-ray structures (if available), and results of multi-tool disorder prediction) are shown. If 
several NMR (or X-ray) structures are available for a query protein, then data shown in this 
section will correspond to the consensus of all NMR (or X-ray) data. Numeric disorder scores 
are shown next to the corresponding lines. The next line shows the location of Pfam domains, 
followed by the Detailed Disorder Annotations section, which contains multiple sub-sections 
showing results extracted from the individual PDB entries in a form of distribution of ordered 
and disordered regions. A consensus for all NMR or all X-ray structures is also shown. Each 
line ends with the corresponding numeric score. MobiDB also generates consensus disorder 
scores based on the outputs of ten disorder predictors, including the three varieties of 
ESpritz(ESpritz-Xray, ESpritz-DisProt, and ESpritz-NMR),108 two versions of IUPred 
(IUPred-S  and IUPred-L),104 two versions of DisEMBL (DisEMBL-HL and DisEMBL-
465),111 PONDR® VSL2,106, 107 GlobPlot,112  and JRONN,113 in addition to displaying the 
results of these individual predictors. This is followed by the Protein-Protein Interactions 
section that contains Known Structural Interactors (from PDB) and Known Experimental and 
Database Interactors (from STRING) subsections. Here, known and predicted binding partners 
are listed together with their corresponding disorder scores. The page is concluded with the 
Detailed Sequence Annotations section, where the Consensus Table and the Prediction Table 
shown numerically locations of disordered regions are located. 

 

PED (Proteins Ensemble Database) (http://pedb.vib.be) is a database for the deposition of 
structural ensembles of IDPs and of denatured proteins based on small- angle X-ray scattering, 
nuclear magnetic resonance spectroscopy, and other data measured in solution.114 Each entry 
consists of (i) primary experimental data with descriptions of the acquisition methods and 
algorithms used for the ensemble calculations, and (ii) the structural ensembles consistent with 
these data, provided as a set of models in a Protein Data Bank format. As of September 2016, 
PED contained 25,473 protein structures of 60 ensembles in 22 entries. Although PED does not 
possess a blast/sequence search engine, one can search it by using various criteria, such as gene 
name, protein name, UniProt ID, function, DisProt ID, GenBank ID, ensemble ID, and PDB 
code. If the PED stores data for the query protein or a related protein, it is likely that the protein 
possesses disorder (unless the structural ensemble has been obtained under denaturing 
conditions).  

1. Enter the name of the protein of interest or a more specific UniProt search 
syntax and then click on "submit". 

2. Download experimental data and the structural ensemble from the result page.   

 
Although the PDB (Proteins Data Bank) (http://www.rcsb.org/pdb/home/home.do# 
Subcategory-search_sequences.) is a database dedicated to structured proteins and protein 
regions, it indirectly provides information on disordered regions. It allows delineating 
disordered regions and alleviating ambiguity (i.e. structured regions will be readily recognized). 
The PDB also provides some information on disorder under the mention “REMARK465”, 
where regions of missing electron density are listed. It should be noted, however, that these 
regions are generally short, as long regions usually prevent crystallization which is the main 
route to structurally solve proteins. 

1. Paste the sequence (raw format) in the "Option B: Paste Sequence" field and 
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click on the "Run sequence search" button. 
2. On the result page, select the PDB entries that match the query (check the E-

values) and display the corresponding alignments by clicking on the "display 
full alignment" statement on the "Alignment row". 

3. Note the boundaries of the matching regions in the selected alignments. 

4. Display the PDB entry pages of interest. 
5. Report the boundaries of matching regions in the alignments to the secondary 

structure annotation of the PDB entry page selected. The regions for which a 
secondary structure element has been reported cannot be considered as 
disordered. Regions of missing electron density can be considered as 
disordered. 

 
Analysis of protein amino acid composition  

One of the specific features of an IDP or an IDR is the characteristic amino-acid 
compositional bias with low content of order-promoting residues (C, W, V, F, Y, L, I, and M) 
compensated by high content of disorder-promoting residues (Q, S, P, E, K, G, and A).115-117 
Consequently, the ordered or intrinsically disordered nature of a given protein can be estimated 
based on a simple analysis of its amino acid composition biases using the fractional difference 
in the amino acid approach.115 Here, the fractional difference is calculated as  

(f(r) – forder(r)) / forder(r)  

where r Î{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y},  

f(r) is the count of residues r in a given protein set  
and forder(r) is the count of residues r in the reference set of globular proteins, plotted for 

each amino acid using the Composition profiler.118 In the resulting graph, negative bars 
correspond to amino acids that are underrepresented in a given protein when compared against 
the set of ordered proteins, whereas positive bars reflect the relative increase in the particular 
amino acid content in a query protein. A step-by-step protocol for the use of the Composition 
profiler is provided below:  

1. Start the Composition profiler by entering http://www.cprofiler.org/ in the 
Internet browser and click the Run Profiler link located at the top right corner 
of the front page.  

2. Paste the sequence of the query protein in the Query Sample window located 
on the left side of the window. In the Background Sample window (also 
located on the left side of the window) choose Dataset and select “PDB select 
25” from the drop-down list.  Find Output Options on the right side of the 
window, choose Ordering, and select Flexibility (Vihinen) from the drop-
down list. Click the Draw Profile link located in a gray bar at the bottom of 
the Output Options section. The resulting page will contain a plot showing 
the fractional amino acid composition of the query protein and a table listing 
statistical parameters of this analysis.  

3. If numerical values instead of a plot are needed, step 2 should be modified as 
follows. Paste the sequence of the protein in the Query Sample window 
located on the left side of the window. In the Background Sample window 
(also located on the left side of the window) choose Dataset and select “PDB 
select 25” from the drop-down list.  Find Output Options on the right side of 
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the window and choose Output format, where TXT (raw data) should be 
selected from the drop-down list. Then, choose Ordering and select 
Flexibility (Vihinen) from the drop-down list. Click the Draw Profile link 
located in a gray bar at the bottom of the Output Options section. The 
resulting page will now contain raw data in tabulated form, where the first 
column represents a single character residue name, the second column shows 
the calculated values of the fractional difference, and the third column gives 
errors.   

4. To obtain a compositional profile of typical IDPs (which is a recommended 
step to obtain a reference plot), step 2 should be modified as follows. In the 
Query Sample window located on the left side of the window choose Dataset 
and select DisProt 3.4 from the drop-down list. In the Background Sample 
window (also located on the left side of the window) choose Dataset and 
select “PDB select 25” from the drop-down list.  Find Output Options on the 
right side of the window, choose Ordering and select Flexibility (Vihinen) 
from the drop-down list. Click the Draw Profile link located in a gray bar at 
the bottom of the Output Options section. The resulting page will contain a 
plot showing the fractional amino acid composition of typical disordered 
proteins and a table listing the statistical parameters of this analysis. 

5. If numerical values instead of a plot are needed, step 3 should be modified as 
follows. In the Query Sample window located on the left side of the window 
choose Dataset and select DisProt 3.4 from the drop-down list. In the 
Background Sample window (also located on the left side of the window) 
chose Dataset and select “PDB select 25” from the drop-down list.  Find 
Output Options on the right side of the window and choose Output format 
where TXT (raw data) should be selected from the drop-down list. Then, 
choose Ordering and select Flexibility (Vihinen) from the drop-down list. 
Click the Draw Profile link located in a gray bar at the bottom of the Output 
Options section. The resulting page will now contain raw data in tabulated 
form, where the first column represents a single character residue name, the 
second column shows the calculated values of the fractional difference, and 
the third column gives errors.   

6. To plot the compositional profile of a query protein versus the corresponding 
profile of typical IDPs, use numerical data from steps 3 and 5. Although the 
order of residues retrieved from Compositional profiler follows the Vihinen’s 
flexibility scale, residues should be ranged as follows for better visual 
representation: C, W, I, Y, F, L, H, V, N, M, R, T, D, G, A, K, Q, S, E, and 
P; i.e., from the most order-promoting on the left to the most disorder-
promoting on the right (see Figure 2).   

Figure 2 illustrates this approach by representing the relative amino acid composition 
of human prothymosin α (UniProt ID: P06454, open bars) versus the compositional profile of 
a set of typical IDPs available in the DisProt database119 (displayed as black bars). This analysis 
clearly shows that prothymosin α is enriched in major disorder-promoting residues and depleted 
in major order-promoting residues, thereby having an amino acid composition very similar to 
typical IDPs.   

 
Running disorder predictions 

Over the last ten years a number of disorder predictors have been developed which 
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exploit the sequence bias of disordered proteins. Different types of protein disorder exist,120 
separated by the extent (i.e. the amount of residual secondary and/or tertiary structure) and the 
length of disorder. Since different predictors rely on different physico-chemical parameters, a 
given predictor can be more efficient in detecting a given feature of a disordered protein. Hence, 
predictors utilizing different aspects of disorder have to be combined in order to attain 
predictions good enough to decipher the modular organization of a protein.69, 70, 76, 121-124  

Disorder predictors can be broken down into three categories: those that have been 
trained on datasets of disordered proteins, those that have not been trained on any dataset, and 
metapredictors that blend the results of different predictors. Some predictors use multiple 
alignments in the computation of their predictions, and the most advanced ones include 
structural information from the PDB when available. As previously mentioned, alignments with 
homologous proteins can further help identify potentially disordered regions since the pressure 
of selection in disordered regions is not as vital as in structured regions. Accordingly, 
alignments will typically display a lack of conservation for disordered regions. 

While predictors trained on datasets of disordered regions identify disordered regions 
on the basis of the peculiar sequence properties that characterize them, the other predictors 
identify disorder as lack of ordered 3D structure. The second group of predictors avoid the 
shortcomings and biases associated with disordered datasets. Therefore, they are expected to 
perform better than the former on disordered proteins presently under-represented in training 
datasets (i.e. fully or mostly disordered proteins). 

The performance of predictors depends on both the type of disorder they predict and the 
type of disorder against which they were trained and tested. This is evident when comparing 
the results of several recent comparative assessments. 12, 79, 80 In spite of the fact these studies 
point to certain methods are being more accurate other methods, they do not agree on which 
specific method is the most accurate. In addition, many of these predictors achieve similar 
goals. It is therefore not meaningful to try to define the “best” predictor. Rather, it is advised to 
combine multiple prediction methods, and in particular predictors relying on different 
principles, to improve predictive performance of the disorder predictions.69, 71, 76, 83, 84, 125 

Metapredictors are particularly well-suited to improve the analysis of disorder since they 
combine the results of several predictors and provide a unified view of the core predictors used. 
However, since disorder-related databases already return consensus predictions from multiple 
predictors, the added value of running metapredictors is primarily derived from the possibility 
of retrieving additional information from non-redundant predictors (i.e. predictors not already 
included in the above described-databases) which complements the already gathered 
information.  

CASP (Critical Assessment of Techniques for Protein Structure Prediction; 
http://www.predictioncenter.org/) is a biannual, worldwide effort to evaluate methods for 
prediction of protein structure, which also includes empirical assessment of predictors of 
disorder. This assessment involves comparison of the putative disorder predicted by a large set 
of predictive tools against experimental data for proteins for which this experimental data were 
not yet released. In CASP10 (2012), the last CASP that included assessment of predictions of 
disorder, the top three predictors were PrDOS, DISOPRED, and MFDp.12 Their results were 
shown to be statistically better than the remaining 23 predictors.12 Their results were also shown 
to improve with the increase of the disorder region length cutoff from 4 to 20 to 30 residue-
long segments. 

 

Individual disorder predictors  
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Since the metapredictors make use of previously developed individual disorder predictors, we 
provide a short description of the architectures of several individual disorder predictors, along 
with guidelines on how to run them. 

 
Predictors trained on datasets of disordered proteins 
CSpritz (http://protein.bio.unipd.it/cspritz/) utilizes sequence profiles obtained from PSI-
BLAST and structure predictions. It is a disorder predictor for high-throughput applications, 
including NMR mobility. CSpritz uses two separate predictors based on vector machines 
trained on different datasets.126 The training dataset of short disordered regions (less than 45 
residues) was derived from a subset of PDB sequences with short regions of missing density, 
while the training dataset of long regions was derived from both DisProt and from a subset of 
the PDB (i.e. PDBselect25). This server allows the submission of several sequences at one time, 
and offers the possibility of choosing between predictions of short or of long disordered regions. 

1.  Paste the sequence in fasta format, enter the name of the query sequence 
(optional), and enter the e-mail address (optional).  

2.  Choose the dataset for disorder prediction (i.e. X-ray, "short", or DisProt " 
long") and click on "Submit". 

3.  Prediction results are returned online. Residues predicted to be disordered or 
ordered are indicated by a red "D" or a black "O", respectively. Statistics (i.e. 
percentage of disorder, length distribution of segments, number of disordered 
regions of > 30 or of >50 residues in length) are also displayed. 

 
DICHOT (http://idp1.force.cs.is.nagoya-u.ac.jp/dichot/index.html) was developed by the same 
research group that established the IDEAL database.127 DICHOT’s process of disorder 
prediction includes the assignment of structural domains (SDs). It divides the entire amino acid 
sequence of a query protein into SDs and IDRs, and also introduces sequence conservation as 
a third aspect, which based on the common observation that IDRs are less conserved than 
structured regions. 

1. Enter the e-mail address, paste the protein sequence (plain text), and click on 
the "Submit" button. 

2. The results are sent by e-mail. Regions predicted to be disordered are 
highlighted by red bars. Prediction results from PDB (3D structures), SEG 
(low complexity region), SCOP domains (classified structures), and sequence 
motifs (PFAM domain)are shown with colored boxes. A graph showing the 
probability of the prediction of disorder at each position is also shown. The 
bottom of the page displays the boundaries of the various regions.  

 

DisEMBL  (http://dis.embl.de) is based on a neural network and consists of three separate 
predictors, trained on separate datasets, that comprise residues within "loops/coils", "hot loops" 
(loops with high B-factors – i.e. very mobile from X-ray crystal structure), or loops that are 
missing from the PDB X-ray structures (called "Remark 465").128 Among these, the only true 
disorder predictor is Remark 465, since the others only predict regions lacking regular 
secondary structure. DisEMBL also provides prediction of low sequence complexity (CAST 
predictor) and aggregation propensity (TANGO predictor). 

1. Enter the SwissProt ID (or AC) or paste the sequence in raw format in the 
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foreseen field, enter Title (optional), click on "DisEMBL protein". 
2.  The result page provides a postcript (ps) file that can be downloaded. The 

amino acid sequence of the protein is given below the graph, with residues in 
loops and hot loops colored blue and red, respectively. Disordered residues, 
as predicted by Remark 465, are shown in green.  

 
DISOPRED (http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1) is based on support vector 
machine classifiers trained on PSI-BLAST profiles.129 It incorporates information from 
multiple sequence alignments since its inputs are derived from sequence profiles generated by 
PSI-BLAST. Hence, prediction accuracy is lower if there are few homologues. In general, 
implementing sequence alignments in disorder predictions allows a more reliable identification 
of disordered regions and a better definition of their boundaries. Sequence alignment also 
enables identifying regions that are enriched in the same amino acids (i.e. regions that have a 
similar compositional bias), which not only contributes to a better localization of disordered 
regions within a query protein, but also allows highlighting conserved sites that may correspond 
to functionally important regions.  
DISOPRED secured the second best finish at the CASP10. 

1. Paste the sequence in raw format, the e-mail address (optional), and provide 
a short identifier for the query sequence (compulsory). Additional predictions 
methods can be run to complement the DISOPRED prediction by ticking the 
corresponding checkboxes (e.g: PSIPRED for secondary structure, 
MEMPACK for support vector machine prediction of transmembrane 
topology and helix packing). 

2. Click on "Predict".  
3.  Prediction results are displayed on the web page, but jobs typically take at 

least 30 minutes. Upon completion, an e-mail is sent with a link to access the 
results page. The summary page displays the disordered predictions, which 
are represented by red and green boxes over the sequence of the query. Links 
to disorder profile plots (png formats) are available from the DISOPRED tab 
on the result page. 

 
DISpro is based on a neural network130 and is available from the SCRATCH server 
(http://scratch.proteomics.ics.uci.edu/).It combines sequence profiles obtained by PSI-BLAST, 
solvent accessibility, and secondary structure predictions,. This predictor was trained on 
disordered sequences (i.e. regions of missing atomic coordinates) derived from the PDB.  

1.  Enter the e-mail address (required), the sequence name (optional), paste the 
sequence in raw format, select the disorder predictor (i.e:DISpro) and 
predictions to be run by ticking the appropriate box (eg: SSpro for Secondary 
Structure or ABTMpro for Alpha Beta Transmembrane), and click on 
"Validate". 

2.  Prediction results are sent by e-mail. Residues predicted to be disordered or 
ordered are indicated by a "D" or an "O", respectively. Per residue disorder 
probabilities are also provided. 

 
DisProt PONDR® VL2, PONDR® VL3, PONDR® VSL2 and derivatives. The DisProt server 
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(http://www.dabi.temple.edu/disprot/predictor.php) provides access to several predictors. 
Among them are two variants of the PONDR® VSL2 predictor: PONDR® VSL2B is the 
baseline model that uses only 26 features calculated from the amino acid sequence, while the 
more accurate PONDR® VSL2P uses 22 additional features derived from PSI-BLAST profiles. 
The PONDR® VSL2 predictor package, which integrates the full set of different features (which 
include PSI-BLAST profiles, residue features, and secondary structure PHD and PSIPRED 
predictions), can be downloaded from http://www.dabi.temple.edu/disprot/predictorVSL2.php. 

PONDR® VL3 uses several features from a previously introduced PONDR® VL2 
predictor,120 but benefits from optimized predictor models and a slightly larger (152 versus 145) 
set of disordered proteins that was corrected for mislabeling errors found in the smaller set. The 
PONDR® VL3 predictor is based on an ensemble of feed-forward neural networks trained on a 
dataset obtained from both DisProt and PDB. PONDR® VL3H uses the same method as VL3, 
but uses homologues of the disordered proteins in the training stage, while PONDR® VL3P 
uses attributes derived from sequence profiles obtained by PSI-BLAST searches.131, 132 
Requests are limited to 100 per IP address per day, and the maximum length of a query sequence 
is limited to 5,000 residues. For the PONDR® VL3E predictor, which combines predictions 
from PONDR® VL3P and PONDR® VL3H, up to 10 queries no longer than 500 residues can 
be processed per IP address per day. Predictions for PONDR® VL3E are sent by e-mail upon 
completion. 

1.  Choose the predictor to be run: PONDR® VL2, PONDR® VL3, PONDR® 
VL3E, PONDR® VL3H, PONDR® VSL2P, and PONDR® VLS2B. 

2.  Paste the sequence in raw format, enter the e-mail address, and click on 
"submit". 

3.  Prediction results are returned online and the plot can be saved (png format) 
by clicking on it with the right mouse button. The output also provides a table 
with disorder probabilities per residue. Values over the significance threshold 
of 0.5 suggest disordered residues.  

 
DNDisorder (http://iris.rnet.missouri.edu/dndisorder/)133 make uses of deep networks (DNs). 
DNs are similar to neural networks but contain more layers and are trained in a slightly different 
manner. The server uses CUDA and several graphical processing units to reduce the runtime of 
the computation of the results. 

1. Paste the sequence in plain text or fasta format and enter the e-mail address 
in the corresponding required field. Enter a title for the job (optional), then 
click on the "Submit job" button. 

2. Results are returned in CASP format (PFRMAT DR) via e-mail.  
 
ESpritz (http://protein.bio.unipd.it/espritz/) is based on a machine learning method which does 
not require sliding windows or any complex sources of information (Bi-directional Recursive 
Neural Networks (BRNN)).108 It includes three version that predict disorder based on the 
annotations from X-ray crystal structures, NMR-derived structures and the DisProt database. 

1.  Enter the e-mail address (optional), the name of the query sequence 
(optional), and paste the sequence in raw format. 

2.  Choose the type of disorder (i.e. X-ray, NMR, or Disprot) and click on 
"Predict". 
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3.  Prediction results are sent by e-mail. Residues predicted to be disordered are 
tagged with a “D” character.  It is also possible to get disorder predictions 
(with disorder probability) in text format by using the corresponding link on 
the top of the result page. 

 

Globplot 2 (http://globplot.embl.de) uses the "Russell/Linding" scale that displays the 
propensity for a given amino acid to be in "random coil" or in "regular secondary structure".134 
It also provides an easy overview of modular organization of large proteins due to user-friendly, 
built-in SMART, PFAM, and low complexity predictions. Note that in Globplot outputs, 
changes of slope often correspond to domain boundaries.  

1.  Enter the SwissProt ID (or AC) or paste the sequence in raw format in the 
foreseen field, enter Title (optional), and click on "GlobPlot now". 

2.  The result page provides a postscript (ps) file that can be downloaded. The 
amino acid sequence of the protein is given below the graph, with disordered 
residues colored in blue.  

 
OnD-CRF (http://babel.ucmp.umu.se/ond-crf/) predicts disorder using conditional random 
fields (CRF).135  

1.  Paste the sequence in raw or fasta format or upload the query sequence from 
a file, and click on "Submit query" (you can also choose to receive results by 
e-mail) 

2.  Prediction results are returned online. The plot can be saved as an image (png 
format) by clicking on it with the right mouse button. The threshold above 
which residues are considered as disordered is dynamic and indicated above 
the plot. Below the graph, the amino acid sequence and boundaries of 
disordered regions are both provided, with disordered residues shown in red. 
Disorder probabilities per residue can be seen by hovering over  the amino 
acid sequence shown below the graph. 

 
POODLE-I (Prediction Of Order and Disorder by machine LEarning) is a predictor that uses 
machine learning approaches on only amino acid sequences in order to predict disordered 
regions. There are three different versions of this method (S-L-W) that are all specialized in the 
detection of different categories of disordered regions: POODLE-S is specialized for short 
disordered regions, POODLE-L for long disordered regions (more than 40 consecutive amino 
acids), and POODLE-W for proteins that are mostly disordered. POODLE-I constitutes a 
metapredictor approach of the POODLE series that was made available in 2008. It integrates 
the three POODLE versions (S-L-W) and also offers the option to include structural information 
predictors based on a work-flow approach.136 All POODLE series can be used from 
http://mbs.cbrc.jp/poodle/poodle.html. The results are sent by email in CASP format and a link 
for the html page is also provided, displayed as a graphical plot of the POODLE prediction and 
a table that indicates the probability to be disordered for each residue in the input sequence. 

1.  Paste the sequence in raw format, enter the e-mail address, choose the type of 
prediction ("missing residues" or "High B-Factor residues"), and click on 
"submit" 

2.  Prediction results are sent by e-mail, with a link to a graphical output. 
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Residues with disorder probabilities higher than 0.5 are considered to be 
disordered. Probabilities per residue are given upon positioning the pointer 
on the disorder curve. The plot can be saved by using the "screen capture" 
option of the user's computer (such as the Print Screen button for Windows 
users).  

 
PONDR (Predictor of Natural Disordered Regions) (http://www.pondr.com/cgi-
bin/PONDR/pondr.cgi), a neural-network-based on local amino acid composition, flexibility, 
and other sequence features, was the first predictor.116 Although access to PONDR was limited 
in the past, the predictor is now publicly available in various versions: PONDR® XL1_XT, 
PONDR® VLXT, PONDR® VL3-BA, PONDR® XAN_XT, and PONDR® VSL2. To overcome 
the poor accuracy of the first PONDR predictors for short disordered regions (<30 residues), 
Dunker’s group developed the PONDR® VSL2 predictor. This method is based on a support 
vector machine and aims at providing accurate predictions that are not affected by the length of 
the disordered region.137 PONDR® VSL2 was ranked among the best predictors in CASP7,138 
and turned out to perform equally well on regions of >30 and of <30 residues, and was able to 
identify short disordered regions that were mispredicted by the previous PONDR predictors. 
PONDR® VLXT is unique in that it can highlight potential protein-binding regions, indicated 
by sharp drops in the middle of long disordered regions. On the main page, it is also possible 
to choose to run a Charge-Hydrophathy (CH plot) and a CDF (Cumulative Distribution 
Function) analysis.  

1. Enter the protein name and paste the sequence in raw (or fasta) format and 
click on "submit". 

2. The result is provided as a plot. Values over the significance threshold of 0.5 
suggest disordered residues. Segments composed of more than 40 
consecutive disordered residues are highlighted by a thick black line. 

 
PrDOS (http://prdos.hgc.jp/cgi-bin/top.cgi) is composed of two predictors: a predictor based 
on the local amino acid sequence, and one based on template proteins (or homologous proteins 
for which structural information is available).105 The first predictor is implemented using 
support vector machines for the position specific score matrix (or profile) of the input sequence. 
More precisely, a sliding window is used to map individual residues into a feature space, similar 
to secondary structure prediction used by methods like PSIPRED. The second predictor 
assumes the conservation of intrinsic disorder in protein families, and is simply implemented 
using PSI-BLAST and a specific measure of disorder. The final prediction is a combination of 
the results of the two predictors. This method was ranked first at the CASP10. 

1.  Paste the sequence in raw format, enter the sequence name and the e-mail address 
(optional), and click on "predict"  

2.  A new page appears where the estimated calculation time is indicated. The user is 
asked to confirm the submission by clicking the OK button. 

3.  On the results page, the plot can be saved as an image (png format) by clicking on 
it with the right mouse button. Residues with disorder probabilities higher than 0.5 
are considered to be disordered. Above the graph, the amino acid sequence is 
shown, and disordered residues are shown in red. Disorder probabilities per residue 
can be obtained by clicking on the download button below the graph, which yields 
an output in the casp or csv format. 



 

 19 

 
PreDisorder (http://sysbio.rnet.missouri.edu/predisorder.html)139 was ranked among the best 
predictors in disorder prediction during CASP8 under the group name MULTICOM-CMFR.140 
The prediction is based on an ab initio neural network method. A PSI-BLAST profile of the 
sequence, along with the predicted secondary structure and solvent accessibility, is fed into a 
1D Recursive Neural Network (1D-RNN) that forms the disorder predictions. 

1. Enter the e-mail address, the protein name, and its sequence in the 
corresponding field, and click on the "Predict" button. 

2. Results typically take several hours to process and are sent by e-mail in the 
form of three lines: the first line displays the amino acid sequence, the second 
line shows (dis)order predictions (where residues predicted to be disordered 
and ordered are tagged with D and O, respectively), and the third line displays 
the probability of disorder. Residues are considered to be disordered if their 
disorder probability is above 0.5.  

 
RONN (http://www.strubi.ox.ac.uk/RONN) uses an approach based on a bio-basis function 
neural network. It relies on the calculation of "distances", as determined by sequence alignment, 
from well-characterized prototype sequences (ordered, disordered, or a mixture of both). Its key 
feature is that amino acid side chain properties are not considered at any stage.113 The present 
version of the predictor is no longer maintained and is expected to be superseded by a brand-
new predictor in the near future. 

1. Paste the sequence in fasta format (note that aminoacids have to be in upper 
case) and click on "Send sequence" 

2.  Prediction results are returned online and the plot can be saved as an image 
(png, jpg, pdf, svg) format from the right tab on top of the graph. The amino 
acid sequence of the protein is given below the graph. Disordered residues 
correspond to locations where the graph goes over the "Order/Disorder" 
boundary, marked in red. The per residue disorder probabilities can also be 
found above the graph.  

 
SPINE-D (http://sparks-lab.org/SPINE-D/) uses a single neural-network based technique that 
makes a three-state prediction reduced to two states (ordered - disordered).141 The predictions 
made by SPINE-D are dependent on the balance in the relative populations of ordered and 
disordered residues in short and long disordered regions in the test set. The program is also 
available as a standalone version that is recommended for analysis of large data sets (e.g. 
genomics projects). 

1. Paste the sequence in fasta format and (optionally) enter the e-mail address 
and a target ID in the corresponding field, then click on the submit button. 

2. Results are provided in CASP format for disorder predictions (4 columns: 
position, sequence, Disordered or Ordered status, Probability of the 
prediction).  

 
Predictors that have not been trained on disordered proteins 
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DRIP-PRED (Disordered Regions In Proteins PREDiction) 
(http://www.sbc.su.se/~maccallr/disorder/cgi-bin/submit.cgi) is based on a search of sequence 
patterns obtained by PSI-BLAST that are not typically found in the PDB 
(http://www.forcasp.org/paper2127.html). If a sequence profile is not well represented in the 
PDB, then it is expected to have no ordered 3D structure. For a query sequence, sequence profile 
windows are extracted and compared to the reference sequence profile windows, and then an 
estimation of disorder is performed for each position. As a last step, the results of this 
comparison are weighed by PSIPRED predictions. Since predictions can take up to 8 hours, it 
is preferred to choose that they are sent by e-mail. In this latter case, the user is sent an e-mail 
with a link to the result page. 

1.  Enter the e-mail address (optional), paste the sequence in raw format, click 
on "Submit," and provide a job name (optional). 

2.  Prediction results are shown in the amino acid sequence format with 
disordered residues underlined, and color coded as a function of disorder 
probabilities. Per residue disorder probabilities are given below the amino 
acid sequence in the casp format.  

 

FoldUnfold (http://bioinfo.protres.ru/ogu/) calculates the expected average number of contacts 
per residue from the amino acid sequence alone.142 The average number of contacts per residue 
was computed from a dataset of globular proteins. A region is considered as natively unfolded 
when the expected number of close residues is less than 20.4 for its amino acids and the region 
is greater or equal in size to the averaging window.  

1.  Paste the sequence in fasta format, and click on the "Predict" button. 
2.  Prediction results are returned online. Boundaries of disordered regions 

(unfolded) are given at the bottom of the page. In the profile, disordered 
residues are shown in red.  

 
IUPred (http://iupred.enzim.hu) uses an algorithm that evaluates the energy resulting from 
inter-residues interactions.104 Although it was derived from the analysis of only the sequences 
of globular proteins, it allows the recognition of disordered proteins based on their lower 
interaction energy. The method offers a new way to examine the lack of a well-defined 
structure, which can be viewed as a consequence of a significantly lower capacity to form 
favorable contacts, correlating with studies by Galzitskaya’s group.142  

1.  Enter the sequence name (optional), paste the sequence in raw format, choose 
the prediction type (short disorder, long disorder, structured regions), choose 
"plot" in output type and adjust the plot window size, and click on "Submit". 

2.  Prediction results are promptly returned online and the plot can be saved (png 
format) by clicking on it with the right mouse button. The output also provides 
a table with disorder probabilities per residue. Values over the significance 
threshold of 0.5 suggest disordered residues. 

 
Binary disorder predictors  

The charge/hydropathy method and its derivative FoldIndex. The charge/hydropathy analysis, 
a predictor that has not been trained on disordered proteins, is based on the novel idea that  
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protein folding is governed by a balance between attractive forces (of hydrophobic nature) and 
repulsive forces (electrostatic, between similarly charged residues).18 Thus, globular proteins 
can be distinguished from unstructured ones based on the ratio of their net charge versus their 
hydropathy. The Mean Net Charge (R) of a protein is determined as the absolute value of the 
difference between the number of positively and negatively charged residues divided by the 
total number of amino acid residues. It can be calculated using the program ProtParam at the 
ExPASy server (http://www.expasy.ch/tools). The Mean Hydrophobicity (H) is the sum of 
normalized hydrophobicities of individual residues divided by the total number of amino acid 
residues minus 4 residues (to take into account fringe effects in the calculation of 
hydrophobicity). Individual hydrophobicities can be determined using the Protscale program at 
the ExPASy server, using the options "Hphob / Kyte & Doolittle", a window size of 5, and 
normalizing the scale from 0 to 1. The values computed for individual residues are then 
exported to a spreadsheet, summed and divided by the total number of residues minus four, to 
yield (H). A protein is predicted as disordered if  

H < [(R + 1.151) / 2.785]  
Alternatively, charge/hydropathy analysis of a query sequence can be obtained by choosing this 
option on the main page of the PONDR server. 

Unfortunately, this approach acts as a binary predictor, i.e. it only gives a global (and not 
positional) indication, which is not valid if the protein comprises both ordered and disordered 
regions. Consequently, it can only be used with protein domains, requiring a prior knowledge 
of the modular organization of the protein.  

A derivative of this method, FoldIndex (http://bip.weizmann.ac.il/fldbin/findex), solves 
this problem by computing the charge/hydropathy ratio using a sliding window along the 
protein.143 However, since the default sliding window is set to 51 residues, FoldIndex does not 
provide reliable predictions for the N- and C-termini, and is therefore not recommended for 
proteins with less than 100 residues.  

1.  Paste the sequence in raw format and click on "process". 
2.  The results page shows a plot that can be saved as an image (png format) by 

clicking on it with the right mouse button. Disordered regions are shown in 
red and have a negative "foldability" value, while ordered regions are shown 
in green and have a positive value. Disorder statistics (longest disordered 
region, number of disordered regions, number of disordered residues and 
scores) are given below the plot.  

 
The cumulative distribution function (CDF) is another binary classification method.144, 145 The 
CDF analysis summarizes the per-residue predictions by plotting predicted disorder scores 
against their cumulative frequency, which allows ordered and disordered proteins to be 
distinguished based on the distribution of prediction scores.144, 145 A CDF curve gives the 
fraction of the outputs that are less than or equal to a given value. At any given point on the 
CDF curve, the ordinate gives the proportion of residues with a disorder score less than or equal 
to the abscissa. The outputs of predictors are unified to produce per-residue disorder scores 
ranging from 0 (ordered) to 1 (disordered). In this way, CDF curves for various disorder 
predictors always begin at the point (0, 0) and end at the point (1, 1) since disorder predictions 
are defined only in the range [0, 1] with values less than 0.5 suggesting a propensity for order 
and values greater than or equal to 0.5 suggesting a propensity for disorder. Since the majority 
of fully disordered protein residues possess high predicted disorder scores, they have a very 
low percentage of residues with low predicted disorder scores. On the contrary, the majority of 



 

 22 

residues in ordered proteins are predicted to have low disorder scores. Therefore, the CDF curve 
of a structured protein would increase very quickly in the domain of low disorder scores, and 
then flatten out in the domain of high disorder scores. For disordered proteins, the CDF curve 
would go upward in the domain of low disorder scores, then increase quickly in the domain of 
high disorder scores. Consequently, CDF curves for fully ordered proteins tend to be convex 
since a high proportion of the prediction outputs are below 0.5, while fully disordered proteins 
typically yield concave curves since a high proportion of the prediction outputs are above 0.5. 
It therefore stands to reason that all fully disordered proteins should be located at the lower 
right half of the CDF plot, whereas all fully ordered proteins should fall in the upper left half 
of this plot.144, 145 A boundary line between fully disordered and fully ordered proteins can be 
identified by comparing the locations of their CDF curves, . This boundary line can be used to 
separate ordered and disordered proteins with an acceptable accuracy, with proteins whose CDF 
curves are located above the boundary line being likely to be structured, and proteins with CDF 
curves below the boundary being likely to be disordered.144, 145 CDF-plots based on various 
disorder predictors have different accuracies 145. PONDR® VSL2-based CDF was found to be 
the most accurate, up to 5-10% higher than the second best of the other five CDF functions used 
for the separation of fully disordered proteins from structured proteins also containing 
disordered loops or tails. When considering the separation of fully structured from fully 
disordered proteins, the CDF curves derived from the various disorder predictors all were found 
to exhibit similar accuracies.145 CDF analysis can be run from the PONDR server ([LINK TO 
SERVER]).  

1. Enter the protein name and paste the sequence in raw (or fasta) format, choose 
the disorder predictor to be run, select CDF, and click on "submit". 

2. The result is provided as a plot than can be saved (gif format) by clicking on 
it with the right mouse button.  

 
The CH-CDF plot is an analytical tool combining the outputs of two binary predictors, the 
Charge-Hydropathy (CH) plot and the CDF plot, both of which predict an entire protein as 
either ordered or disordered.146 The CH-plot places each protein onto a 2D graph as a single 
point by taking the mean Kyte-Doolittle hydropathy of a protein as the X coordinate and the 
mean net charge of the same protein as the Y coordinate. In a CH-plot, structured, globular 
proteins and fully disordered, and can be separated by a boundary line.18 Proteins located above 
this boundary are likely to be disordered, while proteins located below this line are likely to be 
structured. The vertical distance on CH-plot from the location of the protein to the boundary 
line, referred to as CH-distance, therefore serves as a scale of disorder (or structure) tendency 
of the protein. In CDF-plots (described above), ordered proteins curves tend to stay on the upper 
left half, whereas disordered proteins curves tend to be found at the lower right half of the plot. 
An approximately diagonal boundary line separating the two groups can be plotted, and the 
average distance of the CDF curves from this boundary, known as CDF-distance, can act as a 
measure of the disorder (order) status of a given protein. A new method called the CH-CDF 
plot was designed by combining the CH-distance and the CDF-distance,.146 The CH-CDF plot 
provides very useful information regarding the general disorder status of a given protein. After 
setting up boundaries at CH=0 and CDF=0, the entire CH-CDF plot can be split into four 
quadrants. Starting from the upper right quadrant, by taking the clockwise sequence, the four 
quadrants are named Q1 (upper right), Q2 (lower right), Q3 (lower left), and Q4 (upper left). 
Proteins in Q1 are structured by CDF but disordered by CH; proteins in Q2 are predicted to be 
structured by both CDF and CH; proteins in Q3 are disordered by CDF but structured by CH; 
and proteins in Q4 are predicted to be disordered by both methods. The location of a given 
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protein in this CH-CDF plot gives information about its overall physical and structural 
characteristics. Unfortunately, there is currently no publicly available automated server for the 
generation of CH-CDF plots.  

 
Non-conventional disorder predictors  
The hydrophobic cluster analysis (HCA) is a non-conventional disorder predictor in that it 
provides a graphical representation of the sequence that helps identify disordered regions. 
Although HCA was not originally intended to predict disorder, it is very useful for discovering 
disordered regions.147 HCA outputs can be obtained from http://mobyle.rpbs.univ-paris-
diderot.fr/cgi-bin/portal.py?form=HCA#forms::HCA and from the MeDor metaserver 
(http://www.vazymolo.org/MeDor/). HCA provides a two-dimensional helical representation 
of protein sequences in which hydrophobic clusters are plotted along the sequence (Figure 
3).147 As such, HCA is not strictly speaking a predictor. Disordered regions are recognizable as 
they are depleted (or devoid) in hydrophobic clusters. HCA is unique since it provides a 
representation of the short range environment of each amino acid, which provides information 
not only on order/disorder but also on folding potential. Although HCA does not provide a 
quantitative prediction of disorder and rather requires human interpretation, it provides 
additional, qualitative information, unlike automated predictors. In particular, HCA highlights 
regions with a biased composition, coiled-coils, very short potential globular domains, and 
regions with potential for induced folding (for examples see refs.69, 70, 76). Finally, it allows 
meaningful comparison with related protein sequences and enables a better definition of the 
boundaries of disordered regions. On the other hand, while HCA very useful for delineating 
regions devoid of regular secondary structure elements, it is poorly suited to recognize molten 
and pre-molten globules, i.e. proteins with a substantial amount of secondary structure but 
devoid of stable tertiary structure.  

1.  Paste the sequence (raw format) in the appropriate field using either the 
Mobyle portal or the MeDor metaserver. 

2.  When running HCA from the Mobyle portal, click on the “Run” button, and 
then type the text displayed in the window in the appropriate field to validate 
the submission.  

3. The HCA plot is returned online and can be saved (pdf format). 

 
SLIDER (Super-fast predictor of proteins with Long Intrinsically DisordERed regions) predicts 
proteins with long disordered regions, defined as 30 or more consecutive disordered residues.148 
For each input protein, it provides propensity that quantifies likelihood that this protein includes 
a long disordered region. This method utilizes logistic regression that takes selected 
physicochemical properties of amino acids, sequence complexity, and amino acid composition 
as its inputs to generate prediction. SLIDER offers competitive predictive performance 
combined with low runtime. It was shown to outperform by at least a modest margin a 
comprehensive set of modern disorder predictors that can indirectly predict LDRs (prediction 
of disorder at the residue level can be used to find long disordered regions and this way the 
corresponding proteins can be identified). At the same time its runtime is at least 16 times lower 
which allows for applications on the whole genome scale using a desktop computer. An average 
sized proteome can be predicted in several minutes. This predictor is available as a web server 
at http://biomine.ece.ualberta.ca/SLIDER/.  

1. Enter the protein sequence in fasta format (up to 75000 sequences can be 
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entered at the same time) and provide the e-mail address in the corresponding 
field. Click on the "Run SLIDER" button. 

2. Results can be accessed from a link shown on the page generated by the web 
server. An e-mail with a link to this page is also sent. Results are provided in 
the form of a list of numerical scores (one for each input protein) ranging 
between 0 and 1 that quantify propensity for inclusion of a long disordered 
region. They can be also downloaded in the csv format. 

 
RAPID (Regression-based Accurate Predictor of Intrinsic Disorder) predicts an overall amount 
of disorder in a query protein sequence, defined as the fraction of disordered residues among 
all residues in that sequence.149  It uses support vector regression to predict a numeric score in 
the 0 to 1 range that represents the fraction (content) of the disordered residues. This method is 
geared toward whole-genome analyses and correspondingly its key advantage is low runtime. 
Prediction of an average-size eukaryotic proteome takes less than one hour. A web server for 
this predictor can be found at http://biomine.ece.ualberta.ca/RAPID/. 

1. Enter the protein sequence in fasta format (up to 75000 sequences can be 
input together) and provide the e-mail address in the corresponding field. 
Click on the "Run RAPID" button. 

2. Results are available at a link shown on the page generated by the web server. 
An e-mail with these results and a link to the web page that stores these results 
is also sent. For each input protein the number of disordered residues and the 
corresponding fraction of disordered residues is provided. Moreover, these 
results can be downloaded in csv format. 

 
Metapredictors 
DisCoP (Disorder based on Consensus of Predictors) uses regression to combine predictions 
from seven empirically selected to maximize predictive performance disorder predictors: 
ESpritz-Disprot, ESpritz-Xray, CSpritz-long, MD, SPINE-D, DISOPRED2, and DISOclust.83 
This method was optimized to generate a conservative and high-quality disorder predictions, 
i.e., predictions characterized by low false positive rate that corresponds to low rate of 
overprediction of disorder. Empirical evaluations on benchmark test dataset has shown that this 
method improves predictive quality when compared with its input predictors and several other 
metapredictors that apply as many as twice the number of input disorder predictors. The web 
server that implements DisCoP is available at http://www.biomine.ece.ualberta.ca/disCoP/ 

1. Enter the protein sequence in fasta format and provide the e-mail address in 
the e-mail field. Click on the "Run DisCoP" button. 

2. Results can be accessed from a link displayed on a webpage generated by the 
webserver. An e-mail is also sent giving a link to this page. The results are 
color-coded and provided as a binary prediction (disordered vs structured 
residue) and real-valued confidence (propensity for disorder). Disordered 
residues are marked by a red "D" character, structured by green “n” character, 
and the confidence values are reported below. The results can also be 
downloaded in csv format. 

 
DisMeta (Disorder Prediction MetaServer, (http://www.wenmr.eu/wenmr/dismeta-disorder-
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prediction-metaserver) was developed within the WeNMR project framework (European FP7 
e-Infrastructure grant, www.wenmr.eu). It runs several well-known disorder 
predictors,including DISOPRED2, DISEMBL, DRIPPRED, DISpro, FoldUnfold, FoldIndex, 
IUPred, GlobPlot2, PONDR® VSL2, and RONN . DisMeta also utilizes results provided by 
several sequence analysis tools, including ANCHOR, coils, TMHMM, SignalP, PROFphd, 
SEG, and PSIPRED. DisMeta presents the results as an HTML web page with a static graphical 
overview of each predictor result, and offers the user a consensus summarized as a graphic. 

1. Enter the e-mail address, the protein name, paste the sequence (raw format) 
in the corresponding field, and click on the "Submit" button. 

2. The system sends an email which includes links to the result page in html or 
in a raw text. The html version includes a consensus of disorder prediction as 
a graphics with the number of predictors predicting each position as 
disordered. The results of all disorder predictors in a box mapping 
representation are summarized at the bottom of the page. 
 

GeneSilico MetaDisorder MD2 (http://iimcb.genesilico.pl/metadisorder/metadisorder.html) is 
a method based on 13 disorder predictors and gaps in alignment produced by 8-fold recognition 
methods, optimized using a genetic algorithm.150 It is an improved version of the first 
MetaDisorder version released in 2008. It includes 15 distinct disorder predictors and weighs 
their output according to their individual prediction accuracy. These predictors are DISPROT 
(PONDR® VSL2), DisEMBL, DISpro, iPDA, GlobPlot, IUPred short (IUPRED-S), IUPred 
long (IUPRED-L), PDISORDER, PrDOS, POODLE-S, POODLE-L, Spritz short, Spritz long, 
DISOPRED, and RONN. Since these predictors include several metaservers, 
MetaDisorderMD2 is an extreme application of the concept that “the combination of different 
disorder predictors helps in refining the predictions”. In addition to the 15 disorder predictors, 
MetadisorderMD2 also uses fold recognition such as PSI-Blast (against PDB70 and CULLPDB 
databases), HHsearch, PCONS, and PHYRE. The end result of this method is a CASP-
formatted output of each disorder included predictor and the corresponding alignments for the 
fold recognition methods, along with a consensus prediction of disorder in the same format. It 
also provides a plot that allows one to compare the consensus against any other disorder 
predictor result. MetaDisorder was among the best predictors of protein disorder evaluated 
during independent tests in CASP8 (2008) and CASP9 (2010). 

1. Enter a title to the query, the e-mail address, paste the sequence (raw format) 
in the corresponding field, then click on the "Submit" button. 

2. The results are displayed on an HTML page, but can also be viewed in raw 
text from a link available on the results page. An email is sent giving a link 
for the result page. On the graphical output, residues whose disorder 
probability is above 0.5 are considered as disordered. 

 
MeDor (MEtaserver of DisORder) (http://www.vazymolo.org/MeDor/) is unique from other 
metapredictors in that (i) it provides an output in a specific format that can be annotated, saved, 
and further modified, and (ii) is not intended to provide a consensus of disorder prediction, and 
was designed to speed up the disorder prediction step by itself and provide a global overview 
of predictions.82 It allows fast, simultaneous analysis of a query sequence by multiple 
predictors, and offers easy comparison of the prediction results. It also enables a standardized 
access to disorder predictors and allows meaningful comparisons among various query 
sequences, and provides a graphical interface with a unified view of the output of multiple 
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disorder predictors. Furthermore, MeDor is also conceived to serve as a tool which allows the 
user to highlight specific regions of interest and retrieve their sequence. In addition, MeDor 
outputs can be saved, modified, and printed. Presently, the following programs are run by 
MeDor: a secondary structure prediction (SSP) based on the StrBioLib library of the Pred2ary 
program,151 IUPred, HCA, FoldUnfold, RONN, FoldIndex, DisEMBL, DISPROT (PONDR® 
VSL2B, PONDR® VL3, and PONDR® VL3H), GlobPlot2, and Phobius. Phobius 
(http://phobius.sbc.su.se/index.html) predicts transmembrane regions. While SSP and HCA do 
not require a web connection, the other predictors are remotely launched through connection to 
the public web servers.  

MeDor provides a graphical output, in which the sequence query and the results of the 
various predictors are featured horizontally, with a scroll bar allowing progression from the N-
terminus to the C-terminus. All predictions are drawn along the sequence that is represented as 
a single, continuous horizontal line. MeDor also allows highlighting specific regions of interest 
and retrieving their sequence. Output files are in the specific (.med) format that is made of XML 
and can thus provide a graphical output for any program that return such a format. As XML is 
quite simple to access, it is also possible to edit the “.med” file manually to get a fully 
customized output that could even integrate additional predictions not initially provided. The 
(.med) file format can also be opened by any XML reader and the format is well described by 
the “xsd” file provided with the program. It is also possible to customize the output (highlight 
regions of interest, change colors, add and edit comments.) and to retrieve the predictor statistics 
values at each position, as well as the amino acid sequence of specific regions of interest. 

1.  Go to the MeDor home page (http://www.vazymolo.org/MeDor/) 
2. Paste the sequence in either raw or fasta format and (optionally) enter the 

sequence name 
3.  Click on "Start MeDor" 
4.  Alternatively, MeDor can be downloaded (choose the version suitable to your 

operating system). Using the downloaded version of MeDor instead of the 
applet version enables the user to (i) run DISPROT (PONDR® VL3, 
PONDR® VL3H and PONDR® VSL2B) predictions (in the limit of 100 
requests per IP number), (ii) print the results, (iii) save the output as an image, 
(iv) save (and load) files in the MeDor format, (v) access the comment panel, 
and (vi) import a sequence by providing the SwissProt accession number. 

 
MetaPrDOS uses support vector machines on the prediction results of seven independent 
predictors (DISOPRED, PrDOS, DISPROT (PONDR® VSL2P), DisEMBL, IUPred DISpro, 
and POODLE-S).81 This method attained a higher prediction accuracy than all methods 
participating in CASP7 (2006). 138 

1. Paste the sequence in raw format, enter the sequence name and the e-mail 
address, then click on "Predict". 

2.  A new page appears where the user is asked to confirm the submission by 
clicking the OK button. 

3. The link for the results page is sent by email. On the results page, the plot can 
be saved as an image (png format) by clicking on it with the right mouse 
button. Residues with disorder probabilities higher than 0.5 are considered as 
disordered. Above the graph, the amino acid sequence is shown and 
disordered residues are shown in red. Disorder probabilities per residue can 
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be obtained by clicking on the download button (below the graph), which 
yields an output in the casp or csv format. 

 
MFDp (Multilayered Fusion-based Disorder predictor) is a metapredictor that consists of three 
support vector machines specialized for the prediction of short, long and all disordered regions. 
It combines these results with multiple complementary disorder predictors, namely 
DISOPRED, DISOclust, IUPRED–S, and IUPRED-L. In addition, MFDp also utilizes solvent 
accessibility, secondary structure predictions, B-factors, and backbone dihedral torsion angles 
in order to generate its consensus.152 This predictor secured the top-three finish at the CASP10. 
The web server can be found at http://biomine.ece.ualberta.ca/MFDp/ 

3. Enter the protein sequence in fasta format and provide the e-mail address in 
the corresponding field. Tick the predictors used by the metapredictor for 
which you'd like to see the results in the output in addition to the MFDp 
prediction, and then click on the "start" button. 

4. Results can be accessed from a link displayed on the MFDp processing page. 
An e-mail is also sent giving a link for the result page. Results are provided 
in the form of an alignment of the different predictor results and the consensus 
prediction built by MFDp. Disordered residues are marked by a red "D" 
character and the confidence values are reported below. In addition, results 
can also be downloaded in csv format. 

 
MFDp2 (http://biomine.ece.ualberta.ca/MFDp2/) combines per-residue disorder probabilities 
predicted by MFDp with per-sequence disorder content predicted by DisCon method,153 and 
applies post-processing filters to provide disorder predictions.154 

1. Enter the protein sequence in fasta format and provide the e-mail address in 
the corresponding field. 

2. The output shows optimized per-residue disorder probability profiles, per-
sequence disorder content, list (with analysis) of disordered segments, and 
several profiles that help in the interpretation of the results. The results are 
available online in a graphical format and can be also downloaded in a text-
based (parsable) format. 

 
MULTICOM is a simple averaging approach that is different from other meta methods utilizing 
consensus voting.139 MULTICOM makes predictions based on a consensus formed from other 
CASP8 disorder predictors including the PreDisorder predictor that is the authors’ developed 
ab initio method. It also includes most of the predictors that participated in CASP8 and it works 
by averaging their output. It was ranked among the top disorder predictors in CASP8.140 The 
server can be reached from http://sysbio.rnet.missouri.edu/multicom_cluster/ and returns 
results by e-mail in a CASP format. 

1. Enter a target name, the protein sequence in raw format, and provide the email 
address in the corresponding field. Then click on the "Predict" button. 

2. Open the result e-mail that contains model evaluation, model combination, 
and model refinement data in the CASP / PDB format. 
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PONDR-FIT uses a consensus artificial neural network (ANN) prediction method that 
combines PONDR® VSL2, PONDR® VLXT, FoldIndex, PONDR® VL3,  TopIDP, 
andIUPred.155 It was made available in 2010 and the predictor can be run online for academic 
use only, from http://www.disprot.org/pondr-fit.php.  

1. Enter the sequence file in fasta (or EMBL) format and then click on the 
"Submit" button.  

2. The server returns a graphical plot of disorder probabilities for each amino 
acid position, along with a raw output file of the results. 
 

PredictProtein (www.predictprotein.org) is a server based on a system of neural networks that 
combines the outputs from several original prediction methods, using evolutionary profiles and 
sequence features that correlate with protein disorder such as protein flexibility and predicted 
solvent accessibility. In addition to providing predictions of trans-membrane regions, secondary 
structure, and disulphide bridges, the server also returns predictions of disorder. In particular, 
the UCON, NORSnet, and MetaDisorder (MD) programs can be run from the PredictProtein 
server.  

MD (Meta Disorder)156 runs a panel of four  predictors, namely PROFbval,157 
DISOPRED2, Ucon, and NORSnet. Once it receives results from these predictors it calculates 
the arithmetic average over the four raw outputs. The results of MD that are included within the 
PredictProtein output come in a raw format providing the computed probability for the MD 
consensus associated with each distinct disorder predictor results. Like Ucon and NORSp, MD 
can be also downloaded as a Debian package from http://rostlab.org/debian/pool/non-
free/m/metadisorder/. 

NORSnet is a neural-network-based method for the identification of unstructured 
loops.158 NORSnet was trained to distinguish between very long contiguous segments with non-
regular secondary structure (NORS regions) and well-folded proteins. Since NORSnet was 
trained on predicted information rather than on experimental data, it was optimized on a large 
data set, thus overcoming the biases related to the small size of experimental data sets. NORSnet 
covers regions in sequence space that are not covered by other disorder predictors. The program 
is also provided as a Debian package that can be found at 
https://rostlab.org/owiki/index.php/Norsnet.  

Ucon (http://www.predictprotein.org/submit_ucon.html) is a method that combines 
predictions for protein-specific contacts with a generic pairwise potential. This predictor was 
trained using the annotations of disorder from DisProt and PDB. It performs well in predicting 
proteins with long disordered regions.159 Ucon can also be downloaded as a Debian package 
from https://rostlab.org/owiki/index.php/Ucon.  

From the PredictProtein page:  
1. Enter the amino acid sequence (raw data) and click on the "PredictProtein" 

button.  
2. Either enter the e-mail address without creating an account (in which case you 

will run Open PredictProtein) or create an account that will allow you 
subsequently to login with a password. Note that Open PredictProtein does 
not store jobs. 

3. Upon completion of prediction, the user is sent an e-mail with a link to the 
result page. Boundaries of NORS regions are indicated above the annotated 
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sequence in which solvent exposure, secondary structure elements, coils and 
trans-membrane regions are also indicated. On the left side of the result page, 
different layout options can be chosen. Clicking on “Protein Disorder and 
Flexibility” will give access to prediction results as provided by Profbval, 
Ucon, NORSnet and MD in the form of colored boxes. Mouse over the 
different colored boxes to learn more about the annotations. 

 

Combining predictors and experimental data 
An extreme extension of the combined use of different predictors is combining in silico 

and experimental approaches maximize the mount of discovered structural information while 
limiting the experimental characterization to relatively low-demanding experiments. An 
illustration of such an approach can be found in ref. 160, where a computational and 
spectroscopic analyses were combined. The authors plotted the ratio between the Q222 and Q200 

(Q222/Q200) of a set of IDPs under study, along with the Q222/Q200 ratio of a set of well-
characterized random coil-like and pre-molten globule-like proteins.161 The authors then set an 
arbitrary threshold of the Q222/Q200 ratio that allows discrimination between random coil-like 
IDPs and IDPs adopting a pre-molten-like conformation. Then, they generated a plot in which 
the distance of each IDP under study from this threshold was plotted as a function of its CH-
distance in the CH plot. This analysis was intended to combine, and hence extend, the two 
methods previously introduced by Uversky18, 161 to allow random coil-like forms to be readily 
and easily distinguished from pre-molten globule-like forms among proteins predicted to be 
intrinsically disordered by the hydropathy/charge method. In the resulting plot, increasingly 
negative CH distances indicate proteins with increasing disorder, while increasingly positive 
Q222/Q200 distances indicate IDPs becoming progressively more collapsed due to an increased 
content in regular secondary structure. Thus, the bottom left quadrant is expected to correspond 
to IDPs adopting a random coil-like conformation, while the bottom right quadrant is meant to 
designate IDPs adopting a pre-molten globule-like conformation. 

 
Identifying regions of induced folding  

IDPs bind to their target(s) through interaction-prone short segments that become 
ordered after binding to partner(s). These regions are referred to as "Molecular Recognition 
Elements" (MoREs) or "Molecular Recognition Features" (MoRFs)86, 88, 162 or "Intrinsically 
Disordered Binding" (IDB) sites.163 

Even before predictors designed specifically for identifying these regions were publicly 
available, they could be successfully discovered using tools that were originally designed for 
other purposes, such as PONDR® VLXT and HCA. Due to its high sensitivity to local sequence 
peculiarities, PONDR® VLXT was discovered to be able to identify disorder-based interaction 
sites86 (for examples see refs.164, 165). HCA is similarly instrumental for the identification of 
regions undergoing induced folding, as buried hydrophobic residues at the protein-partner 
interface are often the major driving force in protein folding.163, 166 In some cases, hydrophobic 
clusters are found within secondary structure elements that are unstable in the native protein, 
but can stably fold upon binding to a partner. Therefore, HCA can be very useful to highlight 
potential induced folding regions (for examples see refs.124, 160, 167).  

1.  Perform HCA on the query sequence using either the Mobyle portal or the 
MeDor metaserver, and look for short hydrophobic clusters occurring within 
disordered regions. 
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2.  Perform prediction using PONDR® VLXT and look for sharp (and short) 
drops in the middle of disorder predictions.  

More recently, a few specific predictors aimed at identifying disorder-based regions have 
become publicly available. A short description of their architectures and details on how to run 
them are provided below. 

 
ANCHOR (http://anchor.enzim.hu/) is aimed at identifying segments that reside in disordered 
regions which cannot form enough favorable intrachain interactions to fold on their own, and 
are likely to gain stabilizing energy by interacting with a globular protein partner. The reasoning 
used to develop ANCHOR relies on the pairwise energy estimation approach developed for 
IUPred.93  

1.  Enter the SWISS-PROT/TrEMBL ID or accession number of the query 
sequence, or paste the sequence in fasta or raw format. Optionally, ELM and 
other motifs can also be searched for by entering the motif names in proper 
format in the appropriate field.  

2. Click on "Submit". 
3. Results are returned online in the form of a plot that contains the per residue 

IUPred and ANCHOR probabilities as a function of residue positions. 
Predicted binding regions are shown as blue boxes along the sequence below 
the plots. The plot (see Figure 4) can be saved (png format) by clicking on it 
with the right mouse button. The output also provides a summary of the 
predicted binding sites (in the form of a Table) along with a Table with 
position specific scores.  

 
MoRFpred (http://biomine.ece.ualberta.ca/MoRFpred/) identifies all main types of MoRF that 
include α, β, coil and complex (defined based on their secondary structure conformation upon 
binding).89 It combines annotations generated by sequence alignment with predictions obtained 
via a support vector machine. The latter utilizes a custom designed set of sequence-derived 
features that quantify information regarding selected physiochemical properties of amino acids, 
evolutionary profiles, solvent accessibility, predicted disorder, and B-factors. Empirical 
evaluation on several datasets shows that MoRFpred outperforms both α-MoRF-Pred (which 
predicts α-MoRFs)88 and ANCHOR.  

1.  Paste the sequence in FASTA format, provide the e-mail address (required), 
and click on "Run MoRFpred". 

2.  Results are returned online by clicking on a link to the results page (an e-mail 
is also sent as soon as results are available), and can also be downloaded in 
csv format. The first line displays the query sequence, while the second and 
third lines show the predictions. The second row annotates Molecular 
Recognition Feature (MoRF) (marked as "M", in red) and non-MoRF 
(marked as "n", in green) residues, and the third row gives prediction scores 
(the higher the score the more likely it is that a given residue is MoRF). A 
horizontal scroll bar allows moving along the sequence.  

 

Predicting potential sites of posttranslational modifications  
It has been shown that intrinsic disorder prediction might help increase the prediction 
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accuracy of several protein post-translational modification (PTM) sites, including protein 
methylation,168 phosphorylation,98 and many other mostly enzymatically catalyzed PTMs.  
 
DisPhos is a tool for finding phosphorylation sites. DEPP (or DisPhos) uses disorder 
information to improve the discrimination between phosphorylation and non-phosphorylation 
sites. The retrieved prediction score approximates the probability that the residue is 
phosphorylated. Only residues with a prediction score >0.5 (which) are considered to be 
phosphorylated.  

1) Go to the PONDR® working page (http://www.pondr.com/) and click the 
DEPP Prediction button. This redirects to the DEPP working page 
(http://www.pondr.com/cgi-bin/depp.cgi). While on this page, type Protein 
name in the space provided (optional) and enter NCBI Accession Code or 
Protein Sequence (FASTA format or sequence only) in the corresponding 
boxes. Scroll down the page and check the box Raw Output at the Output 
Options section. Click the Submit Query button to be taken to the DEPP 
results page.  

2) The top of DEPP results page displays a plot which provides the distribution 
of DEPP scores over the amino acid sequence. There are three types of 
symbols corresponding to the Ser (blue squares), Thr (green triangles), and 
Tyr residues (red circles) predicted to be phosphorylated. Only residues with 
DEPP scores >0.5 will be shown.  

3) Raw data related to this analysis are provided at the end of the page in the 
PREDICTOR VALUES section. The DEPP NNP STATISTICS section 
provides useful information on the number of phosphorylated threonines, 
serines, and tyrosines, as well as the total number of these residues in a given 
protein and the relative phosphorylation efficiency. It is suggested to keep the 
content of the entire DEPP results page for the future use.  

 
ModPred is a unified sequence-based predictor of 23 types of PTM sites.99 This tool represents 
a very useful instrument for guiding biological experiments and data interpretation.99 

1) Go to the official ModPred page (www.modpred.org). Enter the query protein 
sequence in the Paste the protein sequence box, one at a time. Click the Check 
all link, and then the Predict link. When calculations are finished, the result 
page will be displayed. 

2) The results page has an INPUT section that provides sequence ID of the query 
protein, its length, and lists the predicted PTMs.  The OUTPUT section 
provides prediction results, where sequence is color coded to show residues 
predicted to be modified with low confidence (red), medium confidence 
(yellow), and high confidence (green), as well as residues corresponding to 
multiple PTM sites (blue). A table that lists all prediction results is included 
below, which can be downloaded as a tab-delimited file.      

 

General procedure for disorder prediction 
As the performance of predictors is dependent on both the type of disorder they predict 

and on the type of disorder against which they were trained, multiple prediction methods need 
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to be combined to improve the accuracy and specificity of disorder predictions. Figure 5 
illustrates a general sequence analysis procedure that integrates the peculiarities of each method 
to predict disordered regions.  

1.  Retrieve the amino acid sequence and the description file of the protein of interest 
by entering the protein name at the UniProt (http://www.uniprot.org) in the 
"Search" field. 

2. Generate a multiple sequence alignment. A set of related sequences can be obtained 
by running HHblits (http://toolkit.tuebingen.mpg.de/hhblits). Click on the "get 
selected sequences" option and save them to a file in fasta format. Use this file as 
input for building up a multiple sequence alignment using TCoffee 
(http://tcoffee.crg.cat/apps/tcoffee/do:regular). Mark variable regions as likely 
corresponding to flexible linkers or long disordered regions. Use DFLpred method 
if you want to ascertain disordered linkers. 

3. Search for long (>50 residues) regions devoid of predicted secondary structure 
using the PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/psiform.html)169 and 
PredictProtein (http://www.predictprotein.org/) servers. 

4. Using either the UniProt ID or the amino acid sequence, search the D2P2 and 
MobiDB databases. Since D2P2 does not cover all organisms, and MobiDB does 
not include IDEAL entries, it is also recommended to search the IDEAL database.  
In the event that no information about disordered regions can be obtained, or the 
information is incomplete, the following steps should be performed. 

5.  Perform an analysis of sequence composition using the ProtParam ExPASy server 
(http://www.expasy.ch/tools/protparam.html) and compare the results with the 
average sequence composition of proteins within the UniProtKB/Swiss-Prot 
database (http://www.expasy.ch/sprot/relnotes/relstat.html).  

6.  Perform an analysis of sequence complexity using the SEG program.170 Although 
the SEG program is implemented in many protein prediction servers (such as 
PredictProtein for instance), the program can also be downloaded from 
ftp://ftp.ncbi.nih.gov/pub/seg/seg, while simplified versions with default settings 
can be run at either http://mendel.imp.univie.ac.at/METHODS/seg.server.html or 
http://www.ncbi.nlm.nih.gov/BLAST or 
http://mendel.imp.ac.at/METHODS/seg.server.html. The stringency of the search 
for low-complexity segments is determined by 3 user-defined parameters: trigger 
window length [W], trigger complexity [K(1)] and extension complexity [K(2)]. 
Typical parameters for disorder prediction of long non-globular domains are 
[W]=45, [K(1)]=3.4 and [K(2)]=3.75, while for short non-globular domains they 
are [W]=25, [K(1)]=3.0 and [K(2)]=3.3. It is worth noting that low complexity 
regions can also be found in ordered proteins, such as coiled-coils and other non-
globular proteins like collagen.  

7.  Search for (i) signal peptides and transmembrane regions using the Phobius server 
(http://phobius.sbc.su.se/index.html),171 (ii) leucine zippers using the 2ZIP server 
(http://2zip.molgen.mpg.de/),172 and (iii) coiled-coils using programs such as Coils 
(http://www.ch.embnet.org/software/COILS_form.html).173 Note that the 
identification of coiled-coils is vital as they can lead to miss-predictions of disorder 
(for examples see refs.69, 76). It is also recommended to use DIpro 
(http://contact.ics.uci.edu/bridge.html)174 to identify possible disulfide bridges and 
to search for possible metal-binding regions by looking for conserved Cys3-His or 
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Cys2-His2 motifs in multiple sequence alignments. The presence of conserved 
cysteines and/or of metal-binding motifs prevents meaningful local predictions of 
disorder within these regions, since they may display features typifying disorder 
while gaining structure upon disulfide formation or upon binding to metal ions.18  

8.  Run HCA to highlight regions devoid of hydrophobic clusters and with obvious 
sequence bias composition. 

9. Run disorder predictions and identify a consensus of disorder. Since running 
multiple prediction methods is a time-consuming procedure, and since combining 
several predictors often allows achieving accuracies higher than those of each of 
the component predictors, it is recommended to perform predictions using 
metapredictors. It is recommended to use the default parameters of each 
metapredictor, as they generally perform the best in terms of accuracy, specificity, 
and sensitivity. Once a gross domain architecture for the protein of interest is 
established, the case of domains whose structural state is uncertain can be settled 
using the charge/hydropathy method, which has a quite low error rate. As a last 
step, boundaries between ordered and disordered regions can be refined using HCA, 
and regions with a propensity to undergo induced folding can be identified using 
ANCHOR and MoRFpred.  

We recommend using SLIDER and RAPID methods for the whole genome analysis of 
species that are not included in the D2P2 database. 
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Figures 
 

 
Figure 1. Output provided by the D2P2 database for human prothymosin α (UniProt ID: 
P06454), a well-known IDP. This output well illustrates the amount of information that can be 
obtained on both structural organization and post-translational modifications (PTM). Regions 
predicted as disordered by the various predictors are shown along with a predicted disorder 
agreement (with a color code ranging from clear to deep blue with increasing agreement). The 
majority of predictors predict the C-terminal region as disordered. The latter also contains 
predicted MoRFs. 
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Figure 2. Compositional profiling of an illustrative IDP, human prothymosin α (UniProt ID: 
P06454, A) in comparison with the compositional profile of typical ordered proteins. The 
compositional profile of typical intrinsically disordered proteins from the DisProt database is 
shown for comparison (B). 
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Figure 3. HCA plot of human prothymosin α (UniProt ID: P06454). Hydrophobic amino acids 
(V, I, L, F, M, Y, W) are shown in green and are encircled and their contours are joined forming 
clusters. Clusters mainly correspond to regular secondary structures (α-helices and β-strands). 
The shape of the clusters is often typical of the associated secondary structures. Hence, 
horizontal and vertical clusters are mainly associated with α-helices and β-strands, respectively. 
A dictionary of hydrophobic clusters, gathering the main structural features of the most frequent 
hydrophobic clusters has been published helping the interpretation of HCA plots.175 Sequence 
segments separating hydrophobic clusters (at least 4 non hydrophobic amino acids) mainly 
correspond to loops or linker (LNK) regions between globular domains. Long regions devoid 
of clusters correspond to disordered regions and small clusters within disordered regions 
correspond to putative MoRFs. Coiled-coil regions have a peculiar and easily recognizable 
appearance in the form of long horizontal clusters. Symbols are used to represent amino acids 
with peculiar structural properties (stars for prolines, black diamonds for glycines, squares and 
dotted squares for threonines and serines, respectively). Basic and acidic residues are shown in 
blue and red, respectively.   
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Figure 4. Prediction of potential disorder-based interaction sites human prothymosin α 
(UniProt ID: P06454) by ANCHOR. The plot provides the distribution of disorder propensity 
(evaluated by IUPred, red line) and distribution of ANCHOR scores (blue line). In IUPred plot, 
residues/regions with scores >0.5 are predicted to be disordered. In ANCHOR plot, 
residues/regions with scores >0.5 are predicted to correspond to the potential disorder-based 
binding sites. Bottom of plot represents binding regions as bars with different shades of blue, 
with darker color corresponding to higher ANCHOR scores. This bottom graph shows regions 
possessing ANCHOR scores >0.5. 
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Figure 5. Proposed general scheme for prediction of disordered regions in a protein.  
 


