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Abstract

In this paper, a two-dimensional formulation is proposed for modeling the mechanical behavior of helical beam-

like structures subjected to bending loads. Helical structures include multi-wire cables, which are widely used in

engineering applications. An accurate representation of their mechanical behavior typically requires large-size three-

dimensional finite element models. The proposed formulation, written on the cross-section only, offers a tremendous

reduction of computational cost. Based on the asymptotic expansion method, the formulation is derived within the

framework of homogenization theory. The first-order approximation of the three-dimensional problem is obtained

from the solution of two successive problems: a microscopic three-dimensional problem and a macroscopic one-

dimensional problem. The latter corresponds to the equilibrium equations of a straight Navier-Bernoulli-Saint Venant

beam, which effective elastic properties can be post-processed from the solution of the microscopic problem, rewritten

in a helical curvilinear coordinate system (twisting system). Thanks to this coordinate system, we demonstrate that the

microscopic problem can be reduced to the cross-section and solved by a two-dimensional finite element analysis. In

the twisting system, it is shown that bending loads yet depend on the axial coordinate and require a specific treatment

leading to separate variable solutions in the axial variable of complex type. Therefore, this paper advances one step

further than previous papers in which the microscopic problem was reduced to a two-dimensional formulation with

the drawback that only axial loads (extensional or torsional) could be considered. Numerical results are presented for

cylinders, springs, and seven-wire strands. Good agreement with analytical solutions is achieved. Interestingly, the

formulation allows an accurate analysis of mechanical contact effects on the homogenized properties.
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1. Introduction

Helical structures are widely used in engineering applications. They can also be encountered, at the microscopic

level, in biological or synthetic materials [1]. Typical examples are given by springs, in mechanical systems, and

multi-wire cables (strands and ropes), ubiquitous in civil engineering. Cables are usually constituted by helically

wound wires and have the ability to support huge axial loads with relatively small bending stiffness. Strands and ropes

are essential in many engineering applications such as bridges, power transmission lines, prestressing of concrete,

mooring lines, lift machines, etc. Such structures are subjected to environmental degradations (fatigue, corrosion,

temperature, wind). Predicting their mechanical behavior is essential to maintain their safety.

In this paper, we restrict our attention to continuously screw-symmetric structures. This includes springs or strands

composed of a stack of helical wires wrapped with the same twisting rate around a straight axis (e.g. seven-wire

strands). Screw symmetry of discrete type, occurring for instance in multi-layered strands with layers twisted in

opposite directions or in stranded ropes (i.e. involving double-helix wires), is left for further works.

The static behavior of strands can be described by simplified models relying on beam theory. This kind of problem

can be solved analytically, considering axial loads (extensional or torsional) [2–4] as well as bending loads [5, 6], or
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numerically with beam finite elements (FE) [7, 8]. The limitation inherent to beam assumptions, such as wire flattening

and stress concentration due to contact [9], yet restricts the application of these simplified models.

To remove such a limitation, three-dimensional FE models have been proposed. In order to obtain a good repre-

sentation of the mechanical behavior, and in particular, to minimize the edge effects at boundaries, the axial length

of the FE model must be large enough. In practice, the length must be of the order of the pitch of the helix. This

often leads to large-size and computationally expensive models [4, 10–14], because the helix pitch is usually large

compared to the transverse dimension of the structure.

A tremendous reduction can be achieved by exploiting the continuous screw symmetry property of the geometry

of the helical structure. It has been shown that the computational domain can be restricted to a basic periodic cell,

corresponding to a thin three-dimensional FE slice of arbitrary thickness, thanks to specific displacement constraints

between the two boundaries of the slice [15, 16]. This reduction can also be achieved from a different derivation

following a beam-like homogenization method [9, 17]. Owing to its continuous nature, the screw symmetry can be

even considered more efficiently by reducing the computational domain to a two-dimensional model written on the

cross-section only. This further reduction has been proposed in Refs. [18, 19], later extended to non-linear problems in

Refs. [20, 21]. Nevertheless, these reduced models are currently limited to external loads of extensional and rotational

types, excluding bending loads. For a seven-wire strand, note that a length reduction to the sixth of the pitch can be

applied thanks to the discrete translational symmetry of the structure. This allows pure bending loads to be considered

in a straightforward manner [22], but the computational cost remains relatively significant since a three-dimensional

solution is required.

This paper proposes a two-dimensional formulation reduced to the cross-section for modeling the mechanical

behavior of continuously screw-symmetric beam-like structures including bending loads. Following Refs. [17, 18],

the helical symmetry is accounted for within the framework of homogenization theory. The homogenization approach

is based on the asymptotic expansion method and gives the first-order approximation of the three-dimensional problem

from the solution of two successive problems: a microscopic three-dimensional problem and a macroscopic one-

dimensional problem. As shown in this paper, the former can be reduced to the cross-section and solved by a two-

dimensional FE analysis. The latter corresponds to the equilibrium equations of a Navier-Bernoulli-Saint Venant

beam, which effective elastic properties are obtained from the solution of the microscopic problem. The reduction of

the microscopic problem to the cross-section requires to formulate the homogenization theory in a particular helical

coordinate system, called twisting system. In the twisting system, it is shown that bending loads yet depend on the

axial coordinate and require a specific treatment leading to separate variable solutions in the axial variable of complex

type. Therefore, this paper advances one step further our previous paper [18] in which the microscopic problem was

reduced to a two-dimensional formulation with the drawback that only axial loads (extensional or torsional) could be

considered.

This paper is organized as follows. First, Sec. 2 briefly recalls the main results of the homogenization of periodic

beam-like structures following an asymptotic expansion method. Section 3 introduces the twisting curvilinear coordi-

nate system. Thanks to this system, Sec. 4 shows how to reduce the initial three-dimensional microscopic problem to

a two-dimensional problem posed on the cross-section. Two types of external loads have to be distinguished. Exten-

sional and rotational loads, axially constant, can be treated together. Bending loads, which are shown to depend on the

axial coordinate in the twisting system, require a separate treatment. The microscopic problem is then solved with a

two-dimensional FE method. From the microscopic solution, Sec. 5 shows how to post-process the macroscopic stiff-

ness of the homogenized beam. Finally, Sec. 6 presents some numerical results and validation for cylinders, springs,

and seven-wire strands.

2. Background: homogenization of beam-like structures

This section recalls the main results concerning the homogenization of periodic beam-like structures based on

an asymptotic expansion method. Details can be found in Ref. [23] for instance. More about asymptotic expansion

methods for slender structures may be found in [24–26].

A periodic beam-like structure exhibits a small parameter corresponding to the inverse of the slenderness ratio

(i.e. the ratio between the width of the cross-section and the total length of the structure), and a small parameter

corresponding to the ratio of the length of the periodic heterogeneity to the total length. These two parameters will be

embedded in a single parameter, denoted as ε, which amounts to assume that they simultaneously tend to zero [23].
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Two scales are hence considered: the macroscopic 1D-variable X3 (slow scale) and the microscopic variables Y1,

Y2, Y3 (fast scale), which are related through:

(Y1, Y2, Y3) =

(

X1

ε
,

X2

ε
,

X3

ε

)

(1)

where upper-case letters have been used to denote Cartesian coordinates (rectangular coordinates). Accordingly,

upper-case letters will be used to denote the unit vectors of the Cartesian basis, (E1, E2, E3). Lower-case letters will

be left for curvilinear coordinates (helical coordinates), which will be defined later. The beam asymptotic solution

depends on X3, the axial slow variable, and Yi (i = 1, 2, 3), the fast variables, leading to the following change of

variables:

(X1, X2, X3) 7−→ (X3, Y1, Y2, Y3) (2)

Then, the displacement solution is searched under the asymptotic expansion form:

u(X3,Y) = u0(X3,Y) + εu1(X3,Y) + ε2u2(X3,Y) + ... (3)

where the kth-order displacement uk(X3,Y) is periodic in Y3, with a period denoted as L3, the length of the cell at

the microscopic scale. Introducing the expansion (3) in the equilibrium equation of linear elasticity and considering

X3 and Y as independent coordinates, the initial three-dimensional elasticity problem is replaced with a family of

problems by equating the terms of the same order ε. These problems are posed on the periodic cell, denoted as VY ,

thanks to the periodicity of uk, which plays the role of boundary conditions. The Pk
cell

problem consists in finding u

Y3-periodic such that ∀δu is kinematically admissible (which means smooth enough and periodic in Y3 with a period

L3):
∫

VY

∇s
Yδu : σk+1dVY = −

∫

VY

δu · (∇X3
· σk)dVY (4)

where σk+1 = C : ǫk+1 and ǫk+1 = ∇s
Y

uk+2 + ∇s
X3

uk+1 are the stress-strain and strain-displacement relationships at the

order k + 1, C being the elasticity tensor. The notation ∇s
Y

(·) is used for the symmetric strain operators with respect to

Y. The notation∇X3
·(·) is used for the divergence operators with partial differentiation with respect to the only variable

X3. For conciseness, we assume that the peripheral boundary conditions are free so that no boundary condition terms

appear in Eq. (4) (the reader may refer to [23] to include them).

It can be shown that the 0th-order displacement corresponds to a transverse deflection (the transverse macroscopic

displacement):

u0(X3,Y) = U0
α(X3)Eα (5)

It has no axial component, which results from the property that the bending stiffness is much lower than the axial

stiffness for slender structures. A proof of this result may be found in [25] for homogeneous beams and in [27] for

periodic beams.

Solving the P−1
cell

problem yields a 1st-order displacement of the form:

u1(X3,Y) = −Yα
∂U0
α(X3)

∂X3

E3 + U1
3(X3)E3 + Φ

1(X3)(Y1E2 − Y2E1) (α = 1, 2) (6)

which involves a transverse deflection term as well as a rigid-body displacement, which is a composition of a trans-

lation U1
3

and a rotation Φ1 about the axis E3. Note that Eq. (6) should also include the additional term U1
α(X3)Eα.

However, this additional term can be omitted for simplicity because it leads to trivial solutions of rigid-body type at

the upper order [23].

From Eq. (4) and noticing that σ0 = 0, the P0
cell

problem consists in solving numerically the following weak

variational form:
∫

VY

∇s
Yδu : C : ∇s

Yu2dVY = −

∫

VY

∇s
Yδu : C : ∇s

X3
u1dVY ∀δu (7)

The right-hand side is written in term of ∇s
X3

u1, which from Eq. (6) depends on the macroscopic strains:

EE =
∂U1

3

∂X3

, ET =
∂Φ1

∂X3

, EC1 = −
∂2U0

2

∂X2
3

, EC2 =
∂2U0

1

∂X2
3

(8)
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EE is the macroscopic extension, ET is the macroscopic torsion rotation, EC1 is the macroscopic curvature about the

X1-axis and EC2 is the macroscopic curvature about X2. The solution to Eq. (7) can hence be viewed as a linear

combination of these four macroscopic strains, which we will denote as follows for the stress tensor:

σ
1(X3,Y) = σ1E(Y)EE(X3) + σ1T (Y)ET (X3) + σ1C1 (Y)EC1 (X3) + σ1C2 (Y)EC2 (X3) (9)

Finally, by considering particular trial displacement fields of rigid-body type, it can be shown that the P1
cell

and

P2
cell

problems enable Eq. (4) to be written as compatibility equations leading to the following first-order homogenized

problem (macroscopic):










































N1
,3 = 0

T 2
α,3 = 0

T 2
α + M1

α,3 = 0

M1
3,3 = 0

(α = 1, 2) (10)

where (·),3 = ∂/∂X3 and with the homogenized constitutive law:
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(11)

and with the notations:

N1(X3) =< Σ1
33
>, M1

3
(X3) =< −Y2Σ

1
13
+ Y1Σ

1
23
>,

M1
1
(X3) =< Y2Σ

1
33
>, M1

2
(X3) =< −Y1Σ

1
33
>, T 2

α(X3) =< Σ2
α3
>

(12)

where < · >= (1/L3)
∫

VY
(·)dVY and Σk

i j
denotes the stress components in the Cartesian frame (E1,E2,E3):

σ
k = Σk

i jEi ⊗ E j (13)

Note that Eqs. (10) correspond to the classical equilibrium equation in beam theory (discarding external forces here

for simplicity). This homogenized problem has to be fully written in the Cartesian frame to represent the equivalent

behavior of a straight beam.
The effective stiffness matrix [Khom] is determined from Eq. (9), the solution of the P0

cell
problem, and can be

expressed as:

[Khom] =

































< Σ1E
33
> < Σ1T

33
> < Σ

1C1

33
> < Σ

1C2

33
>

< −Y2Σ
1E
13
+ Y1Σ

1E
23
> < −Y2Σ

1T
13
+ Y1Σ

1T
23
> < −Y2Σ

1C1

13
+ Y1Σ

1C1

23
> < −Y2Σ

1C2

13
+ Y1Σ

1C2

23
>

< Y2Σ
1E
33
> < Y2Σ

1T
33
> < Y2Σ

1C1

33
> < Y2Σ

1C2

33
>

< −Y1Σ
1E
33
> < −Y1Σ

1T
33
> < −Y1Σ

1C1

33
> < −Y1Σ

1C2

33
>

































(14)

It can be shown that [Khom] is symmetric.

The P0
cell

problem must be computed numerically. For helical structures, this is usually computationally expensive

because the periodic cell is three-dimensional and its period L3 is equal to the helix pitch, usually large compared to

the cross-section dimension. The next sections demonstrate how to reduce this computation to the cross-section.

3. Introduction of the coordinate system for screw symmetry

As explained in the introduction, the reduction of the microscopic problem to the cross-section requires to for-

mulate the homogenization theory in a particular helical coordinate system, called twisting system. This section

introduces this system. For an introduction to the use of general curvilinear coordinate systems, tensor calculus, and

differential geometry, the reader may refer to [28–30] for instance.
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Figure 1: Twisting coordinate system (y1 , y2 , y3) for the example of a seven-wire strand. As one travels along the straight axis Y3 = y3 , the

cross-section axes y1 and y2 rotate by following the helical geometry of peripheral wires.

3.1. Twisting coordinate frame

The relationship between the rectangular coordinates (Y1, Y2, Y3) and the twisting coordinates (y1, y2, y3) can be

written as [18]:






















Y1 = y1 cos τy3 − y2 sin τy3

Y2 = y1 sin τy3 + y2 cos τy3

Y3 = y3

(15)

where τ = 2π/L3 is the torsion of the coordinate system and L3 denotes the helix pitch of peripheral wires. A

twisting system indeed corresponds to a particular case of helical coordinate system, having non-zero torsion but zero

curvature. With this kind of system, the cross-section plane (y1, y2) remains perpendicular to the straight axis Y3 but

rotates around this axis by following the helical nature of the geometry (see Fig. 1 for the example of a seven-wire

strand). Therefore, the cross-section of a screw-symmetric structure will remain invariant in this system. Note that this

kind of system has also been used for the analysis of helical waveguides in elastodynamics [31–33] and optics [34].

A key point here is that the change of variables from rectangular to twisting coordinates is applied to the fast

variables Yi instead of the slow variables Xi. This means that we allow the torsion to operate at the microscopic scale.

Conversely, replacing Yi with Xi into Eq. (15) would have led to the implicit assumptions that τ is small (as adopted

in Ref. [35] for instance).

To summarize, from Eqs. (2) and (15), two changes of variables are applied in this paper:

(X1, X2, X3) 7−→ (X3, Y1, Y2, Y3) 7−→ (X3, y1, y2, y3) (16)

An important remark is that the rectangular coordinate X3 is kept for the slow scale because the effective behavior

targeted by the homogenization process is that of a straight beam. Therefore, the final change of variable given by

Eq. (16) combines helical coordinates (for the fast scale) with a rectangular coordinate (for the slow scale). Formally,

applying the chain rule leads to the differentiation from the initial to the final variables:

∂

∂Xi

=
∂

∂X3

δi3 +
1

ε
Ji j

∂

∂y j

(i = 1, 2, 3) (17)

where δi j denotes the Kronecker symbol and Ji j = ∂y j/∂Yi denotes the Jacobian of the twisting system transformation.

From Eq. (3) and (16), the asymptotic solution will now depend on the slow rectangular scale X3 and the twisting

fast scale yi (i = 1, 2, 3):

u(X3, y) = u0(X3, y) + εu1(X3, y) + ε2u2(X3, y) + ... (18)

where the kth-order displacement uk(X3, y) is periodic in y3 (with period equal to L3 since y3 = Y3).

Furthermore, the Serret-Frenet basis associated with the twisting system, denoted as (e1, e2, e3), is given in terms

of the rectangular basis (E1,E2,E3) by [18, 32, 33]:























e1 = E1 cos τy3 + E2 sin τy3

e2 = −E1 sin τy3 + E2 cos τy3

e3 = E3

(19)

5



and conversely:






















E1 = e1 cos τy3 − e2 sin τy3

E2 = e1 sin τy3 + e2 cos τy3

E3 = e3

(20)

The unit vectors e1, e2 and e3 are the normal, binormal and tangent vectors respectively [30]. The vector and tensor

components expressed in the twisting coordinate frame will be denoted using lower-case symbols (upper-case symbols

being left for components in the Cartesian frame):

uk = uk
i ei, ǫ

k = ǫki jei ⊗ e j, σ
k = σk

i jei ⊗ e j (21)

In particular, from Eqs. (13), (21) and (19), the following identities hold:

Σ1
33 = σ

1
33, Σ1

13 = σ
1
13 cos τy3 − σ

1
23 sin τy3, Σ1

23 = σ
1
13 sin τy3 + σ

1
23 cos τy3 (22)

These relations will be useful later in Sec. 5.

At this stage, the formulation of the microscopic problem is still three-dimensional. As shown in the rest of

the paper, the solution of this problem will turn out to be separable in terms of the y3-variable, hence leading to a

two-dimensional model.

3.2. Key property: separation of variables

The key property of the microscopic problem considered in this paper is the separation of mechanical fields in

terms of the y3-variable. Let us recall that the separation of a variable is applicable when the coefficients of the

governing partial differential equations, including boundary conditions, are independent of that variable. This implies

that the material properties have to be independent of y3, which will be assumed throughout this paper.

Furthermore, to apply a separation of the y3 variable in our problem, the equilibrium equations have to be written

in an appropriate curvilinear coordinate system capable of tracking the geometry of the structure (otherwise, the

coefficients of the boundary conditions will depend on y3), that is, the twisting frame here. The consequence of this

change of coordinate system is that the coefficients of the partial differential operators become also dependent on the

geometry through the Jacobian (see Eq. (17)). These coefficients can be conveniently written in terms of the so-called

Christoffel symbols (see e.g. [28, 29]).

First, let us calculate the metric tensor, defined by (g)i j = gi · g j where the vectors (gi)k = ∂Yk/∂yi form the

covariant basis. From Eq. (15), the following expression is obtained for the metric tensor of the twisting coordinate

system:

g =





















1 0 −τy2

0 1 τy1

−τy2 τy1 τ2(y2
1
+ y2

2
)





















. (23)

The Christoffel symbols, denoted as Γk
i j

, are defined as follows [30]:

Γk
i j =
∂gi

∂x j
· gk (24)

They can be expressed as a function of the metric tensor solely by [30]:

Γk
i j =

1

2
gkl

(

∂g jl

∂xi
+
∂gil

∂x j
−
∂gi j

∂xl

)

(25)

where gi j = gi · g j is the contravariant metric tensor, equal to the inverse of the covariant metric tensor (gi j = (g−1)i j).

As noticed from Eq. (23), the independence of g on y3 is fulfilled by the twisting coordinate system. The coef-

ficients of the differential operators expressed in the twisting frame will depend only on the cross-section variables

(y1, y2) and the torsion τ (see e.g. the operator Ly, given by Eq. (28)). The separation of the y3 variable in the twisting

frame is hence justified, somehow a posteriori, from the calculation of the metric tensor.

This key property will be exploited in the next section. It will be shown that the microscopic strains, representing

the external forces (right-hand side) of the microscopic problem, admit a specific separation of the y3-variable, thus

allowing the solution itself to be of the same form.
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4. Solution of the microscopic problem

4.1. Transformation of the microscopic problem

The P0
cell

problem given by Eq. (7), written with rectangular variables, is transformed into the twisting coordinate

system.

For convenience, the notations uk, ǫk and σk will now represent the components of fields in the orthonormal basis

of the twisting system, (e1, e2, e3), using Voigt notations for the second-order tensors, so that:

uk =



















uk
1

uk
2

uk
3



















, ǫ
k =



















































ǫk
11

ǫk
22

ǫk
33

2ǫk
12

2ǫk
13

2ǫk
23



















































, σ
k =



















































σk
11

σk
22

σk
33

σk
12

σk
13

σk
23



















































(26)

The constitutive law is now written as σk = Cǫk, where C is the 6-by-6 constitutive matrix of material properties.

Based on these notations, it can be shown that the microscopic strain ∇s
yu2 and the macroscopic strain ∇s

X3
u1 are

expressed in the twisting frame as:

∇s
yu2 = Lyu2, ∇s

X3
u1 = LX3

∂u1

∂X3

(27)

with:

Ly =



























































∂
∂y1

0 0

0 ∂
∂y2

0

0 0 τy2
∂
∂y1
− τy1

∂
∂y2
+ ∂
∂y3

∂
∂y2

∂
∂y1

0

τy2
∂
∂y1
− τy1

∂
∂y2
+ ∂
∂y3

−τ ∂
∂y1

τ τy2
∂
∂y1
− τy1

∂
∂y2
+ ∂
∂y3

∂
∂y2



























































, LX3
=



















































0 0 0

0 0 0

0 0 1

0 0 0

1 0 0

0 1 0



















































(28)

Details about the calculation of the operator Ly and the matrix LX3
are given in Appendix A.

Therefore, the transformation of Eq. (7) into the twisting coordinate system leads to the weak variational form:

∫

Vy

(Lyδu)TCLyu2dVy = −

∫

Vy

(Lyδu)TCLX3

∂u1

∂X3

dVy ∀δu (29)

for any kinematically admissible displacement δu. Note that from Eq. (23), one has det g = 1, so that: dVY =
√

det g dVy = dVy, where dVY = dY1dY2dY3 and dVy = dy1dy2dy3.

The right-hand-side of (29) is an external force representing the action of prescribed macroscopic strains, involved

in the vector ∂u
1

∂X3
. As shown in Appendix B, this vector can be expressed in the twisting frame as:

∂u1

∂X3

=



















−y2ET

y1ET

EE + (y2 cos τy3 + y1 sin τy3)EC1 + (y2 sin τy3 − y1 cos τy3)EC2



















(30)

In the above expression, two kinds of terms can be distinguished: those independent of y3, related to EE,T , and those

dependent of y3, related to ECα (α = 1, 2). As shown in the next subsections, the treatment of these terms is different.

4.2. Solution without bending

Without bending (ECα = 0), the vector ∂u
1

∂X3
does not depend on y3:

∂u1

∂X3

=



















−y2ET

y1ET

EE



















(31)
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Owing to the invariance of the geometry in the twisting frame (outlined in Sec. 3.2), the mechanical fields do not

longer depend on the microscopic coordinate y3. Therefore, the problem becomes is fully y3-independent so that
∫

Vy
(·)dVy =

∫

S y
(·)dS y(

∫

dy3), where dS y = dy1dy2 and the weak variational form (29) can be reduced to the two-

dimensional cross-section S y.

A finite element approximation of the form u2 = N(e)U2(e) is introduced, where N(e) is the matrix of two-

dimensional shape functions and U2(e) the nodal displacements with three degrees of freedom at each node. The

weak variational form (29) reduced on the cross-section yields the following linear matrix system:

KU2 = −F1 (32)

with the elementary matrices:

K(e) =

∫

S
(e)
y

(L⊥y N(e))TCL⊥y N(e)dS y F1(e) =

∫

S
(e)
y

(L⊥y N(e))TCLX3



















−y2ET

y1ET

EE



















dS y (33)

where T denotes the matrix transpose, the FE solution U2 corresponds to the discretized microscopic displacement u2

and where L⊥y denotes the operator Ly discarding the derivatives ∂/∂y3. The solution σ1 to this problem is written:

σ
1(X3, y1, y2) = σ1E (y1, y2)EE(X3) + σ1T (y1, y2)ET (X3) (34)

which does not depend on y3 either.

Without bending, it can be checked that the formulation of Refs. [18, 19], limited to extensional and torsional

loads, is recovered. The goal of this paper is to extend this two-dimensional formulation to loads of bending type.

4.3. Solution with bending

With bending loads (ECα , 0), the external force ∂u
1

∂X3
depends on y3. This configuration must be treated separately

from the extensional and torsional strains EE and ET . The latter are therefore discarded, so that:

∂u1

∂X3

=



















0

0

(y2 cos τy3 + y1 sin τy3)EC1 + (y2 sin τy3 − y1 cos τy3)EC2



















(35)

At first sight, the dependence on y3 prevents the problem to be reduced on the cross-section.

The trick is to take advantage of the separation of variables allowed by the twisting system, as demonstrated in

Sec. 3.2, to build solutions having an analytical y3-dependence in cos τy3 and sin τy3. In order to get a more compact

form, solutions are looked for in terms of the complex exponential eiτy3 . This kind of dependence is standard in wave

problems [32, 34]. It can be justified here in elastostatics due to the helical nature of the geometry, which induces

a form of anisotropy in the equilibrium equations. Anisotropy hinders the uncoupling between pure sin(·) and pure

cos(·) components of fields (typically only applicable in the full isotropic case).

First, let us rewrite the last component of Eq. (35) as:

(y2 cos τy3 + y1 sin τy3)EC1 + (y2 sin τy3 − y1 cos τy3)EC2 = Re
{

(y2 − iy1)(EC1 − iEC2 )eiτy3

}

(36)

This shows that, in the complex space, ∂u1/∂X3 obeys a separation of the y3-variable in eiτy3 . Thanks to the con-

sideration of Sec. 3.2, this separation is also applicable for u2. Furthermore, in order to reduce the problem to the

cross-section, a convenient choice for the arbitrary test field δu is to adopt a dependence in e−iτy3 . To summarize, we

have:

u1(y1, y2, y3) = u1(y1, y2)eiτy3 , u2(y1, y2, y3) = u2(y1, y2)eiτy3 , δu(y1, y2, y3) = δu(y1, y2)e−iτy3 (37)

so that Ly becomes:

Ly =



























































∂
∂y1

0 0

0 ∂
∂y2

0

0 0 τy2
∂
∂y1
− τy1

∂
∂y2
+ iτ

∂
∂y2

∂
∂y1

0

τy2
∂
∂y1
− τy1

∂
∂y2
+ iτ −τ + ∂

∂y1

τ τy2
∂
∂y1
− τy1

∂
∂y2
+ iτ ∂

∂y2



























































(38)
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From Eqs. (36)-(38), the discretization of the weak variational form (29) can now be reduced to the cross-section

(note that the integrands do no longer depend on y3 thanks to the choice of Eq. (37)), yielding a linear system KU2 =

−F1 with:

K(e) =

∫

S
(e)
y

(LyN(e))*CLyN(e)dS y, F1(e) =

∫

S
(e)
y

(LyN(e))*CLX3



















0

0

(y2 − iy1)(EC1 − iEC2 )



















dS y (39)

where ∗ denotes the matrix transpose conjugate operation. As opposed to Eq. (34), the stress σ1 now depends on y3

through the separate variable form:

σ
1(X3, y1, y2, y3) = σ1C1 (y1, y2)EC1 (X3)eiτy3 + σ1C2 (y1, y2)EC2 (X3)eiτy3 (40)

From Eqs. (36), the solution to the external force (35) can be obtained by taking the real part of the complex

solution. The microscopic displacement field solution to ECα , 0 is hence given by Re(U2eiτy3).

Interestingly, let us assume EC1 = EC2 = EC . Noticing that Re
{

(y2 − iy1)(−iEC)eiτy3

}

= Im
{

(y2 − iy1)ECeiτy3

}

and introducing it into Eq. (36), it can be deduced that the imaginary part of the complex solution, Im(U2eiτy3 ),

computed for (EC1 = EC , EC2 = 0) indeed corresponds to the real part of the solution computed for (EC1 = 0, EC2 =

EC). Therefore, the solution to the bending problem can be computed only once by exploiting both the real and the

imaginary parts of the complex solution U2eiτy3 . In particular, it can be checked that the following relationship holds:

Im{σ1C1 (y1, y2)eiτy3 } = Re{σ1C2 (y1, y2)eiτy3 }, Im{σ1C2 (y1, y2)eiτy3 } = −Re{σ1C1 (y1, y2)eiτy3 } (41)

5. Determination of the macroscopic stiffness

5.1. Stress relationships between Cartesian and curvilinear components

Once the microscopic problem is solved, the stresses are computed thanks to Eqs. (34) or (40). These stresses are

given as components in the curvilinear coordinate system and must be transformed to Cartesian components in order

to compute the homogenized stiffness matrix [Khom] defined in Sec. 2 and given by Eq. (11).

First, notice that:

< · >=
1

L3

∫

VY

(·)dVY =
1

L3

∫ L3

0

∫

S y

(·)dS ydy3 (42)

Since τ = 2π/L3, the integral
∫ L3

0
(·)dy3 vanishes except for the following integrands:

∫ L3

0

dy3 = L3,

∫ L3

0

cos2 τy3dy3 =
L3

2
,

∫ L3

0

sin2 τy3dy3 =
L3

2
(43)

Owing to Eqs. (15), (22), (34), (40) and (43), it can be checked that the components of [Khom] are given by:

< Σ
1E,T

33
>=

∫

S y
σ

1E,T

33
dS y, < Σ

1Cα
33
>= 0, < −Y2Σ

1E,T

13
+ Y1Σ

1E,T

23
>=

∫

S y
(−y2σ

1E,T

13
+ y1σ

1E,T

23
)dS y,

< −Y2Σ
1Cα
13
+ Y1Σ

1Cα
23
>= 0, < YαΣ

1E,T

33
>= 0, < Y2Σ

1Cα
33
>= 1

2
Re

{

∫

S y
(y2 + iy1)σ

1Cα
33

dS y

}

,

< −Y1Σ
1Cα
33
>= − 1

2
Im

{

∫

S y
(y2 + iy1)σ

1Cα
33

dS y

}

(α = 1, 2)

(44)

It can be noticed that there is no coupling between bending and stretch-torsion (Khom
13
= Khom

14
= Khom

23
= Khom

24
= 0).

Furthermore, using Eqs. (41), the following identities can be obtained:

< −Y1Σ
1C2

33
>=< Y2Σ

1C1

33
>, < −Y1Σ

1C1

33
>= − < Y2Σ

1C2

33
> (45)

This proves that, for any continuously screw-symmetric structure, the homogenized bending stiffnesses in both direc-

tions are equal (Khom
33
= Khom

44
), and that no coupling occurs in bending (Khom

34
= −Khom

43
= 0 owing to the symmetry of

[Khom]). The homogenized stiffness matrix has therefore the following structure:

[Khom] =





























Khom
11

Khom
12

0 0

Khom
22

0 0

sym. Khom
33

0

0 Khom
33





























(46)
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5.2. Post-processing the resultant forces

Following Ref. [10], the components of [Khom] can be readily post-processed from the total strain energy per unit

length:

Ep =
1

2































EE

ET

EC1

EC2































T

[Khom]































EE

ET

EC1

EC2































(47)

First, let us consider the case without bending (ECα = 0). The strain energy can be written as:

Ep =
1

2

∫

S y

(ǫ1)T
σ

1dS y (48)

where σ1 = Cǫ1, ǫ1 = (L⊥y u2 + LX3

∂u1

X3
) and ∂u

1

∂X3
is defined by Eq. (31). Let us introduce the FE vectorΦ1 defined at

the element level from:

Φ
1(e) =

∫

S
(e)
y

(LX3
N(e))TCLX3

∂u1

∂X3

dS y (49)

Accounting for the equilibirum KU2 = −F1 (F1 being defined by Eq. (33)), the strain energy (48) simplifies into:

Ep =
1

2

(

(F1)TU2 + (D1)T
Φ

1
)

(50)

where D1 is the FE vector artificially built from the field ∂u1

X3
= [−y2ET y1ET EE]T (i.e. at node (n): D1(n) =

[−y
(n)

2
ET y

(n)

1
ET EE]T).

In case of bending (ECα , 0), the fields are complex and the following relation holds:

1

L3

∫ L3

0

Re(ǫ1eiτy3)TRe(σ1eiτy3)dy3 =
1

2
Re(ǫ1∗

σ
1) (51)

The strain energy becomes:

Ep =
1

4
Re(F1∗U2 + D1∗

Φ
1) (52)

where F1 is now defined by Eq. (39), the vectorsΦ1 and D1 are now built from the field ∂u
1

X3
= [0 0 (y2 − iy1)(EC1 −

iEC2 )]T at every node.

As an example, considering the solution for EC1 = 1 (EE,T = EC2 = 0), the strain energy as calculated by Eq. (52)

leads to Khom
33
/2.

6. Results

Since the bending behaviour constitutes the main originality of the paper, the numerical results of this paper

are focused on bending loads (we recall that in Sec. 4.2, it has been shown that the formulation obtained under

extensional or torsional loads is equivalent to that of Ref. [18], where numerical results can be found). Furthermore,

the homogenized bending stiffness has been proved to be equal in both directions (see Sec. 5). Therefore, the curvature

EC2 can be set to zero for simplicity (EC1 , 0).

In this paper, the FE meshes are generated by the free software Gmsh [36] using six-node triangles (quadratic

interpolation). Isotropic materials are considered. The Young’s modulus and Poisson ratio are denoted by E and ν

respectively.

6.1. Validation

Two test cases are considered to validate the twisting formulation of Sec. 4.3. The Poisson ratio is set to ν = 0.3.
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τrc 0.25 0.5 1 2 4

Khom
33
/Eπr4

c 0.2500 0.2500 0.2500 0.2500 0.2500

Relative error (%) 4.7e-5 4.7e-5 4.7e-5 4.4e-5 3.6e-5

Table 1: Circular beam test case. Homogenized bending stiffness computed by the two-dimensional FE formulation and error relative to the

analytical solution (53).

(a) (b)

Figure 2: Circular beam test case with: rc = 1, τ = 1, EC1 = 1. Normalized stress field σ1
33
/E: (a) real part, (b) imaginary part.

6.1.1. Circular straight beam

The first test case corresponds to the bending of a straight circular beam, that is, a cylinder of circular cross-section.

The moment-curvature relationship for this problem is well-known and leads to the following bending stiffness:

Khom
33 = EIc (53)

where Ic = πr
4
c/4 (rc being the radius of the cross-section). The microscopic displacement can be expressed analyti-

cally by [25]:

u2(X3,Y) =

{

−νY1Y2E1 +
ν

2
(Y2

1 − Y2
2 )E2

}

EC1 +

{

ν

2
(Y2

1 − Y2
2 )E1 + νY1Y2E2

}

EC2 (54)

With the cross-section centered at the origin (y1, y2) = (0, 0), the problem can be analyzed with a twisting system

of arbitrary torsion τ because the geometry of the structure remains invariant under the twisting transformation.

The component Khom
33

of the homogenized stiffness matrix, computed from Secs. 4.3 and 5.2, is given in Table 1

for several torsion values. As expected, the computed homogenized bending stiffness is found to be independent of

τ. The relative error remains lower than 10−4%, demonstrating the accuracy of the two-dimensional formulation for

bending loads.

Figure 2 shows the real and imaginary parts of the normalized stress field σ1
33
/E as well as the superimposed

cross-section FE mesh (4743 degrees of freedom), computed for rc = 1, τ = 1, EC1 = 1 (EC2 = 0). As theoretically

demonstrated by Eq. (41), it can be observed that the imaginary part is equal to the bending solution about the y2 axis,

i.e. for EC2 = 1 (EC1 = 0).

Figure 3a shows the real part of the microscopic displacement in the y2 direction. The displacement agrees with

the analytical solution shown in Fig. 3b, built from Eq. (54). Figure 3c gives the imaginary part of the microscopic

displacement in the y1 direction: this displacement field indeed corresponds to the solution (real part) obtained for a

macroscopic curvature imposed in the other direction (EC2 = 1), in accordance with the theoretical considerations of

Sec. 4.3.

6.1.2. Spring

The second validation test case corresponds to the bending of a spring. The analytical expression of the bending

stiffness of a spring can be found in Ref. [2] and is given by:

Khom
33 = EIh

2 cosφ

2 + ν sin2 φ
(55)
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(a) (b) (c)

Figure 3: Circular beam test case with: rc = 1, τ = 1, EC1 = 1. Microscopic displacement in the y2 direction: (a) real part of the numerical solution,

(b) analytical solution. (c) Imaginary part of the microscopic displacement in the y1 direction (numerical).

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

0.3

(a) (b) (c)

Figure 4: Spring test case. (a) Homogenized bending stiffness as a function of the lay angle computed by the two-dimensional FE formulation (×

dashed line) and analytical solution (solid line). Normalized stress field σ1
33
/E computed for rh = 1, Rh = 10, φ = 80◦ and EC1 = 1: (b) real part,

(c) imaginary part.

where Ih = πr
4
h
/4 for a circular cross-section of radius rh and φ denotes the helix lay angle of the spring, defined from:

tanφ = Rhτ (56)

with Rh the radius of the helix centerline (and τ = 2π/L3).

In the numerical model, it is noteworthy that the cross-section lies in the (y1, y2) plane of the twisting frame

and hence corresponds to the Y3 = 0 plane cut. Let (x, y) = (x(t), y(t)) be a curve parametrization of the cross-

section normal to the helix centerline, t denoting the curve parameter. For a circular section of radius rh, one has:

(x(t), y(t)) = (rh cos t, rh sin t), t ∈ [0; 2π]. It can be shown that the cross-section cut by the plane Y3=0 is parametrized

as follows [18, 32, 33]:

{

Y1(t) = (τ−1 tan φ + x(t)) cos (τy(t) sinφ) − y(t) cosφ sin (τy(t) sinφ)

Y2(t) = (τ−1 tan φ + x(t)) sin (τy(t) sin φ) + y(t) cosφ cos (τy(t) sinφ)
(57)

The above parametrization yields the cross-section shape that must be meshed in the two-dimensional formulation.

Note that the shape changes with the helix parameters and that, for φ = 0 (straight wire), it degenerates to a circle.

Figure 4a gives the normalized bending stiffness Khom
33
/Eπr4

c computed from the numerical model as a function of

the lay angle ranging from 1◦ to 80◦ (Rh/rh = 10). As it can be observed, the numerical model matches the analytical

solution (55).

Figures 4b and c depict the real and imaginary parts of the normalized stress field σ1
33
/E computed for rh = 1,

Rh = 10, φ = 80◦ and EC1 = 1. As already shown, the imaginary part is equal to the solution for EC2 = 1. It can

be observed that the stress distributions both satisfy the symmetry of the cross-section about the y1 axis. The FE

mesh (3645 degrees of freedom) is superimposed in the figures. This example has a strong lay angle, which clearly

illustrates that the cross-section shape, properly parametrized by Eq. (57), is not circular.
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(a) (b) (c)

Figure 5: Strand test case, full slip-state. (a) Homogenized bending stiffness as a function of the lay angle computed by the two-dimensional FE

formulation (× dashed line) and analytical solution (solid line). Normalized stress field σ1
33
/E computed for rc = 1, φ = 7.9◦ and EC1 = 1: (b) real

part, (c) imaginary part.

6.2. Seven-wire strands

The analysis of seven-wire strands under bending loads is now conducted. As shown by the previous results, the

two-dimensional formulation expressed in the twisting system allows the consideration of both straight circular wires

and helical wires. The twisting formulation is hence also suitable for seven-wire strands.

Typical strands are characterized by clearances between peripheral wires: their diameter is usually smaller than

that of the central wire so that they do not contact each other. This is a widespread design criterion to minimize

frictional effects and secondary tensile stresses [7, 14]. In this paper, we set rh = 0.967rc (Rh = 1.967rc), where the

subscripts c and h are used for the central and peripheral wires respectively. Clearance between peripheral wires is

geometrically satisfied under the following condition [14]:

φ < φmax = arccos

√

3

(1 + rc/rh)2 − 1
(with rc > rh) (58)

yielding φmax = 12.1◦. The FE mesh of peripheral wires is generated by taking care of their cross-section shape owing

to Eq. (57). The Poisson ratio is set to ν = 0.28.

As far as the interaction between the central wire and the peripheral ones is concerned, two extreme cases are

commonly considered [13]: full slip-state (no friction) and full stick-state (no slip).

6.2.1. Full slip-state

In this case, the wires can freely slip relative to each other. This configuration occurs when the bending curvature is

sufficiently high to neglect interwire friction. The bending stiffness reaches its minimum [6]. The strand can be treated

as an assemblage of independent wires, which from Eq. (53) and (55) leads to the following analytical solution [2]:

(Khom
33 )min = EIc + 6EIh

2 cosφ

2 + ν sin2 φ
(59)

In the numerical model, the continuity of the displacement in the contact region is enforced only in the radial

direction. For simplicity, the contact region is restricted to a single node (this restriction will be removed later in

Sec. 6.2.3).

Figure 5a shows the homogenized stiffness Khom
33

computed with the numerical model as a function of the lay

angle of peripheral wires, ranging from φ = 1◦ to φ = 15◦. Although the peripheral wires are geometrically touching

each other from φ = 12.1◦ (see Eq. (58)), peripheral contact is neglected in the whole angle range for simplicity. The

numerical solution is in very close agreement with the analytical solution (59).

Figures 5b and c show the real and imaginary parts of the normalized stress field σ1
33
/E computed for rc = 1,

φ = 7.9◦ and EC1 = 1, as well as the FE mesh used for the computation (12, 369 degrees of freedom). As expected,

each wire behaves freely (the axial stress varies linearly inside each wire). Note that the imaginary part clearly

corresponds to the bending solution about the y2 axis (EC2 = 1), as expected from Eq. (41).
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Figure 6: Strand test case, full stick-state. (a) Homogenized bending stiffness as a function of the lay angle computed by the two-dimensional FE

formulation (× dashed line) and analytical solution (solid line). Normalized stress field σ1
33
/E computed for rc = 1, φ = 7.9◦ and EC1 = 1: (b) real

part, (c) imaginary part.

6.2.2. Full stick-state

In this case, the entire cable behaves like a single body: the peripheral wires are fully bonded to the central wire.

Such a configuration typically occurs at the beginning of bending when the radial contact forces are high enough to

prevent slipping. According to Ref. [6], the bending stiffness is maximum and can be approximated by the following

analytical formula:

(Khom
33 )max = EIc + 6EIh cos φ + 3EAhR2

h cos3 φ (60)

where Ah = πr
2
h

is the area of a peripheral wire cross-section. Compared to Eq. (59), the last term in the right hand

side can be viewed an additional term to the bending stiffness, when all wires are bonded together as a solid body.

In the numerical model, the continuity of the displacement in the contact region is enforced in the three directions.

As previously, the contact region is restricted to a single node.

Figure 6a shows the homogenized stiffness Khom
33

computed with the numerical model as a function of the lay

angle of peripheral wires. The numerical solution is in good agreement with the analytical approximation (60) for

φ = 0◦ but deviates as the lay angle increases. Numerical tests have been conducted by refining the FE mesh and by

setting the Poisson ratio ν to zero (as implicitly supposed in the formula (60), showing that the numerical bending

stiffness found in Fig. 6a remains nearly unchanged (results not shown for conciseness). These discrepancies with the

analytical solution will indeed be explained later in Sec. 6.2.4.

Figures 6b and c give the real and imaginary parts of σ1
33
/E computed for rc = 1, φ = 7.9◦ and EC1 = 1 (same FE

mesh as before, involving 12, 369 dofs). As opposed to the full slip-state, the bending motion of the strand appears of

global type and resembles that of a single beam (the stress varies continuously in the whole cross-section).

6.2.3. Effect of contact area due to an applied extension

In the previous simulations, the strand was initially unloaded, that is, no extension was applied (EE = 0). The

interwire contact region was restricted to a single node, hence corresponding to the limiting case of a zero contact

width. Such a configuration is somehow purely theoretical. A single contact point can indeed be viewed as a singular

point. In contact mechanics, it is well known that a minimum number of elements is required to discretize a given

contact width (see Refs. [37, 38] for instance). Therefore, it could be argued that numerical convergence can hardly

be achieved for the theoretically unloaded case. In this section, the increase of the contact width due to an applied

extension EE
, 0 is accounted for. The loading process consists in two steps.

First, the strand is gradually loaded up to EE = 0.02 (ET = ECα = 0). A tensile strain tends to increase the

interwire contact width because of the helical geometry of peripheral wires, yielding a radial compression of the

central wire. These contact phenomena are neglected when the linear static problem given by Eq. (32) is solved

in a unique step. Instead, an iterative procedure must be used in order to account for the contact evolution (non-

linear by nature). Our modeling approach is based on a node-to-node contact procedure using a direct elimination

method [39]. A matching mesh is used inside the interfacial zone. For the two-dimensional cross-section FE model

used in this paper, the computation starts with a single point contact. As the external load is incremented, contact
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Figure 7: Strand test case. Homogenized bending stiffness as a function of the contact half-width a/rc computed by the two-dimensional FE

formulation for: (a) φ = 7.9◦, (b) φ = 15◦ (solid lines: numerical solutions, dashed lines: analytical solutions, gray lines: full slip-state, black lines:

full stick-state). (c) Contact half-width as a function of the normal contact forceN/Eπrc computed for φ = 7.9◦ (×) and 15◦ (◦) (dashed line: Hertz

analytical solution).

pairs of nodes are successively formed: once the gap between a pair of nodes is closed, the continuity of displacement

is enforced at these nodes by the direct elimination method. The continuity is enforced along the three directions,

hence corresponding to the assumption of stick contact conditions (full stick-state), or along the radial direction only

for the full slip-state. The reader may refer to [40] for additional details on this iterative procedure. In a second step,

the bending load is finally applied (ECα , 0). Note that the geometrical non-linear effects are not accounted for in this

paper (a linear strain-displacement relation has been assumed).

The FE mesh has been designed such that the contact width for EE = 0.02 is discretized with six three-node line

elements, resulting in thirteen contact nodes and six load increments. Figures 7a and b depict the evolution of the

homogenized bending stiffness computed for φ = 7.9◦ and 15◦ as the contact half-width, denoted by a, increases up

to the extension EE = 0.02. It can be observed that that the bending stiffness remains constant in the full slip-state,

and equal to the analytical solution given by Eq. (59) (in the figures, gray solid lines are perfectly superimposed onto

gray dashed lines). However in the full stick-state, the bending stiffness tends to increase with the contact width: the

contact width indeed tends to stiffen the bending behavior of the strand. This stiffening effect remains moderate for

φ = 7.9◦ but becomes more significant for 15◦ (i.e. as the lay angle increases). Despite this increase, note that the

bending stiffness yet remains far from the analytical formula given by Eq. (60).

In order to check our static modeling of contact, Fig. 7c shows the evolution of the contact half-width with the

normal contact forceN for a given contact interface. These numerical results are compared to the solution calculated

from Hertz theory for parallel cylinders, given by the following analytical solution [41]:

a =

√

8

π
N

1 − ν2

E

1
1
rc
+ 1

rh

(61)

The numerical results are in agreement with Hertz solution.

6.2.4. Full stick-state with lateral contact

In order to explain the discrepancies with the analytical solution observed in Fig. 6, Fig. 8a shows the numerical

results obtained by artificially connecting together the peripheral wires with their nearest neighbouring nodes (case of

lateral contact). These artificial contacting nodes are indicated in Fig. 8b (by black bullets). The numerical solution

is now in good agreement with the analytical approximation (60) for any value of φ. The difference between Fig. 6a

and 8a can be explained by the rotation of peripheral wires, free when they are not connected to each other, but

blocked when connected. In the former case, the plane section hypothesis is not fully valid, leading to a reduced

bending stiffness. In the latter case, the whole cross-section behaves like a single solid body in accordance with the

beam approximation of Ref. [6] used to derive Eq. (60). Note that the rotational motion of peripheral wires under

bending occurs due to their helical nature. Conversely, such a rotational motion does not occur for straight wires,
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Figure 8: Strand test case, full stick-state, artificial contact between peripheral wires. (a) Homogenized bending stiffness as a function of the

lay angle computed by the two-dimensional FE formulation (× dashed line) and analytical solution (solid line). Normalized stress field σ1
33
/E

computed for rc = 1, φ = 7.9◦ and EC1 = 1: (b) real part, (c) imaginary part. The artificial contact nodes are indicated by the six black bullets in

Fig. (b).

which explains why the analytical and the numerical solutions agree as the lay angle tends to zero in Fig. 6a. These

numerical results are consistent with those found in Ref. [13] and obtained from a full three-dimensional FE model.

Consequently, approximate beam-like solutions of plane section type can significantly overestimate the actual

bending stiffness of strands in the full stick-state, and hereby the critical curvature at which the wires can start to slide

relative to each other [42]. Figure 6b and c give the real and imaginary parts of σ1
33
/E computed for rc = 1, φ = 7.9◦

and EC1 = 1. It can be observed that the whole cross-section behaves like a solid body, as assumed in beam theory.

The stress values are slightly greater with peripheral contact than without, which is consistent with the increase of

bending stiffness.

7. Conclusion

A two-dimensional formulation has been proposed for modeling the bending behavior of helical beam-like struc-

tures. Within the framework of homogenization theory and using the asymptotic expansion method, the initial three-

dimensional problem has been transformed to a microscopic problem reduced to the two-dimensional cross-section

of the structure, thus offering a tremendous reduction of computational cost compared to full three-dimensional FE

models. This two-dimensional reduction exploits the continuous helical symmetry of the problem by rewriting the

equilibrium equations in a helical curvilinear coordinate system (twisting system). Such a coordinate system supports

a key property: the separation of solution fields in terms of the axial variable. It has been shown that the treatment

of bending loads in the twisting system leads to a specific analytical separation of variables, of complex type, along

the beam axis. Once the microscopic problem is solved, the effective elastic properties of the beam can then be

readily post-processed from the expression of the total strain energy. Numerical results, including the distribution of

microscopic stresses over the cross-section, have been presented for cylinders, springs, and seven-wire strands. The

formulation has been validated by comparison with several analytical solutions.

More particularly, the two-dimensional formulation allows a closer examination of mechanical contact effects

on the homogenized properties of seven-wire strands. It has been shown that the increase of contact width due to

extensional loads has a negligible effect in the full slip-state but tends to increase the homogenized bending stiffness

in the full stick-state. It has also been shown that approximate solutions of rigid-body type (relying on plane section

hypothesis) can significantly overestimate the actual bending stiffness in the full stick-state configuration by neglecting

the rotational motion of peripheral wires. This rotational motion, inexistent for straight peripheral wires, tends to

gradually increase with the lay angle and leads to a bending behavior softer than predicted with analytical solutions

of plane section type.
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A. Strain-displacement operator in the twisting frame

Introducing the slow helical variables (x1, x2, x3), let us consider the following change of variables:

(X1, X2, X3) 7−→ (x1, x2, x3) 7−→ (x1, x2, x3, y1, y2, y3) (A.1)

We have:

(y1, y2, y3) =

(

x1

ε
,

x2

ε
,

x3

ε

)

(A.2)

From Eqs. (1), (A.2) and (15), it can be deduced that the torsion operate as τ/ε for the slow variables. This is

consistent with the fact that τ operates at the microscale, as already noticed in Sec. 3. Defined from ∇s
xu = Lxu, the

strain-displacement operator Lx expressed in twisting coordinates can be found in [31–33] and is:

Lx =
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(A.3)

From the chain rule:

∂

∂xi

=
∂

∂xi

+
1

ε

∂

∂yi

=
∂Xα

∂xi

∂

∂Xα
+
∂X3

∂xi

∂

∂X3

+
1

ε

∂

∂yi

(i = 1, 2, 3 and α = 1, 2) (A.4)

and noticing ∂
∂Xα
= 0 (α = 1, 2) for a beam-like homogenization process, together with X3 = x3, we have:

∂

∂xi

=
∂

∂X3

δi3 +
1

ε

∂

∂yi

(i = 1, 2, 3) (A.5)

where δi3 denotes the Kronecker’s symbol. Using Eqs. (A.5) into (A.3) yields:

Lx = LX3
+

1

ε
Ly (A.6)

where LX3
and Ly are given by Eqs. (28).

B. Expression of the displacement field in the twisting frame

From Eqs. (5), (6), (15) and (20), one gets the following expression of the displacement field in the twisting

coordinate system, at the zeroth and first orders:

u0(X3, y) =
(

U0
1 cos τy3 + U0

2 sin τy3

)

e1 +
(

−U0
1 sin τy3 + U0

2 cos τy3

)

e2 (B.1)

and:
u1(X3, y) = −y2Φ

1e1 + y1Φ
1e2
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e3

(B.2)

Equation (30) follows from Eq. (B.2) written using the notation of Eq. (26).

As a side remark, it could be checked from Eq. (28), (B.1) and (B.2) that the zeroth and first order displacement

fields satisfy the following equations:

1

ε
Lyu0 = 0, LX3

∂u0

∂X3

+ Lyu1 = 0 (B.3)

which means that the strain at the order 1/ε and ε0 vanishes. The displacement up to the first order, given in twisting

coordinates by Eq.s (B.1) and (B.2), hence asymptotically satisfies the equilibrium equation, which is consistent with

the homogenization theory of beam-like structures [23].
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