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Abstract: We show that geometric parametric instability (GPI) in graded-index multimode
fibers is strongly influenced by higher-order dispersion. By measuring the output spectrum for
different core radii, we distinguish peaks generated by GPI from other coexisting parametric
processes using phase-matching arguments and numerical simulations. We highlight for the first
time a non-degenerate GPI process involving two pumps at different wavelengths.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Graded-index (GRIN) multimode optical fibers (MMFs) were developed historically to reduce
modal dispersion in first-generation multimode optical communication systems [1,2] in the
seventies. One of their main characteristics is that the propagation constants of the modes are
equally spaced, which provides a periodic focalisation of the overall field in the core, known as
self-imaging [3,4]. Three decades later, it was shown theoretically that this periodic self-imaging
process could induce a refractive index grating through the Kerr effect, allowing parametric
instability to take place [5].

After pioneering experimental studies in the eighties [6], there has been a strong renew of
interest in nonlinear optics in GRIN MMFs over the last ten years [7–10], with the observation
of multimode spatiotemporal solitons [11,12], supercontinuum generation [13–15], geometric
parametric instability (GPI) [16–19] and beam self-cleaning [20,21]. The role of the Kerr-induced
refractive index grating has been unambiguously identified in several of these experimental works,
including the emission of quasi-phase matched radiations from solitons [22] and the observation
of GPI [16].

GPI has been extensively studied experimentally in GRIN MMFs since its first observation
in 2016 [16]. It can be described either by using the collective approach initially developed by
Longhi [5] in which the evolution of the total field in the fiber is considered, or by intermodal
four-wave mixing (FWM) processes. In this last case, multiple quasi-phase-matched (QPM)
processes assisted by the Kerr-induced refractive index grating of individual modes are considered
[23]. It is now well accepted in the literature that both approaches are equivalent and constitute
two different ways of describing the same phenomenon. Although GPI has been clearly observed
many times [16,17,24–27], many other FWM processes can coexist with GPI in a GRIN MMF
depending on the fiber parameters, such as intermodal FWM [23,28], non-degenerate FWM
between the pump and the first GPI band [24,28], or cascaded FWM of the first GPI band [24].
This makes experimental spectra very rich and complex and it is often tricky to unambiguously
identify the generated sidebands and their underlying mechanism.
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In this work, we show that higher-order dispersion (HOD) (which is often disregarded in the
analysis) plays a crucial role in the GPI process as it is responsible for additional sideband pairs.
We also demonstrate that up to four different parametric processes can take place simultaneously
in typical GPI experiments, among which an unprecedented non-degenerate GPI process involving
two pumps is identified. We provide a physical interpretation of the multi-line spectra through a
careful comparison between theory, numerical simulations and experiments.

2. Impact of higher dispersion terms on the GPI process

The GPI process in GRIN MMFs is possible thanks to the Kerr-induced refractive index grating
created by the periodic self-imaging of the beam with a spatial period Z = πR/

√
2∆, where R is

the fiber core radius and ∆ = (n2
core − n2

clad)/2n2
core is the relative index difference (ncore is the

refractive index at the center of the core and nclad is the one of the cladding). It can be analyzed
using the following general QPM relation [16]:

βe(Ω) + γP = kπ/Z (1)

where βe(Ω) =
∑︁

n≥1
β2n
(2n)!Ω

2n is the even part of the dispersion operator (with Ω = ω − ω0 and
ω0 the pump frequency), P is the pump power and k is an integer. γ is the nonlinear parameter
averaged over the fiber length, as defined in [29]. This kind of QPM process is analogue to
QPM processes induced by periodic dispersion or power in long-haul telecommunation systems
[30–33] or in dispersion oscillating fibers [34–36].

Usually, only second-order dispersion β2 (corresponding to n = 1) is considered in the analysis
of GPI using Eq. (1). However, it has been demonstrated in dispersion oscillating fibers that
the impact of HOD may be significant for specific parameter ranges in similar parametric QPM
processes, even relatively far from the zero dispersion wavelength [37]. The GPI process was
analyzed using the full dispersion curve in Ref. [25], but no specific features due to HOD were
highlighted in the range of parameters investigated in that study. Also, the role of fourth-order
dispersion was highlighted in [26] and its impact on the GPI process was found to be quite small
in the case of large core GRIN MMFs (R>50 µm). It is therefore natural to investigate its impact
on the GPI process more deeply than in Ref. [38], in conventional commercially available GRIN
MMFs with smaller cores. To do that, we calculate the roots of Eq. (1) by considering second
and fourth-order dispersion (i.e. n = 2) and neglecting the nonlinear phase mismatch [23]. We
obtain the following expression for the roots of Eq. (1) [26]:

Ω
2
k =

−6β2
β4

±

√︄(︃
6β2
β4

)︃2
+

24k
√

2∆
Rβ4

(2)

Equation (2) shows that for each value of the integer k, two sideband pairs are theoretically
obtained, while only one sideband pair per k value is obtained when the dispersion order is
limited to 2 [38]. To illustrate this more clearly, we plot in Fig. 1 solutions from Eq. (2) as a
function of core radius R, for k = 1 to 3. We plot here the relative frequency to the pump laser
∆f = Ω/2π, as in the rest of the paper. Red solid lines are plotted when taking into account both
second and fourth-order dispersion, while blue dashed lines correspond to the case where only
second-order dispersion is considered. For this school case of study, we consider a fiber with
∆ = 0.025 and we use the dispersion parameters of pure silica from Ref. [39] (see Fig. 1 caption).
This is equivalent to neglecting the contribution of the Ge content in the core to the overall glass
dispersion. Although this is realistic for GRIN MMFs in first approximation, we shall see in the
following sections that more care must be taken to estimate the dispersion in the perspective of
making a quantitative comparison with experiments.

Two main conclusions can be drawn from these plots. First, for each value of k, two solutions
appear (on both sides of the pump) for a given core radius when β4 is taken into account, while
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Fig. 1. Frequency shift of GPI sidebands as a function of fiber core radius plotted from
Eq. (2) for the first three orders (for k = 1 to 3) when both second and fourth-order dispersion
are considered (red solid lines) and when fourth-order dispersion is neglected (blue dashed
lines). Parameters : ∆ = 0.025, β2 = 23 × 10−27 s2.m−1 and β4 = −5 × 10−56 s4.m−1. The
horizontal black dashed line and black dots correspond to the R = 41 µm example discussed
in the text.

there is only one when only β2 is considered, as discussed above with Eq. (2). This is an important
feature to take into account when trying to interpret the origin of all sidebands observed in
experimental spectra : for instance, for a core radius of 41 µm (depicted by the horizontal black
dashed line), a frequency shift of ± 330 THz would be interpreted as the k = 3 sideband by
neglecting β4 (blue dashed curve), while it is actually due to the second branch of the k = 2 order
(red solid line), as depicted by black dots in Fig. 1.

Second, there is a core radius value (of about 15 µm) under which no GPI can be observed
when β4 is taken into account. This threshold does not exist when only second order dispersion
is considered.

Our aim in the following is to observe experimentally the impact of HOD on the GPI process
and to identify all generated peaks with a quantitative agreement with QPM theory. As discussed
above, taking fourth-order dispersion into account is sufficient to highlight the basic features due
to HOD as we did in this section, but in view of getting a quantitative agreement with experiments,
the whole dispersion curves will be taken into account in the following. It is therefore crucial to
know the dispersion properties of the fiber core as accurately as possible.

3. Choice of the refractive index dispersion model

The core of GRIN MMFs is usually made of GeO2-doped silica glass. Their refractive index profile
can be easily measured at a fixed wavelength using commercial refractive index profilometers.
However, one needs to know accurately the dispersion of the core material in the present study,
in order to solve numerically Eq. (1).

In the following analytical results, we assume that the dispersion of the lowest order modes
involved in the GPI process is equal to that of silica doped with the maximal Ge content of the
fiber. This is in fact only valid far from cut-off wavelengths of the modes but we have checked
with a finite difference mode solver that this is true for modes up to LP0,7 when the wavelength is
less than 2 µm.

One can find several models in the literature to calculate the dispersion of GeO2 glasses :
the Fleming [40] and Okamoto [41] models are an interpolation of Sellmeier coefficients with
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Ge content and the Sunak model uses a Claussius-Mossotti interpolation scheme to obtain the
refractive index of germanosilicate glasses [42]. In order to select the most appropriate one, we
will confront the roots of Eq. (1) obtained with each of these models with the position of the k = 1
GPI sideband experimentally observed in standard GRIN MMFs. We focus our study on the first
GPI sideband because it is the only one which can be usually identified with no ambiguity in
most experiments thanks to its strong parametric gain.

These preliminary experiments were done using two commercial MMFs from Prysmian,
labeled OM1 and OM2. Fiber OM1 has a core radius of 32.5 µm and a ∆ parameter of 0.0188
and fiber OM2 has a core radius of 26 µm and a ∆ parameter of 0.0088. These parameters
were obtained from the measurement of their refractive index profile done at 976 nm with a
commercial profilometer (not shown here).

The fiber length is 1.2 m and they are pumped with a powerchip laser at 1064 nm delivering
500 ps pulses at 1 kHz. The radius of the focal spot on the fiber input face is 6 µm. Figures 2(a)
and (b) show the spectrum of the k = 1 GPI sideband (black line) measured respectively in fiber
OM1 and OM2, for an input peak power of 60 kW. Blue, red and green vertical lines represent
the root of Eq. (1) obtained for k = 1, respectively with the dispersion model from Okamoto
[41], Sunak [42] and Fleming [40] with a Ge content of 18 mol.% for fiber OM1 and 8.3 mol.%
for fiber OM2. All models give relatively close results to our experiments, since the maximal
discrepancy with experiments does not exceed 7 % as can be seen from Table 1 summarizing
these results. However, the Sunak model clearly gives the closest results to our experiments, with
a 0.5 % accuracy. We will therefore use the Sunak model [42] in what follows for the analysis of
experimental results.

Fig. 2. First order (k = 1) GPI spectra measured in (a) OM1 and (b) OM2 GRIN MMFs
(black lines). Blue, red and green vertical lines correspond to roots of Eq. (1) obtained
respectively with the models from Okamoto [41], Sunak [42] and Fleming [40].

Table 1. Summary of the results from Fig. 2.

R (µm)
∆f1 (THz) ∆f1 (THz) ∆f1 (THz) ∆f1 (THz)

Experiments Okamoto model [41] Sunak model [42] Fleming model [40]

26 128.9 127.2 129.6 137.8

32.5 115.4 112.4 115.0 122.7
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4. Origin of parametric processes

Our aim in this section is to identify the origin of multiple peaks observed in GPI experiments
and in particular to highlight specific features arising from HOD in two reference commercial
GRIN MMFs.

4.1. Quasi-phase-matching diagrams

We start by studying the QPM diagrams for fibers OM1 and OM2 described above, by solving
numerically Eq. (1). To do that, we use the full dispersion curves obtained from the Sunak model
with appropriate Ge content of 18 mol.% and 8.3 mol.% respectively for fibers OM1 and OM2.
Other parameters are the same as in the previous section. We focus here on the positive frequency
detuning part, since the short wavelength side of the pump is usually more easily accessible in
experiments. The negative detuning part is symmetric with respect to the pump frequency.

The QPM diagrams calculated for fibers OM1 and OM2 respectively are displayed in Fig. 3(a)
and (b), for core radii R varying from 10 to 80 µm and for k values ranging from -2 to 3. In the
frequency range of interest, positive k values give two solutions. However, it must be noticed that
for both core radii depicted by the horizontal dashed lines, two k = 1 solutions are possible but
solutions corresponding to k ≥ 2 values are not expected to be observed.

Fig. 3. QPM diagrams obtained from Eq. (1) (see details in the text), for GRIN fibers
(a) OM1 and (b) OM2. Horizontal black dashed lines represent the core radius of each
corresponding fiber.

k ≤ 0 values give one solution with a very large frequency shift >200 THz. Using a typical 1064
nm pump, the large negative frequency detuning associated to the Stokes sideband corresponds
to infrared wavelengths beyond 3000 nm, for which germanium-doped silica glasses strongly
absorb [43], which affects the GPI process and the generation symmetric sidebands with respect
to the pump. Additionally, some of higher-order modes contributing to the GPI process have their
cutoff in this wavelength region, which kills the generation of GPI sidebands. Experimentally,
GPI sidebands corresponding to frequency shift >190 THz are not observed for those reasons.
The sidebands observed at larger frequency shifts have a different origin, as we shall see in the
following.

4.2. Cascaded GPI

Most of typical GPI experiments usually show the generation of more new frequencies than
predicted by Eq. (1). This means that additional nonlinear mechanisms are involved, among
which the cascaded GPI process plays a central role [24]. In this process, the pump laser generates
a k = 1 GPI anti-Stokes sideband which is intense enough to act as a secondary pump then
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generating its own GPI process. This cascaded GPI process is at the origin of multiple visible
sidebands [24]. Figures 4(a) and (b) illustrates this for fibers OM1 and OM2, respectively. Red
lines correspond to the roots of Eq. (1) obtained from the pump laser with a peak power of 60
kW, truncated at 190 THz beyond which the sidebands are not observed as discussed above. In
fiber OM1 (Fig. 4(a)), the second branch of the k = 1 GPI sideband, which is due to HOD, is not
expected to be observed because it would be located well beyond 190 THz. However, it should be
observed in fiber OM2, since it falls around 180 THz, as can be seen from 4(b). Let us recall that
in both fibers, k ≥ 2 GPI sidebands are not expected to be observed for core radii corresponding
to fibers OM1 and OM2.

Fig. 4. GPI phase-matching diagrams obtained with Eq. (1) from the pump laser (red lines)
and from the k = 1 sideband (blue lines), corresponding to the cascaded GPI process, for
GRIN fibers (a) OM1 and (b) OM2. Horizontal black dashed lines represent the core radius
of each corresponding fiber. Vertical solid black lines represents the 190 THz limit beyond
which primary GPI is neglected (see details in text).

Blue lines in Figs. 4(a) and (b) correspond to the cascaded GPI process generated from the
k = 1 sideband acting as a secondary pump of 30 kW (located at 115 THz for fiber OM1 and
around 130 THz for fiber OM2) but plotted here relatively to the pump wavelength. Note that
in this case, they can be observed beyond the 190 THz line (black vertical line), because their
relative frequency shift to the secondary pump (located on the short wavelength side) is much
less since no GPI bands associated to the secondary pump fall inside the wavelength region with
a strong absorption.

5. Experimental investigation

In this section, we will use the results of phase-matching diagrams plotted in Fig. 4 to analyze
complex experimental spectra and identify the origin of all peaks, with further support from
numerical simulations.

We performed experiments with the two commercial fibers OM1 and OM2 described in
section 3 with the same experimental setup. Numerical simulations were done using a multimode
generalized nonlinear Schrödinger equation (MGNLSE) model described in Appendix A.

5.1. Fiber OM1

Figure 5(a) shows the experimental spectrum measured in a fiber length of 1.2 m for a pump peak
power of 60 kW. We have also represented the theoretical GPI frequency (vertical red dashed line)
and cascaded GPI (vertical blue dashed lines) with corresponding k values. Here we observe an
intense k = 1 GPI peak at 115 THz, a cascaded GPI peak of order 2 at 222 THz, and several
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other peaks not corresponding to GPI nor cascaded GPI. We have therefore considered additional
nonlinear processes.

Fig. 5. (a) Experimental and (b) simulated spectrum in 1.2 m of fiber OM1. Red dashed
lines: GPI obtained from Eq. (1). Blue dashed lines: cascaded GPI generated from the
main GPI sideband (k = 1) at 115 THz. Magenta dashed lines: harmonics of the main GPI
sideband (k = 1). Green dashed lines: non-degenerate GPI involving the pump laser and
the main GPI sideband. The inset shows the experimental near field profile of the k = 1
sideband.

The first one is a degenerate cascaded FWM (labeled C-FWM, vertical magenta dashed lines),
corresponding to harmonics of the k = 1 GPI sideband, thus occurring at twice and three times
the frequency shift of the first GPI sideband. This process explains the relatively intense peaks
observed at 230 and 345 THz in Fig. 5(a). Note that the 230 THz C-FWM peak probably acts as
a seed for the generation of the k = 2 cascaded GPI peak at 222 THz [26], which could explain
why only the k = 2 peak is observed, and not the other ones.

The second additional process we have to take into account to explain the remaining 165
THz peak is a non-degenerate GPI involving the pump laser and the first GPI sideband (labeled
ND-GPI, vertical green dashed lines). It obeys the following QPM relation (neglecting the
nonlinear phase mismatch) :

βA + βS − βP1 − βP2 = 2k′π/Z (3)

where βA and βS are the propagation constants of the anti-Stokes and Stokes components, βP1 and
βP2 are the ones of the two pumps and k′ is an integer. This is a two-pump GPI process which
can also be interpreted as an intermodal FWM introduced in [23]. For our experimental results
of Fig. 5(a), the two pumps of the process are the main pump laser (1064 nm) and the k = 1 GPI
sideband (755 nm). From Eq. (3), we obtain a frequency shift of 165 THz for the anti-Stokes
component (with k′ = 1), which is in excellent agreement with the experimental peak.

Corresponding numerical simulations represented in Fig. 5(b) are in excellent agreement. They
confirm the presence of a strong first-order GPI peak at 115 THz and of the cascaded FWM
peaks at twice and three times this frequency shift. The non-degenerate GPI peak located at 165
Thz is also observed in simulations, also it appears less clear than in experiments. Simulations
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also confirms that cascaded GPI orders different than 2 are not observed, as discussed above.
Finally, simulations show additional weak peaks (around 260 THz and 330 Thz) which are not
observed in measurements probably to the higher experimental noise floor.

5.2. Fiber OM2

Figures 6(a) and (b) show respectively the experimental and simulated spectrum in 1.2 m of fiber
OM2, for a peak power of 60 kW. Vertical dashed lines follow the same representation as in Fig. 5.
As expected from phase matching diagrams for this fiber, the two GPI solutions corresponding to
k = 1 are observed at 127 and 182 THz in good agreement with the phase matching results of
Fig. 4(b), which highlights the importance of taking HOD into account. Additionally, several
cascaded GPI sidebands are observed, corresponding to orders -1, 1, 2 and 3. An harmonic of
the first GPI sideband is also observed (in magenta) very close to the third order cascaded GPI
sideband. The 89 THz experimental peak is a residue of the 808 nm pump diode of the 1064 nm
laser. Non-degenerate GPI sidebands are not observed in this experiment so their corresponding
theoretical frequency is not represented. Again, the simulated spectrum is in excellent agreement
with experiments and confirms the origin of the peaks experimentally observed.

Fig. 6. (a) Experimental and (b) simulated spectrum in 1.2 m of fiber OM2. Red dashed
lines: GPI obtained from Eq. (1). Blue dashed lines: cascaded GPI generated from the
main GPI sideband (k = 1) at 115 THz. Magenta dashed lines: harmonics of the main GPI
sideband (k = 1). The inset shows the experimental near field profiles of the two k = 1
sidebands.

5.3. Few mode GRIN fiber

In this section, we propose an alternative interpretation of previously published experimental
results of Ref. [24], based on our theoretical analysis of Section 4. These results were obtained
in a R = 11 µm core GRIN MMF, with ∆ = 0.0089. Full details about the setup and the fiber
can be found in Ref. [24]. Figure 7(a) shows roots of Eq. (1) obtained for k = 0, 1 and 2 (red
lines). The horizontal black dashed line represents the core radius of 11 µm, showing that for
this specific fiber, k = 1, 2 GPI sidebands (due to the periodic Kerr grating) are not expected to
be observed. Only the k = 0 root (not involving the Kerr grating) is expected to be observed
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close to 200 THz. Blue lines correspond to cascaded GPI from this k = 0 sideband acting as a
secondary pump when it becomes intense enough.

Fig. 7. (a) GPI QPM diagrams obtained with Eq. (1) from the pump laser (red lines) and
from the k = 0 sideband (blue lines), corresponding to the cascaded GPI process, in the few
mode fiber of Ref. [24]. Horizontal black dashed lines represent the R = 11 µm core radius.
(b) Experimental spectrum adapted from Fig. 2(a) of Ref. [24] (black line). Red dashed
lines: GPI obtained from Eq. (1). Blue dashed lines: cascaded GPI generated from the main
GPI sideband (k = 0) at about 200 THz. Magenta dashed lines: harmonics of the main GPI
sideband (k = 0). Green dashed lines: non-degenerate GPI involving the pump laser and the
k = 0 sideband.

Figure 7(b) shows the experimental spectrum plotted with the data corresponding to the black
line of Fig. 2(a) of Ref. [24]. We have superimposed theoretical frequencies corresponding to
the k = 0 root (red dashed line) and to the cascaded GPI of order -2 to 6 generated from this
k = 0 main band (dashed blue) lines. All experimental peaks are in excellent agreement with our
analysis, highlighting the fact that taking HOD into account provides an alternative interpretation
of experimental results. A cascaded FWM process is observed very close to 400 THz (magenta
dashed line). Additional experimental peaks are in excellent agreement with the non-degenerate
GPI process described above by Eq. (3), with the two pumps being this time the main pump laser
and the k = 0 sideband located at 198 THz. The Stokes and anti-Stokes roots of Eq. (3) located
respectively at -60 and 258 THz (represented by green dashed lines) are in excellent agreement
with experimental peaks.

6. Summary and discussion

Several important conclusions can be drawn from these experiments. First, taking HOD into
account has a very significant impact on the phase-matching diagram of GPI sidebands. In the two
commercially available fibers, only the first order of the GPI sidebands can be observed (k = 1).
Depending on the fiber parameters, one or two k = 1 branches can be observed (respectively
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in fiber OM1 and OM2). In the second case, the second branch of the k = 1 GPI is a specific
feature due to HOD, which is not seen in the analysis when HOD is neglected. Here, we have
been able to observe and interpret it unambiguously. In the few mode GRIN fiber, our analysis
reveals that GPI induced by the periodic Kerr grating due to periodic self-imaging (k ≠ 0) cannot
be observed, but instead, only the k = 0 root is observable as the main process.

Second, depending again on fiber parameters, several other nonlinear processes may occur
when the main GPI sideband is powerful enough, and generate additional sidebands. They
include (i) cascaded GPI from the k = 1 GPI sideband in MMFs or from the k = 0 one in the
few mode fiber [24] (which therefore act as a secondary pump), (ii) cascaded degenerate FWM
(harmonics of the k = 1 or k = 0 GPI sideband, depending on the fiber) and (iii) non degenerate
GPI involving the pump and the k = 1 GPI sideband (or the k = 0 one in the few mode fiber).

Of course, the agreement between phase-matching arguments and experiments strongly relies
on the choice of the dispersion model used for the Ge-doped glass in the core, as discussed in
Section 3. Here we found that the Sunak model gives the best agreement with our experiments,
but we have no physical arguments to justify this choice. Note however that although other
models would gives less quantitative agreement with experiments, they would not change the
interpretation about the origin of the nonlinear mechanisms.

To conclude, we showed that experimental GPI spectra are often very rich and their interpretation
using phase-matching arguments is not as straightforward as it may look at first view because
many parametric processes coexist. We have shown in particular that taking higher-order
dispersion into account is crucial for the analysis of experimental results. We have also identified
experimentally for the first time a non-degenerate GPI process involving two pumps. Further
analysis would require to take into account the overlap integral of the modes involved in various
wave mixing processes in order to explain why some specific kth order sidebands are weaker than
other (or sometimes not observed).

Appendix A: MGNLSE model

The numerical results were obtained by solving the MGNLSE introduced by Afshar and Monro
[44]. Assuming a centered injection of the light in the fiber, we only considered the LP0,j modes
(j ≤ 8 for fiber OM2 and j ≤ 14 for fiber OM1). The dispersion of the modes was computed with
a finite difference method applied on the refractive index profile measured with a commercial
refractive index profilometer and by taking into account the dispersion of the Ge-doped silica
given by Sunak [42]. The nonlinear overlap integrals were computed at the pump wavelength
and assumed to be independent of the wavelength. Silica losses and cut-off wavelengths of the
modes were also taken into account. We used the RK4IP method [45] implemented on GPU with
a constant step of 2 µm to solve the MGNLSE.
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