

Égalité Fraternite

CHEAP'EAU Solutions innovantes Bas coût - libres - Connectées | SUIVI | EAUX PLUVIALES |

Low cost sensor for hydrological & environmental monitoring using electrophysiological signals from trees Bourjaillat Bastien^{1,3}, Perret Franck¹, Navratil Oldrich¹,

Cherqui Frederic², Namour Philippe³

- 1. Université Lumière Lyon 2 (Bâtiment Europe), 5, avenue Pierre Mendès-France, 69676 Bron cedex, France
- 2. Claude Bernard University Lyon 1, INSA de Lyon, DEEP, 20 Av. Albert Einstein, 69100 Villeurbanne, France
- 3. INRAET von-Grenoble Auvergne-Rhône-Alpes, UR RiverLy 5 rue de la Doua, CS 20244, 69625 Avideus banne Cedex, France

Trees as environmental sensors

Implementation

- Material & Methods
- Study site
- Results
 - Circadian rhythms (photo-periodism)
 - Rainstorm of May 10th
 - Summertime monitoring

Conclusions & Perspectives

INRAØ

Plants: key environmental witnesses

Since the 19th century (Burdon-Sanderson, 1873 & Darwin, 1875) we know that:

Various biotic and abiotic **environmental stimuli** produce in plant **electrical signals**, causing **physiological responses**

INRAØ

10th Franco-Spanish Workshop CMC2-IBRNAM Arcachon, 24-25 Novembre 2021 / Bourjaillat B Burdon-Sanderson, *Proc R Soc. Lond.* 1873;21:495–496 p. 3 Darwin (1875) *Insectivorous plants*, London, John Murray

> Electric signals in plants

Three types of plant electrical signals:

- 1. Local Electrical Potential: sub-threshold response induced by environmental changes, not transferred to other parts of plant
- 2. Action Potential: induced by harmless stimuli transmitted rapidly over long distances via the phloem (follows the all-or-none law)
- **3. Variation Potential:** induced by harmful stimuli, variable in magnitude and form, mainly transmitted via the **xylem** (decreases with distance)

10th Franco-Spanish Workshop CMC2-IBRNAM Arcachon, 24-25 Novembre 2021 / Bourjaillat B Volkov et al. 2021 Bioelectrochemistry, 74: (1) 16-21 Yan et al. 2009 Prog. Nat. Sci., 19: (5) 531-541

Plant metabolism generates electricity

Two kinds of electrical conductors: **Xylem & Phloem** with opposite fluxes of electric charges

INRA@

Is it possible to get from voltage variations some relevant data about the tree environment?

in order to turn trees into native and low-cost environmental sensors

> Implementation

- Design of a cost-effective, open-source remote monitoring system
- Field evaluation of our low-cost system

> Electrode setup on the tree

70 mm stainless steel

INRAO

10th Franco-Spanish Workshop CMC2-IBRNAM Arcachon, 24-25 Novembre 2021 / Bourjaillat B

Electrode implantation in the tre

Reference electrode & overall set

Non-polarizable electrode for self potentials measurements

Data logger system

Objective

to build a rugged, self-powered low-cost data logger

Measuring mV range electrical potentials basic environmental factors

INRA

Data logger assembly & set-up in the tree

Encapsulation in a PVC pipe $(\emptyset = 100 \text{ mm})$ closed by 2 caps with watertight seals

Encapsulation totally protected against weather, rodents & shocks

> 10th Franco-Spanish Workshop CMC2-IBRNAM Arcachon, 24-25 Novembre 2021 / Bourjaillat B

System view just before integration on field site

System inside a Norway maple (*Acer platanoides*) Cables passing through cable glands, directed downwards to reinforce the water-tightness

> Monitoring program

- Data averaging (average & median over 20 data).
- Nano-timer controls the card's power supply (no energy waste when the card is in standby)
- LoRa ethics demands to transmit never more than 1% of the time (not overload the bandwidth)
- data acquisition every 5 min

- Circadian rhythms (photoperiodism)
- Rainstorm of May 10th
- Summertime monitoring

Circadian rhythms (photoperiodism)

The 2 voltages have a 24-hour periodic cycle, with a phase shift

- Xylem voltage decreases at sunrise (roots to leafs)
- Phloem voltage increases at noon (leafs to roots)

Phase shift attributed to the sap fluxes (time to go to/from leaves to the electrodes in the trunk)

Rainy event of May 10th

infiltration basin totally flooded after the rainstorm of May 10th

Tree trunk totally underwate

Infiltration basin sized for rainfall events with a 1 year return period and able to accept rainfall with

a 20 year return period

Rainy event of May 10th

- 1. Philoem & Xylem potentials decrease at the storm's beginning (with a small time lag)
- 2. Voltages increase abruptly (when the rain decreases but water level rises in basin)
- 3. Rain slows down in the evening = water level decreases? (infiltration in the basin) 106 mm waterfall in 24 hours
- 12 Then new heavy rainatround 2 am 7 new voltage peaks 4 10 0.8 8 rainfall (mm/h) potential (V) 0.22 Xvler 0.65 Ω 0.55 10/5/2021 0:00 10/5/2021 4:48 10/5/2021 9:36 10/5/2021 14:24 5/2021 19:12 11/5/2021 0:00 11/5/2021 4:48 11/5/2021 9:36 11/5/2021 14:24 Time ainfall (mm/h) v1 phloem v2 xylem

Summertime monitoring

- Voltage changes according to the water level in the basin
- The basin filled up at several times (but >1.4 m →

- Operational remote monitoring system
 - low cost monitoring sensor (2 stainless steel screws + 1 reference electrode)
 - Data transfer via LoRaWAN protocol
 - Sharing on **OpenDataEau** platform
 - Total cost ≈ 200 € HT
- Yes, trees are environmental sensors
 - Circadian cycles with a 6-hour phase shift between xylem & phloem (difference due to chemistry & flux speed of the 2 sap fluxes ?)
 - Extreme disruptions monitored (flooding, roots in waterlogged soil)

- Monitoring must go on to observe winter periods & summer droughts
- Requires signal processing algorithms to interpret the signal
- the signal
 Need for additional environmental data (e.g. water level, solar irradiance, winds, ...)
- Paving the way for citizen empowerment in environmental monitoring

CHEAP'EAU

Solutions innovantes Bas coût - libres - Connectées | SUIVI | EAUX PLUVIALES |

> Thank you for your kind attention

any questions?

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON

INRAO