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ABSTRACT  We review methods for detecting and assessing the strength of density 7 

dependence (DD) based on two types of approaches: surveys of population size and studies of 8 

life history traits, in particular demographic parameters. 9 

For the first type of studies, methods neglecting uncertainty in population size should 10 

definitely be abandoned. Bayesian approaches to simple state-space models accounting for 11 

uncertainty in population size are recommended, with some caution because of numerical 12 

difficulties and risks of model misspecification. Realistic state-space models incorporating 13 

features such as environmental covariates, age-structure, etc., may lack power because of the 14 

shortness of the time series and the simultaneous presence of process and sampling 15 

variability. In all cases, complementing the population survey data with some external 16 

information, in priority on the intrinsic growth rate, is highly recommended. 17 

Methods for detecting DD in life history traits are generally conservative, i.e. tend to 18 

underestimate the strength of DD. Among approaches to correct for this effect, the state-space 19 

formulation of capture-recapture models is again the most promising. 20 

Foreseeable developments will exploit integrated monitoring combining population size 21 

surveys and individual longitudinal data in refined state-space models, for which a Bayesian 22 

approach is the most straightforward statistical treatment. One may thus expect an integration 23 



of various types of models that will make it possible to look at DD as a complex biological 24 

process interacting with other processes rather than in terms of a simple equation: modern 25 

statistical and modeling tools make such a synthesis within reach. 26 

KEYWORDS  Animal demography, Bayesian methods, Density-dependence, Kalman filter, 27 

Population dynamics, State-space models, Wildlife 28 

 29 

INTRODUCTION 30 

The i-state philosophy (Diekmann 1985) describes demography at the individual level based 31 

on life-cycle stages. This philosophy naturally leads to describe death, fecundity, and more 32 

generally any transition between stages such as recruitment or dispersal, through per capita 33 

parameters. If such individual parameters are constant or at least stationary (in the sense of 34 

stochastic processes: affected by random effects that can be shifted over time, and, as such, in 35 

particular, not affected by a trend), the population growth is exponential, generally after 36 

damping of the effect of initial population structure, as well known for instance for matrix 37 

models (Caswell 2001) and their stochastic generalizations (Tuljapurkar, 1990). The key 38 

paradigm of exponential growth in population dynamics (Turchin 1981) is thus intimately 39 

linked to the i-state philosophy. 40 

It has been recognized for more than two centuries (Malthus 1798) that exponential growth is 41 

impossible in the long term (Turchin 1981), as exponential growth leads to large population 42 

sizes that unavoidably induce depletion of resources and in turn of individual performance. 43 

This is a broad definition of Density-Dependence (DD hereafter), as a phenomenon that 44 

explicitly has to do with resource and individual performance. In passing, as most authors in 45 

this context, we loosely use the word density for population size or local population size, e.g. 46 

in the term DD itself. 47 



Density-Dependence became a key subject in population dynamics with the well known 48 

logistic growth curve (Verhulst 1838). One of the discrete time counterparts is the discrete 49 

time Gompertz model 
t

b

tt NNN 

 1
 with 0b . Such models are phenomenological, as they 50 

describe only the population level and do not explicitly consider the individual level, contrary 51 

to mechanistic models such as, e.g., matrix models that translate individual parameters into 52 

population level consequences.  There has been a continuous tension since the XIX
th

 century 53 

between phenomenological and mechanistic approaches to density-dependence (see Krebs 54 

1995, Murdoch 1994) and continuing discussions (e.g. Berryman 2004) on the role of 55 

limitation by resource availability - an individual level phenomenon – as supposedly opposed 56 

to regulation by DD, a population level result. 57 

A key question is whether DD is present in a population, and if so, how to measure its 58 

intensity. As usual, even if one relies on some statistical significance for detection, one has 59 

indeed in mind some biological significance, i.e. the idea that DD is or is not negligible for 60 

the future fate of the population or relative to other sources of variation, and thus bears a 61 

relationship to its management (Guthery 2012). Indeed the measurement phase is often linked 62 

with the idea that population projections accounting for DD go one step beyond those based 63 

on constant parameters: there is still a strong assumption of stationarity in the projection but 64 

rather than “as if parameters were the same as up to now”, it is “as if parameters were 65 

varying with density as they have been shown to do up to now”. Estimating the strength of DD 66 

is also central in discussions of the relative role and magnitude of density-dependent and 67 

density-independent variation in population size, the subject of a famous controversy in the 68 

50s (Andrewartha and Birch 1954, Lack 1954).  69 

Not surprisingly, the tension between phenomenological / population and mechanistic / 70 

individual approaches has been pervasive in the issue of detection / estimation of DD, would 71 



it be only because the data themselves can be at the population level only (e.g. population 72 

surveys) or at the level of individual traits only (e.g. body weight data). Finally, statistical 73 

difficulties arise as the arrow of time induces dependencies that cannot be handled by naive 74 

statistical approaches. While a comprehensive review of the literature would be beyond reach, 75 

it is clear that the issue of detection / measurement of DD has alternatively raised optimistic 76 

and pessimistic points of view, and has been a subject of “frustration” (Dennis and Taper 77 

1994). Can we take series of data and estimate in a simple fashion how many show density-78 

dependence, as done by Brook and Bradshaw (2006) for 1198 species, or should we conclude 79 

with Krebs (1995) that DD is an unattainable holy grail? 80 

The purpose of this paper is to attempt to review the subject of detection and estimation of 81 

DD with specific reference to these difficulties and the resulting confusing state of the art. 82 

Although we will use many equations, as “if you are faced by a difficulty or a controversy in 83 

science, an ounce of algebra is worth a ton of verbal argument” (a conviction of 84 

J.B.S.Haldane, according to Maynard-Smith 1965), this review will attempt to avoid technical 85 

developments (for a more technical review, see Lebreton 2009). 86 

We will first review the methods for detection and estimation of DD based on population size 87 

estimates, in three steps: a) an attempt to formalize the role of resource and density, b) 88 

methods in the absence of uncertainty in population size, c) methods accounting for 89 

uncertainty in population size, a key feature for wild animal populations. Then we will review 90 

methods based on analyses of individual traits, demographic or not. We will then discuss new 91 

modeling opportunities and perspectives. 92 

Calculations were done using our own Matlab ® code, carefully validated by a series of cross-93 

checks, and WinBUGS (Lunn et al. 2000). The Matlab ® code is made available as 94 

supplementary material. 95 



DETECTING AND ESTIMATING DENSITY DEPENDENCE BASED ON 96 

POPULATION SIZE ESTIMATES 97 

The Gompertz model 
t

b

tt NNN 

 1
 becomes linear on a log scale. Denoting )N(Lnx tt   98 

and )(Lnr  :  99 

tt x)b(rx  11     [1] 100 

As recalled by Lebreton (2009),  is the growth rate for , while the growth rate 101 

for  is infinite. This bears no consequences on our treatment of this model and related 102 

ones, and we will speak of r as the intrinsic growth rate. 103 

Under 0b , i.e. density independence, the model reduces to  104 

tt xrx 1       [2] 105 

As the world is not deterministic, a straightforward stochastic generalization considers some 106 

extra random variation to represent demographic and environmental stochasticity, leading 107 

under density-independence and density-dependence, respectively, to:  108 

ttt x)b(rx  11    [3] 109 

ttt xrx 1     [4] 110 

The random terms, represented by Greek letters, have expectations equal to 0 and, unless 111 

otherwise stated, are assumed to be normally distributed. The latter model is a random walk 112 

as, besides the shift r , tx  varies through independent additive increments. Because of their 113 

simplicity, these models have been used by a number of authors over the years (see Dennis et 114 

al. 2006, Lebreton 2009). One can equivalently test for DD either by a test of model [3] vs 115 

model [4], such as a likelihood ratio test, or by a test of H0 0b  in model [3], e.g. as a Wald 116 

)(Lnr  1N

0N



test. The latter approach is usually preferred as it can easily be easily implemented as a one-117 

tailed test of H0 0b  vs H1 0b , the alternative of biological interest.  118 

Density-dependence and resource-dependence 119 

By rewriting [3] one can make a per capita growth rate ttbxr   appear:  120 

tttt x)bxr(x  1    [5] 121 

As DD occurs through the depletion of resource of some kind, in the per capita growth rate, 122 

the log population size tx  is a proxy for something else. Let’s assume a single latent variable 123 

tl , such as the amount of a key resource left, is the actual determinant of the growth rate. 124 

Assuming  tl  can be expressed on the same scale as tx , the actual growth rate is then 125 

ttblr  . The log-population size tx  is then a proxy for tl , with a relationship necessarily 126 

modified by some random variation,  ttt xl  , as the proxy and the latent variable cannot 127 

be expected to be perfectly correlated over time. The random term t  has a null expectation, 128 

i.e. ( 0)( tE  . Note that this issue has nothing to do with uncertainty on tx , a problem that 129 

will be examined later. 130 

One should thus use tttt x)blr(x  1  or, alternatively, 131 

ttttt x))x(br(x  1   [6] 132 

While model [5] (or equivalently [3]) is analogous to a linear regression of 1tx  on tx  (to an 133 

extent that will be discussed later), model [6] is affected by an “error-in-variable” (see e.g. 134 

Fuller 1987). In practice, the latent variable tl  is unknown and so is )var( t : model [6] 135 

cannot be readily used instead of [3]. What are the consequences of the error-in-variable 136 

problem on detection and estimation of DD when using [3]? Under H0 0b , model [6] 137 



reduces to ttt x)r(x  1 , i.e. model [4]. The distribution of any estimator of b  under H0 138 

remains thus unaffected by the error-in-variable problem. So, although density-dependence is 139 

strictly a model concept, testing for it is equivalent to a test of dependence on resource 140 

depletion, at least in the simplistic setting considered here. As far as we know, the 141 

consequences on the estimated slope under H1 0b , i.e. the estimated strength of DD when 142 

present, remain to be explored. 143 

Methods for detecting DD in the absence of uncertainty on population size  144 

Model [3] ttt x)b(rx  11  can easily be treated by maximum likelihood, preferably 145 

conditional on 1x  which plays no role in the estimation of b (Hamilton 1994 p.123; Dennis 146 

and Taper 1994 p. 209; Lebreton 2009). Because of the linear structure of the model, the 147 

Maximum Likelihood Estimator (MLE) of b1  is obtained by the formula for estimating the 148 

slope of the ordinary linear regression of 1tx  wrt tx . This apparent simplicity is quite 149 

unfortunate, as the estimator does not benefit from the properties of the regression estimator, 150 

because the underlying statistical model is not at all the usual linear regression model: the 151 

same variable appears both as independent and dependent variable, with a shift in time, i.e. we 152 

are in a so-called autoregressive model. In figure 1, we illustrate what happens under H0 0b153 

: the joint distribution of the pairs )x,x( tt 1  is aligned along the line xry  . Samples of 154 

this distribution thus have on the average a major axis with slope 1. The regression estimate is 155 

then necessarily on the average below 1. As a consequence, the estimator of b is positively 156 

biased, i.e. the naïve approach tends to detect too often DD. Despite repeated warnings as 157 

early as the 70s (e.g. Maelzer, 1970), few people realize this bias is present indeed in the 158 

absence of uncertainty on population size (e.g. Freckleton et al. 2006, item 2 of  summary) as 159 

can be seen for abscissa 0 in figure 2. Asymptotically, the estimate is not biased, just because 160 

the regression line in Figure 1 comes closer and closer to the line xry   as the scatter of 161 



points become more and more elongated since )xvar( t  when t  (Figure 1) while 162 

)var()/var( 1 ttt xx   remains constant. As, in studies of wild animal populations, the time 163 

series are usually fairly short, the asymptotic absence of bias offers little consolation. 164 

Two approaches have been proposed to account for this bias: 165 

a) Using simulation (i.e. parametric bootstrap) (Dennis and Taper 1994). Basically, one 166 

generates pseudo-samples using estimates under H0 0b  and use the appropriate percentiles 167 

of the empirical distribution of the resulting estimates of b  to accept or reject H0. In our 168 

model, this approach would amount to a bias correction, but Dennis and Taper (1994) use it 169 

with a slightly different, nonlinear, model in which the approach also overcomes the absence 170 

of distributional results. 171 

b) Obtaining an expression for the bias. Lebreton (2009), reformulating results by Saint-172 

Amant (1970), develops a bias corrected t-test of H0 0b , and checks the resulting test-level 173 

is sufficiently close to the nominal  . A bias-corrected estimate can indeed be also directly 174 

derived from the general study of the bias of the autocorrelation coefficient by Kendall (1954, 175 

in Sawa 2002) for a time series of length T , as 
T

b̂
b̂b

~ 34 
 . 176 

Naive approaches are still commonly used (e.g. Saether et al. 2005, Sibly et al. 2005, among 177 

others). For a particular study they can lead to grossly misleading results. In meta-analyses, 178 

the bias on the DD coefficient induces an overestimation of the prevalence of density-179 

dependence. Based on the impossibility of long term exponential growth, one gets then a 180 

faked statistical confirmation of a plausible result! However the corrections to bias mentioned 181 

above do not appear to be a general solution to be recommended. Indeed, they largely amount 182 

to a useless statistical exercise, as the assumption of no uncertainty in tx  is very stringent and 183 

far from met for most animal population surveys. We thus strongly recommend approaches 184 



not accounting for uncertainty in population size are abandoned. Handling this uncertainty is 185 

the subject of the next section. 186 

Methods accounting for uncertainty in population size 187 

Bulmer (1975) was the first author to formulate the linearized Gompertz model with 188 

uncertainty in population size. In this formulation, the state of the population is described by 189 

model [3] above, and only a time series of estimated log-population size ty  is observed: 190 

ttt xbrx  )1(1    [7] 191 

111   ttt xy     [8] 192 

Bulmer (1975), in a direct treatment of the model, rewrote it as 193 

ttttt )b(y)b(ry    11 11  [10] 194 

which clearly shows a further dependency over time induced by the presence of t  both in the 195 

equation for 1ty  and that for ty .  196 

Neglecting it, i.e. treating ty  by the previous regression-like method induces a severe bias 197 

(Bulmer 1975) that has rarely if ever been illustrated. Figure 2, based on simulations, clearly 198 

shows how the faked evidence for DD (i.e. the bias in b̂ ) increases with the uncertainty in 199 

population size, over a range of realistic values of the coefficient of variation for the estimated 200 

population size. 201 

The ad hoc tests proposed by Bulmer were criticized by Den Boer and Reddingius (1989), in 202 

particular because they are not optimal, statistically speaking. However one clearly 203 

distinguishes in the model above a state equation [7] and an observation equation [8], i.e. a 204 

linear Gaussian state-space model, which can be treated by specific methods such as the 205 



Kalman filter, as noted by Lebreton (1989). The Kalman filter makes it possible to obtain the 206 

likelihood of the model, based on a series of observations )y,...,y,y( T21 , as presented in a 207 

clear and detailed way by Dennis et al. (2006). The MLE adequately exploits the statistical 208 

information available and is definitely preferable to any ad hoc estimate such as the regression 209 

estimate from the previous model or the explicit formulas proposed by Bulmer (1975). The 210 

MLE has to be obtained numerically, with, according to Dennis et al. (2006), special care 211 

because of potential multiple minima in the likelihood (see also Polansky et al. 2009). This 212 

approach removes the substantial bias that would have been present by ignoring the 213 

uncertainty in population size (Figure 2). However, the MLE is again only asymptotically 214 

unbiased, i.e. suffers from some bias for realistic sample sizes. As in the absence of sampling 215 

error, some bias corrections could be obtained from the results on the autocorrelation 216 

coefficient bias, extended to autocorrelated random errors by Sawa (2002), based on the 217 

model presentation in equation (10). 218 

Moreover, the distribution of the ML estimate under H0 0b  cannot be easily obtained 219 

(Dennis et al. 2006). It cannot thus be used without care for a test of DD. Dennis et al. (2006) 220 

also discuss alternative estimation methods, based in particular on the first-order differences 221 

of the estimated log-population sizes ty . Knape and de Valpine (2011) go one step further 222 

with this approach by implementing a test of DD based on the likelihood ratio statistic 223 

between model [7] and its density-independent version, obtaining its distribution under H0 224 

0b  by parametric bootstrap, exactly as Dennis and Taper (1994) did for the model without 225 

uncertainty on population size. To avoid distributional problems with the test statistics, one 226 

can use a Bayesian approach, easily implemented in WinBUGS (Lunn et al. 2000) or in R via 227 

JAGS (Plumer 2003), and, e.g., use a 95 % credible interval as an admissible set of parameter 228 

values. Bayesian approaches also allow for flexibility in the functional form of the state 229 

equation – i.e. the “shape” of DD - and in the distribution of the random terms. These 230 



approaches currently seem the most reliable and the handiest ones, even if the underlying 231 

properties of the models, e.g., the degree to which the various parameters are separately 232 

identifiable do not depend on the estimation method and still remain often problematic. 233 

Let us briefly examine the performance of these approaches, first by simulation. Deviance 234 

contours from simulated data (figure 3) show no evidence of local minima at the scale 235 

considered. However the estimates of r  and b  are strongly correlated for realistic lengths of 236 

the time series. They behave as the estimated intercept and slope of a regression when the 237 

dependent variable values are on a same side of the origin, to an even greater extent because 238 

of the two levels of uncertainty (process + sampling) and the dependency over time (Eq. [10]) 239 

they induce. The estimate of the process and sampling standards errors, )( tse and )( tse  are 240 

also highly correlated, although to a lesser degree than the estimates of r  and b , while the 241 

correlation among the two parameter subsets remain moderate. How does this translate in a 242 

real world example?  243 

Let us use as an illustrative example the spring population surveys of Greater Snow Geese 244 

Chen caerulescens atlantica in Quebec from 1973 to 2002 (Gauthier et al . 2007). The 245 

deviance did not show local minima (Figure 4): over 1000 iterative searches starting from 246 

random initial values, only 21 did not fully converge in 1000 iterations; 15 had indeed 247 

practically converged, and 6 were still not at the global optimum. They concerned searches 248 

starting from large sampling standard error and small process standard error, a combination 249 

mimicking a short, instable, time series. 250 

The MLEs of r  and b  are highly correlated (0.9990), and the MLE of r , 0.3191, seems 251 

unrealistic (Table 2, second row) as it corresponds to a 37.6 % increase per year. These two 252 

features combined make the estimate of the coefficient of DD b  suspicious.  253 



The correlations between estimates (Table 1) emphasize the difficulty to separately estimate 254 

the sampling and process variance, and even more, r  and b , that are indeed nearly not 255 

separately estimable. The latter point makes practical sense: similar population trajectories 256 

can arise as the result of a high intrinsic growth rate and a strong DD, or a weaker intrinsic 257 

growth rate and a low DD (see figure 5, below). The set of four parameters nearly appears as 258 

a set of two macro-parameters, one for the deterministic trajectory, the other one for the 259 

uncertainty. Based on our simulations (Figure 3) and a variety of unpublished examples, we 260 

think this situation is general. It immediately leads to consider the use of external information 261 

to improve the identifiability. Bayesian approaches using appropriate prior distributions on 262 

the parameters appear then as a necessity, rather than just an algorithmic convenience. 263 

An estimate of the sampling standard error will often be available, e.g., when the population 264 

size estimates come from capture-recapture (e.g. Dennis and Oten 2000, who do not account 265 

for this uncertainty in their analysis), from stratified sampling (as it is the case with the 266 

Greater snow Goose), or more directly, through replicated population sampling (Dennis et al. 267 

2010). However, because of the high correlation with the estimated coefficient of DD, and 268 

because of the unrealistic value often obtained, as in the snow Goose example, the main target 269 

for external information is certainly the intrinsic growth rate r . We strongly suspect that a 270 

fair part of published examples correspond to unrealistic estimates of r , without being able to 271 

check, as the estimates of r  are rarely given in published examples because of the focus on 272 

the coefficient of DD b .  273 

Assuming in the snow Goose example a Gaussian prior distribution for r  with mean 0.20 and 274 

standard error 0.06 (i.e. with 95 % of the density between 0.12 and 0.28) to constrain r  to a 275 

realistic value for such a species (Niel and Lebreton 2005 Table 2) did improve the results 276 

(Table 1, second and third row) and provided evidence of very weak DD, with nearly no 277 

biological significance.  278 



The population size survey appeared as fairly precise, as the MLE of the standard error of the 279 

log population size, i.e. of its coefficient of variation is 0.0607, comparable in magnitude to 280 

the field estimate (10 % or less, Gauthier et al. 2007 p. 1422). This fairly good precision 281 

limited the bias of the naïve regression approach (Table 1 first row), with a 95 % confidence 282 

interval for the coefficient of DD encompassing 0, despite its bias. Accounting for uncertainty 283 

in population size not only removes a bias, but also increases the precision on the coefficient 284 

of DD by reducing the estimate for the process standard error. 285 

Contrary to Dennis et al. (2006) and Knape and de Valpine (2011), we found no pervasive 286 

presence of local minima in the likelihood, although we agree that care should be exercised on 287 

this point (Knape 2008). The sampling correlation between the estimates of r  and b and the 288 

resulting near non-identifiability is for us the main problem. Results from simulated data 289 

(Figure 3, and unpublished results on shorter time series) and a few other unpublished 290 

examples indicate similar general properties of what remains in the words of Dennis et al. 291 

(2006) a “minimal model”. The improvement brought by using a prior for the intrinsic 292 

population growth rate encourages refining the model and combining it with further pieces of 293 

external information, to improve its moderate performance. It gives a central role to Bayesian 294 

approaches, which also bring a great deal of flexibility. We do not think reasonable to 295 

consider as a fair evidence for DD a value of b̂  significantly differing from 0 without 296 

checking if the associated r̂  value makes sense. We currently recommend as a minimal step a 297 

careful look at the estimated intrinsic growth rate, and the use of a prior for r  based on 298 

comparative demography approaches (e.g; Niel and Lebreton 2005).  299 

From a minimal to realistic models 300 

Besides the difficulties just mentioned, the minimal model above may be inappropriate in 301 

practice for a variety of reasons (Lebreton 2009). The most prominent issues are: 302 



 Environmental covariates have to be taken into account to reduce the residual standard 303 

error and enhance power, and, if negatively autocorrelated, to distinguish their effect 304 

from that of DD (e.g. Lebreton 1990). 305 

 Age structure, e.g. with delayed recruitment, may require considering dependency 306 

over several time steps in components of population size. 307 

 Further structure such as spatial cells may have to be considered, e.g. to model local 308 

density-dependence (Murdoch 1994) or dependence on some components of 309 

population size. 310 

 The response to density may nonlinear and more complex functional forms may have 311 

to be considered (e.g. Dennis et al. 2006). Comparative explorations of the functional 312 

form based on naïve regressions neglecting uncertainty in population size (Sibly et al. 313 

2005) appear as highly questionable. 314 

Neglecting any of these issues may result in a model misspecification, and thus in biases of 315 

the estimate of the intensity of DD and the corresponding tests or diagnostics of DD. 316 

While in the original presentation by Bulmer (1975) the minimal model was presented as 317 

quite a specific statistical object, the state-space model point of view opens a number of 318 

perspectives (de Valpine 2002). For instance, it is relatively easy to generalize the state 319 

equation to account for an environmental covariate tz , as tttt czxbrx  )1(1 . Good 320 

examples are provided by Jacobson et al. (2004) and Pasinelli et al. (2011). It is also possible 321 

to adapt the model to particular life cycles. A good example of a model with a seasonal life 322 

cycle is provided by Stenseth et al. (2003).  323 

In all such models, the main potential bias of the slope for DD is removed by incorporating 324 

the population size uncertainty in the observation equation. However, the slope remains 325 



biased for finite sample sizes to an unknown degree. The likelihood for such models can be 326 

multimodal (Polansky et al. 2009) and the MLE as a consequence often difficult to obtain.  327 

Parametric bootstrap for such realistic models (e.g., with age structure, with covariates) may 328 

be tedious and remain thus confidential until a specialized user-friendly piece of software is 329 

produced. REML approaches based on first order differences found promising by Dennis et al 330 

(2006) could be useful, but have still to be investigated in such a more complex setting. A 331 

Bayesian approach seems the most straightforward treatment. As an alternative to MCMC 332 

algorithms, the posterior distributions can be obtained through numerical integration (de 333 

Valpine and Hastings, 2002), and explicitly in simple cases under Gaussian distributions. 334 

An overview of methods based on time series of estimated population sizes 335 

The first clear recommendation is to abandon all methods not accounting for uncertainty in 336 

population size, as they are unavoidably biased when used with real world, “noisy”, estimates 337 

of population size. This conclusion, although developed here based on a simple model, 338 

applies to any such approach such as the regression of “observed growth rate” tt yy 1  vs 339 

observed population size ty  as well illustrated by Freckleton et al. (2006 Figure 1c). The 340 

resulting bias is particularly vicious in meta-analyses, in which the estimated proportion of 341 

populations subject to DD will unavoidably be overestimated. This was suspected in the 342 

analysis by Brook and Bradshaw (2006) by Lebreton (2009) and demonstrated for these same 343 

data by Knape and De Valpine (2011). Brook and Bradshaw conclude to DD in more than 344 

75% of the cases studied, while, accounting for uncertainty in population size estimates and 345 

using a Bayesian approach, Knape and de Valpine conclude to significant DD in only 16 % of 346 

the case studied. Similarly, based on reliable tools, Jamieson and Brooks (2004) conclude to 347 

weak to moderate DD among American ducks. We still suspect part of these conclusions 348 

would not resist a close examination of the resulting intrinsic growth rate estimates. 349 



The state-space model formulation provides a sensible approach to account for uncertainty in 350 

population size (Dennis et al. 2006) and to develop specific models accounting for 351 

environmental covariates, age structure etc.., and testing thus for DD in presence of such 352 

potentially confounding effects. 353 

Two intermingled issues severely limit the potential of such models if used by themselves: 354 

1) Numerical issues (multiple maxima to the likelihood or sensitivity to priors, 355 

depending on the type of algorithms used) and problems of bias associated with finite 356 

sample size which currently make such models difficult to use without specific help 357 

from a specialist; 358 

2) Low power and identifiability problems as a result of the shortness of the time 359 

series and the two-level uncertainty, in particular if further complexities are brought in 360 

the model, at an unavoidable cost in terms of number of parameters to be estimated. 361 

We would rarely expect evidence for DD with fewer than 30 points and we think 362 

external information on the intrinsic growth rate has to be seriously considered in any 363 

such analysis unless the grail to remain inaccessible. 364 

The situation is somewhat similar to that of capture-recapture models for closed populations, 365 

whose status rapidly moved in the last few years from an innocuous fairly standard approach 366 

to that of delicate, specialized models with severe issues of bias and robustness (Link 2003). 367 

We will come back in greater detail in the general discussion to the potential of state-space 368 

models. 369 

DETECTING AND ESTIMATING DENSITY DEPENDENCE BASED ON TRAITS 370 

By contrast, one clear type of evidence for DD concerns the response of life history traits to 371 

changes in population size. Surprisingly, most such studies are observational correlative 372 



studies relating particular traits to observed changes in population size over time. Some 373 

qualify as quasi-experiments, as based on a clear population crash or explosion (e.g. Aslhey et 374 

al. 1998). Despite the current development of experimental ecology, few really manipulative 375 

experiments of densities have ever taken place. The few such studies with nest boxes (Torok 376 

and Toth, 1988, Alatalo and Lundberg 1984), although quite convincing, do not take full 377 

advantage of an experimental setting, notably in terms of block design and replication (see 378 

also Newton 1994). Bartmann et al. (1992) provide a good example of an experimental study 379 

of density dependent compensatory mortality in the Mule Deer with several replicates. 380 

The traits investigated in a search for DD can be morphological, such as body weight (e.g. 381 

Gaillard et al. 1996), and are then relatively simple to study. Demographic traits such as 382 

fecundity can be studied in a similar fashion (e.g. Arcese and Smith 1988). Demographic 383 

traits less directly measurable, such as survival, require more sophisticated approaches such as 384 

capture-recapture models (Lebreton et al. 1992, Roe Deer C.capreolus; Catchpole et al. 2000, 385 

Soay Sheep). A full review of studies relating estimated population size to life history traits, 386 

whether demographic or not, is beyond the purpose of this paper. Bonenfant et al. (2009) 387 

provide a broad review of density-dependence in mammals, discussing trait response to 388 

density, as well as different responses by different segments of the population, such as males 389 

and females or age classes. Newton (1998) reviews a number of trait - density or trait - 390 

resource relationships in birds. 391 

In all analyses of traits, one has to deal with some kind of linear model between the density or 392 

population size (possibly transformed, to log, to discrete categories…), tx , and the trait at 393 

time t  in individual j , 
tjz : 394 

   
tjtttj bxaz     [11] 395 



The model may have to incorporate further effects, as the two–level sampling (individuals and 396 

years) raises some specific issues (whether for instance the same individuals are sampled over 397 

several years or not). Environmental covariates can easily be incorporated as additive effects 398 

(Lebreton et al. 1992, Roe Deer example; Catchpole et al. 2000 for survival; Crespin et al. 399 

2006 for recruitment; Gaillard et al. 1996 for morphometric traits). The prominent point 400 

common to all approaches is again that the density is always a proxy for something else and is 401 

always known with some uncertainty, i.e. we are again faced with an error-in-variable 402 

problem. Model [11] should be accompanied by an observation equation ttt xy  . When 403 

using the regression model 
tjtttj byaz   , attenuation of the slope estimate towards 0 404 

(McArdle 2003) is unavoidable. Clearly, any test on the slope will be conservative, i.e., 405 

contrary to methods based on population size, the presence and intensity of DD is not 406 

overestimated, which is good news. As we usually have not much control on the uncertainty 407 

in population size, several possibilities are available to account for the error-in-variable 408 

problem, of which most remain to be explored: 409 

 Use an error-in-variable model (Fuller 1987); however, all such models are weakly 410 

identifiable, through stringent distributional assumptions, as they exploit differences in 411 

distribution in the   and the  terms to estimate their relative effect on the variation in 412 

the response variable; 413 

 Correct for bias. Barker et al. (2002), develop such an approach in the context of 414 

capture-recapture survival models. They develop two examples with seabird data that 415 

provide no evidence for DD. 416 

 Use information on the precision of population estimates, i.e. in the notation above an 417 

estimate (or a prior distribution) for )var( t  to improve identifiability in the error-in-418 

variable model. 419 



 Recast the capture-recapture model as a state-space model (Gimenez et al. 2007) and 420 

consider besides the observation equations needed for representing the recapture 421 

process an observation equation ttt xy  . In such an approach, survival for 422 

instance is represented as state equations made of Bernoulli (0/1) random variables, 423 

and the detection/recapture process as observation equations also made of 0/1 random 424 

variables. 425 

 Use instrumental variables, a tool commonly used in econometrics (e.g. Stock 2001). 426 

An instrumental variable will be in our context a variable uncorrelated with the 427 

random term for estimated population size, t  and correlated with true population 428 

size. Alternative, independent estimates of population size could be good candidates 429 

(for an example using multiple surveys, see Fromentin et al. 2001). 430 

The impact of the error-in-variable problem is clearly relatively limited, and, although some 431 

statistical care should be exercised, notably for what concerns the use of capture-recapture 432 

methodology, the assessment of DD based on traits is relatively straightforward.  433 

DISCUSSION 434 

The first part of our review, on methods for detecting DD based on population size surveys, 435 

leads first to several straightforward recommendations, to avoid the pervasive risk of 436 

overestimating the strength of DD. The first one is that methods neglecting uncertainty in 437 

population size should definitely be abandoned. The second is that the Bayesian approach to 438 

simple state-space models, such as the linearized Gompertz model, accounting for uncertainty 439 

in population size should be used, with some caution because of practical difficulties. We 440 

recommend also a reasonable prior based on external comparative information is used for the 441 

population growth rate. Even when these difficulties are correctly handled, which may require 442 

the assistance of an applied statistician with good knowledge of these models and their tricks, 443 



the simplest models may remain strongly misspecified because they neglect a number of 444 

features such as environmental covariates, age structure, particular functional form of DD, 445 

etc... Moving away from such minimal models is alike moving from simple regression to 446 

more sophisticated linear or nonlinear models: one cannot avoid a trade-off between the 447 

improvement brought by a better adaptation of a more complex model to the data (such as a 448 

decrease in residual variance), and the loss of precision implied by a greater number of 449 

parameters: modeling remains the art of oversimplification. Again, in this context, a Bayesian 450 

approach is probably the preferable approach, with caution exercised. In spite of their 451 

statistical and practical difficulties, methods based on population size surveys remain very 452 

attractive as they immediately translate into population projections. They are often the only 453 

practicable analyses of DD when population size surveys only are available, a common 454 

situation for managed wildlife populations. There is however little power for time series with 455 

fewer than, say, 30 time steps, i.e., in most cases, years. One has to recall that when the power 456 

drops down to values close to the test level , the analysis boils down to deciding for DD or 457 

no DD on the basis of a random number. 458 

When moving from methods based on population size surveys to methods for detecting DD 459 

on traits, one is, in some sense, moving from pattern to process (Swihart et al. 2002). The 460 

most straigthforward methods for traits, such as using density as a covariate in capture-461 

recapture models, are conservative, i.e. tend to underestimate the strength of DD, which 462 

means that the evidence for DD is reliable when present. Several perspectives to correct for 463 

the conservative effect of uncertainty in population size will probably be explored in the near 464 

future. The most promising is the use of the state-space formulation of capture-recapture 465 

models (Gimenez et al. 2007), completed by an observation equation for population size to 466 

properly model DD. While they can thus be used more confidently than approaches based on 467 

population size surveys, methods for DD in traits do not easily lead to population projections. 468 



Even when the traits under study are demographic, they can only be translated into projections 469 

through a projection model such as a matrix model. Nevoux et al. (2011) examine the 470 

consequences of DD in different traits of the Mauritius Kestrel Falco punctatus by integrating 471 

these different traits and their DD relationships into a nonlinear discrete time model, studied 472 

independently from the trait analyses. In the absence of correction for attenuation, the results 473 

of such models should be looked at with a critical eye. Moreover, deterministic models do not 474 

account for the interplay of DD and various forms of stochasticity. 475 

As the state-space formulation can easily encompass projection models (e.g. Gauthier et al. 476 

2007) and as it brings decisive advantages for assessing DD whether from population surveys 477 

or in studies of traits, it is clear that the future of DD modeling lies with state-space modeling. 478 

One can easily foresee what could be a state-space model incorporating DD in a wildlife 479 

population, based on integrated monitoring covering both population size surveys and 480 

individual longitudinal data ( i.e. capture-mark-recapture data in the broad sense). Such a 481 

model has to combine different types of state equations, with possibly at some stage the need 482 

to account for the lack of independence between the marked individuals and the overall 483 

population: 484 

 Multinomial distributions of individual trajectories on a Markov chain (reducing to 485 

Bernoulli equations in the case of survival), with parameters possibly dependent on 486 

population size, i.e. density-dependent;  487 

 Equations to iterate a population vector submitted to demographic stochasticity. 488 

The corresponding observation equations are: 489 

 Discrete variables such as Bernoulli for the capture-recapture process; 490 



 Equations for the uncertainty in the observation for population size (as a vector or total 491 

number). 492 

A model on these lines is proposed by Abadi et al. (submitted). Rotella et al ; (2009) go also 493 

one step in this direction by examining Weddell Seal population size estimates derived 494 

together with demographic parameters from a capture-recapture analysis within a stochastic 495 

Gompertz model. The demographic parameters are however not examined for DD and the 496 

estimated intrinsic growth rate is not given. 497 

The first consequence of this evolution is that detecting and estimating DD has already started 498 

moving from a push-button procedure to a full size modeling exercise. A second consequence 499 

is that the gap between projection models and statistical models is progressively filled. In such 500 

a promising state of the art one may also expect a progressive integration of models based on 501 

mechanism at the individual levels, in the spirit of individual-based models, with state-space 502 

models derive from the classical phenomenological approach to population dynamics 503 

reviewed here (e.g., Stephens et al. 2002).  504 

This evolution is fortunate as DD as a complex biological phenomenon has no reason to be 505 

uniformly reduced to a simple omnibus model, apart from a theoretical point of view that 506 

makes the logistic growth curve (Verhuslt 1838) so useful. We have to think of DD as a 507 

complex biological process interacting with other processes rather than in terms of a simple 508 

equation: modern statistical and modeling tools make such a synthesis within reach. 509 

  510 
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Table 2: sampling correlations between Maximum Likelihood Estimates of the parameters of 667 

the stochastic Gompertz model for the Greater Snow Goose data 668 

Parameters 

(as rows and 

columns) 

Sampling 

standard error 

)( tse  

Process 

standard error 

)( tse  

Intrinsic 

growth rate 

r 

Coefficient 

of DD 

b 

)( tse  1.0000 -0.7063 0.2955 0.2910 

)( tse  -0.7063 1.0000 -0.2947 -0.2900 

 r  0.2955 -0.2947 1.0000 0.9989 

b 0.2910 -0.2900 0.9989 1.0000 

 669 

  670 



 671 

Table 2: Estimation of parameters r , b , )var( t , and )var( t of the density dependent 672 

model ttt x)b(rx  11  with uncertainty on log-population size represented as 673 

ttt xy  , applied to spring population surveys of the greater Snow Goose (data from 674 

Gauthier 2007).  675 

First row: naïve regression approach on log population size, neglecting uncertainty in 676 

population size.  677 

Second row: Maximum Likelihood estimation of the model accounting for uncertainty in 678 

population. 679 

Third row: Bayesian approach of that same model with a Gaussian prior distribution for r  680 

with mean 0.20 and standard error 0.06 and uninformative priors for the other parameters. 681 

Fourth row: Bayesian approach of that same model with a Gaussian prior distribution for r  682 

with mean 0.20 and standard error 0.06, explicit posterior normal distribution 683 

Parameter 

 

 

         Method 

Process 

Standard 

Error 

)var( t  

Observation 

Standard 

Error 

)var( t  

Growth 

rate  

r  

Coef-

ficient of 

DD 

b  

Corr 

)b̂,r̂(  

Deter-

ministic 

equilibriu

m 

br ˆ/ˆ  

Naïve regression 

neglecting uncertainty in 

population size 

0.1398 - 0.5044 

[-0.5446,   

1.5533] 

0.0357 

[-0.0469,   

0.1184] 

0.9988 14.12 

 

Model with uncertainty in 

population size: 

Maximum Likelihood 

Estimate and, in brackets, 

95 % CI 

0.1041 0.0607 0.3191 

 

[-0.2731, 

0.9112] 

0.0210 

 

[-0.0258, 

0.0678] 

0.9990 15.21 

 

idem, Bayesian approach 

with prior constraining r : 

posterior distribution of 

parameters,  

Mean and, in brackets, 2.5 

% and 97.5 % quantiles 

(MCMC) 

0.1210 0.0528 0.2022 

 

[0.0865, 

0.2413] 

0.0118 

 

[0.0019, 

0.0151] 

0.931 17.19 

Idem, based on normal 

distribution 

0.1022 0.0628 0.2024 

[0.1201,

0.2847] 

0.0118 

[0 0049, 

0.0187] 

0.951 17.15 

 684 
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Legends of figures 686 

 687 

Figure 1: Current log population size 1tx  vs previous one tx  based on the density 688 

independent model ttt xrx 1 , under 30.r   and 640.)var( t  . From top to bottom, 689 

simulations over 5, 10 and 20 time occasions, respectively. The regression line of 1tx  vs tx  690 

(dotted lines) progressively converges to the line tt xrx 1  (plain lines) as )xvar( t , 691 

i.e. the regression slope progressively converges to 1. For all finite sample sizes, this approach 692 

points to a model ttt x)b(rx  11  with 0b , i.e. to density-dependence. 693 

 694 

Figure 2: Estimated strength of density dependence (ordinate) in absence of density 695 

dependence, when uncertainty in population size (as a coefficient of variation, abscissa) is 696 

neglected. The bias in the estimated strength of DD strongly increases with the uncertainty in 697 

population size. 698 

Simulated data based on the density independent model ttt xrx 1  with uncertainty on 699 

log-population size represented as ttt xy  . The estimated strength of DD (ordinate) is the 700 

Maximum Likelihood estimate of b in the model ttt y)b(ry  11  over 30 time steps 701 

in which y  is treated as the “true” log population size. In abscissa, )(se)x/y(se ttt   is the 702 

coefficient of variation of the estimated population size. Dotted line: Mean estimate b̂  (5000 703 

replicates each), vertical lines; 95% limits of the 5000 replicates. 704 

 705 



Figure 3: Deviance (-2 x log-likelihood) contours of simulated trajectories of increasing 706 

number of time steps (T=10, 20, 50 and 100) of the density dependent model 707 

ttt x)b(rx  11  with uncertainty on log-population size represented as ttt xy  . 708 

The parameters used in the simulations are 10.r  , 30.b , 20.)(se t  , 40.)(se t  . The 709 

deviance is represented under 20.)(se t  , 40.)(se t   as a function of b  (in abscissa, from 710 

-0.3 to 0.7) and r  (in ordinate, from -0.5 to 0.7). The contours clearly show that in presence 711 

of uncertainty on population size a) the likelihood and the maximum likelihood estimates are 712 

well behaved in the absence of model misspecification; b) for realistic number of time steps ( 713 

< 50), the estimates of r  and b  will be strongly positively correlated, making it difficult to 714 

distinguish between low intrinsic growth rate and light density-dependence vs high intrinsic 715 

growth rate and strong density-dependence. 716 

 717 

Figure 4: Profile Deviance for parameter r of the density dependent model 718 

ttt x)b(rx  11  with uncertainty on log-population size represented as ttt xy  , 719 

applied to spring population surveys of the greater Snow Goose (data from Gauthier 2007). 720 

For each value of r  the deviance is maximized with respect to the three other parameters b , 721 

)var( t , and )var( t .  722 

 723 

Figure 5: reconstructed log spring population size for the Greater Snow Goose, based on the 724 

relationship tt x)b(rx  11 . Plain line: MLEs of r  and b ; dotted line: Estimates under a 725 

Gaussian prior distribution for r  with mean 0.20 and standard error 0.06. The ability to 726 

discriminate among pairs of values )b,r(  is obviously very low, as different pairs of values 727 

give closely similar curves.  728 
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