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ABSTRACT 

  

Assessing conservation strategies requires reliable estimates of abundance. As 

detecting all individuals is most often impossible in free-ranging populations, 

estimation procedures have to account for a less than one detection probability. 

Capture-recapture methods allow biologists to cope with this issue of detectability. 

However, capture-recapture models for open populations are built on the assumption 

that all individuals share the same detection probability, although detection 

heterogeneity among individuals has led to underestimating abundance of closed 

populations. We developed multievent capture-recapture models for an open 

population accounting for individual detection heterogeneity (IDH), and proposed an 

estimator of population size. We considered a two-class mixture model with ‘weakly’ 

and ‘highly’ detectable individuals to account for IDH. Using a non-invasive capture-

recapture study of wolves based on genotypes identified in feces and hairs, we 

demonstrated that a strong underestimation of population size (27% on average) 

occurred when ignoring IDH. 

 

Key words: Canis lupus, E-SURGE, mark-recapture, mixture models, multievent 

model, population size, individual heterogeneity. 
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INTRODUCTION 

 Assessing the success of conservation and management actions performed on focal 

populations relies on accurate estimates of population size. However, obtaining reliable 

abundance estimates is difficult for most taxa because exhaustive counting of free-ranging 

animals is most often impossible. Capture-recapture (CR) protocols have been developed to 

solve that problem, and are increasingly used to monitor populations of vertebrates (Williams 

et al. 2002).  

 In standard CR models, all individuals are assumed to have identical detection 

probabilities. However, individual attributes (e.g., age, body mass, social status) and habitat 

features (home range location and composition) generate heterogeneity in the detection 

process (IDH for individual detection heterogeneity hereafter) that has been shown to lead to 

biased estimates of abundance in closed populations (Carothers 1973; Gilbert 1973; Otis et al. 

1978; Hwang & Huggins 2005) when it is ignored. In closed populations, IDH can be handled 

by considering classes of individuals with distinct detection probabilities using mixture 

models (Agresti 1994; Norris & Pollock 1996; Pledger 2000). Although some factors can be 

incorporated in CR models as individual covariates (Huggins 1989,1994; McDonald & 

Amstrup 2001), most of them are generally not measured. Moreover, in the case of 

endangered and/or small-sized populations for which individuals are not physically captured 

but monitored through their DNA extracted from biological material collected in the field 

(e.g., Waits & Paetkau 2005), no covariate is available.  

 We sought to demonstrate the risks of flawed inference in the estimation of the size of 

open populations when IDH is ignored. We combined estimators of detection probabilities in 

heterogeneous open populations (Pledger et al. 2003) with an estimator of population size 

when individuals are sampled with unequal probabilities. We used multievent CR models 

(Pradel 2005, 2009) which allow considering hidden states, indirectly observed through the 
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observations. Here, we included two classes of individuals (i.e., highly vs. weakly detectable) 

to model IDH while estimating abundance. 

 To illustrate our approach, we used CR data on wolves (Canis lupus). After their 

extirpation from France two centuries ago, wolves entered the French Alps in 1992 as a 

consequence of the natural recovering process in adjacent Italy (Valière et al. 2003). Since 

then, the population has been increasing and individuals have spread across the Alps. Because 

of high extensive outdoor agricultural practices, a large number of depredations on livestock 

occurred, creating strong political and economical issues (Mech 1995). Reliable estimates of 

annual abundance are thus needed as the first step of a wolf action plan for population 

management as well as for evaluating the species conservation status in France. Large pack 

territories associated with low densities and high mobility prevented us using traditional 

surveys based on observations or physical recaptures. We used non-invasive monitoring via 

genotyping of biological material for individual identification of wolves (Taberlet & Luikart 

1999). We applied models incorporating IDH to this individual monitoring, and evaluated the 

resulting bias in abundance when IDH was ignored. Eventually, we considered the benefits of 

accounting for IDH when estimating population size and how it could impact the reliability of 

conservation actions. 

 

DATA AND METHODS 

 

Data collection 

We collected DNA samples from 1995 to 2003 in the French Alps using both an 

opportunistic sign survey at large scale and standardized snow-tracking field work within all 

pack territories. We developed microsatellite-based identification of wolves from scats to 

identify individuals (Valière et al. 2003). For each wolf sample, we amplified 7 microsatellite 
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loci using a PCR multi-tube approach with 8 replicates per sample (Taberlet & Luikart 1999). 

To assess the genotype reliability and minimize errors, we used a quality index (QI, 

corresponding to the mean frequency of the consensus genotype among the 8 replicates at 

each locus, Miquel et al. 2006). We discarded genotypes with average QI < 0.4. We 

constructed a ‘genetic capture history’ for each detected genotype by grouping the 

observations within 3-month periods from January 1. Overall, 1,181 wolf samples were 

genotyped among which 840 were classified as reliable. The number of detections varied 

from 1 to 91 depending on the genotype. The data set included the capture history of 160 

different genotypes. 

 

Multievent CR modeling 

To account for IDH, we used mixture models (Pledger 2000; Pledger et al. 2003; 

Pradel 2009) that incorporate hidden groups of individuals with contrasting detection 

probability. We did not have a priori information on the detection rate for any genotyped 

wolf. Thus our model looked like a usual CR model in which the state of each individual was 

imperfectly known, and therefore described a particular case of multi-event CR models that 

specifically deal with uncertainty in state assignment (Pradel 2005). 

A multievent CR model includes both states and observations which are generated 

from the underlying state of an individual. We distinguished wolves alive with high detection 

probability (‘H’), wolves alive with low detection probability (‘L’), and dead wolves (‘D’). 

The observations were coded ‘0’ (when a previously genotyped wolf was not detected) and 

‘1’ (when it was detected). For example, the capture history ‘101’ denotes an individual who 

was encountered on the first and third sampling occasions, but missed on the second. The 

probability of this history is: 

        HHLL pppp   111101Pr   
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where   is the probability that the individual belongs to state L, Lp  and Hp are the recapture 

probabilities in states L and H, and   is the common survival probability. Assuming all 

individuals have equal detection probability (homogeneity model), we get the standard 

Cormack-Jolly-Seber model (Lebreton et al. 1992). We also tested for differences in survival 

of wolves between states L and H (Supplementary Material), as detection rate might be 

related to the social status. 

We then defined a set of candidate models incorporating biologically relevant 

combinations of several temporal and individual effects on both survival and detection 

probabilities. Regarding temporal effects, we considered ‘year effect’ to test for the influence 

of poaching or some years of high juvenile mortality and ‘seasonal effect’ to explore climate 

impact on survival. To investigate temporal variations in sampling effort we considered year 

and seasonal effects on detection. Moreover, regarding detection, we divided the year in two 

ways. First, we expected detection to remain lower for some time after reproduction (July to 

December) because the cubs, and to some extent the pack itself, are relatively sedentary 

(‘biology effect’ hereafter). Second, we expected a higher detection probability in the ‘cold’ 

period (October to March), as cold and snow are favorable to DNA conservation (‘climate 

effect’ hereafter) (Lucchini et al. 2002).  

To choose among models and assess the effect of detection heterogeneity on 

abundance estimation, we selected the model with lowest AICc (Burnham & Anderson 2002). 

We used program E-SURGE (Choquet et al. 2009) to perform CR analyses (Appendix S1). 

Although goodness-of-fit tests are well developed for standard open CR models (Lebreton et 

al. 1992), there is no test available for multievent CR models (Pradel 2009). However, an ad-

hoc procedure was recently proposed to test the goodness-of-fit of a model with heterogeneity 

in detection probabilities (Péron et al. unpubl. data). Using program U-CARE (Choquet et al. 

2005), we rejected the CJS model ( 2

115X = 180.73, p < 0.01), but the corresponding model 
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accounting for detection heterogeneity fitted the data appropriately ( 2

113X = 118.996, p = 

0.331). Consequently, all candidate models accounted for IDH. 

 

Population size estimation 

In a model with homogeneous detection probabilities, the number of individuals tN  

alive at time t is estimated from the ratio of the number captured nt over an estimate tp̂ of the 

detection probability at time t, 
t

t
t

p

n
N

ˆ
ˆ  . The sample n consists of u newly detected 

individuals and m previously detected. In the same way, tN  consists of the sum of tU new 

individuals and tM individuals already present and still alive at time t. In the heterogeneity 

model, the newly detected are made of 
tU  individuals in state L and   tU1  individuals 

in state H. Using a Horvitz-Thompson type estimator which specifically accounts for unequal 

detection probabilities, we obtained an estimate tÛ  of the expected number of new 

individuals in the population  
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Applying the survival estimates to already detected individuals, we obtained an 

estimate tM̂  of the expected number of already detected individuals still alive at time t 
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Finally, we obtained an estimator of population size accounting for IDH (Appendix S1) 

ttt MUhetN ˆˆˆ  . 

For example, let us consider a population with ̂ = 30% of individuals in state L, 2.0ˆ L

tp
 

and 6.0ˆ L  and with ̂1 = 70% of individuals in state H with 
Hp̂  = 0.5 and 9.0ˆ H . If 
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u1 = 1 individual is newly detected at the first occasion and u2 = 2 at the second occasion, 

8.5
5.0

27.0

2.0

23.0ˆ
2 





U  and   81.09.07.06.03.01ˆ

2 M , we obtain an estimate 

of the size of the population at the second occasion 61.681.08.5ˆ
2 hetN . 

Given the discrete and positive nature of the data, and the relatively small sample size, 

we used a non-parametric bootstrap (Davison & Hinkley 1997) to obtain confidence intervals 

of abundance and functions of demographic parameters.  

 

RESULTS 

 

 The model with individual heterogeneity in both detection and survival probabilities 

was best supported by the data (Appendix S2). Temporal variation in survival received little 

support from the data and did not affect detection parameters estimates (results not shown). 

We therefore retained models with constant survival only. Detection probabilities exhibited a 

semester effect acting on an additive scale with heterogeneity. In support to the goodness-of-

fit tests, models with a two-class mixture on detection always had lower AICc values than 

their homogenous counterpart (Appendix S2). Although there was some uncertainty on 

whether heterogeneity should also be incorporated on survival, detection parameters estimates 

given by the four top models were very similar.  

 The detection probability was higher from January to June than from July to 

December in both L and H states (Table 1). Detection probability strongly differed in the two 

classes of detectability. Depending on which of the two 6-month periods we considered, the 

detection probability of wolves in state H was 4-6 times greater than that of wolves in state L. 

Annual survival (product of all 3-month survival probabilities) of wolves in state H was 90% 

(95% CI: [0.71; 0.98]) versus 75% (95% CI: [0.54; 0.94]) for wolves in state L. Overall, our 
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results suggested a positive correlation between survival and detection probabilities, with 

weakly (resp. highly) detectable individuals having a low (resp. high) survival probability. 

 

[ Table 1 about here ] 

 

The total population size of wolves in the French Alps increased from 3 (95% CI: 

[0;7]) in winter 1995 to 126 (95% CI: [85; 280]) in winter 2003 (Figure 1). Marked seasonal 

variations were observed, with peaks after the breeding season, and decreasing periods that 

were synchronized with dispersal events. When IDH was ignored (Figure 1), abundance was 

underestimated by 27% on average (ranging from 0% to 70%).  

 

[ Figure 1 about here ] 

 

DISCUSSION 

Wolf populations are increasing in Europe (Salvatori & Linnell 2005) which often 

translates into increasing conflicts due to depredation on livestock. Although large carnivores 

are protected by law (Bern Convention, European Fauna-Flora-Habitat Directive), the long 

term persistence and reestablishment of populations is based on their acceptance by the 

different stakeholders (Bath 2000). To this aim, if the conservation status of the species is 

favorable, governments may implement management strategies involving some form of lethal 

control (Treves & Karanth 2003). Assessing a sustainable level for lethal control requires a 

reliable estimate of abundance, which may be hampered if IDH is ignored.  

Both goodness-of-fit tests and model selection procedures indicated that IDH occurred among 

wolves. Detection heterogeneity could result from genotyping errors (Lukacs & Burnham 

2005), heterogeneities in the sampling effort (Devineau et al. 2006) or be a direct 
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consequence of the species biology (Crespin et al. 2008). We used multi-tube PCR and 

discarded unreliable genotypes to minimize errors. Among reliable samples, genotypes 

detected only once did not have a lower QI than genotypes detected more than once 

( 17.0,854.12

1  pX ), showing no evidence for false genotypes.  

To disentangle the effects of sampling heterogeneity from the species biology, we 

compared between periods within the year. The ‘biology’ effect was more plausible than the 

‘climate’ effect, with detectability higher before than after the breeding period. The lower 

detection probability after the breeding period may reflect the impossibility to detect cubs 

before 6 months when they start to follow adults. Under this scenario, ‘highly detected 

individuals’ would correspond to dominant individuals that are more mobile on the pack 

territory and more keen on using feces or urine to mark the territory (Vila et al. 1994), 

whereas ‘weakly detectable individuals’ would be made of young and subordinates that are 

supposed to be hardly detectable because of a lack of mobility or a life passed outside the 

pack territory (Mech & Boitani 2003). This is reinforced by the estimated survival of ‘highly 

detectable individuals’ which matches the survival of dominant individuals reported in other 

studies (Mech & Boitani 2003). The lower survival of ‘weakly detectable individuals’ could 

be attributed to a mixture of cubs, subordinates and migrants which have a lower survival than 

dominant individuals. However, the model specifying a transition of individuals from the 

class of ‘lowly’ to ‘highly’ detectable – allowing subordinate individuals to access the 

dominant status – was not supported by the data (ΔAICc = -56.29 when compared with a 

model without transition). The limited length of the study period combined with a small 

dataset may be insufficient to detect transitions. 

Link (2003) has established that the same capture history data set may arise from a 

wide range of heterogeneity models, which in turn yield entirely different estimates of 

population size. Based on biological considerations and following Pledger et al. (2000)’s 
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suggestion, we used a simple dichotomy of individuals (i.e., low versus high detection). Note, 

moreover, that the limited size of our dataset prevented us using a larger number of classes.  

 Problems of non-identifiability of population size may also arise when some 

individuals have encounter probabilities close to zero (Link 2003). In wolves, the chance of 

detection of subordinates is not very low and probably similar among them because packs 

occupy a territory and, especially in winter, it is possible to follow the tracks and find the 

droppings of all individuals along the way. The really problematic individuals are the 

dispersing individuals which do not belong to a pack. They are probably secretive, do not stay 

very long in the same area, and may escape detection entirely. Because of them, our estimate 

of population size is likely to be biased low. However, we believe that our estimate remains 

useful because the dispersers represent a minority of individuals and they eventually join a 

pack and become detectable or they leave the study area entirely (or die).  

 We demonstrated that ignoring IDH can lead to a severe underestimation of population 

size and proposed a procedure based on multi-event CR methods to account for IDH in free-

ranging populations. 
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SUPPLEMENTARY MATERIAL  

Appendix S1 and Appendix S2 are available as part of the on-line article from 

http://www.blackwell-synergy.com/. The author is responsible for the content and 

functionality of these materials. Queries (other than absence of the material) should be 

directed to the corresponding author.  
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TABLE LEGEND 

 

Table 1. Parameter estimates and 95% confidence intervals (in parentheses) of the best-fitting 

model assuming a two-class mixture of individuals on survival and detection probabilities, 

with an additive 6-month period effect on the later. Note: The detection probability over a 

semester was calculated as the probability of being detected at least once during this period, 

e.g. the detection probability over January- June was equal to the detection probability over 

January-March plus the detection probability over April-June minus the detection probability 

over January-March times the detection probability over April-June. 
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TABLE 1 

 

 

 Class of individuals 

Parameter Weakly detectable Highly detectable 

Proportion of newly  

marked individuals 

0.76 (0.65;0.85) 0.24 (0.15;0.34) 

Survival probability 0.75 (0.54;0.94) 0.90 (0.71;0.98) 

Detection probability  

over January- June 

0.22 (0.11;0.37) 0.86 (0.74; 0.96) 

Detection probability  

over July- December 

0.10 (0.05;0.18) 0.64 (0.51;0.82) 
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FIGURE LEGENDS 

 

 

Figure 1. Population size estimates of wolves in the French Alps from 1995 to 2003. Results 

were obtained from the best-fitting model assuming a two-class mixture of individuals on 

survival and detection probabilities, with a semester effect on the later (solid line) and a 

model with a similar structure but ignoring individual heterogeneity in the detection (dashed 

line). A non-parametric bootstrap procedure was used to obtain 95% confidence intervals 

(vertical bars). 
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FIGURE 1 
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