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 2 

Summary 1 

Structured population models are widely used in plant and animal demographic studies to 2 

assess population dynamics. In matrix population models, populations are described with 3 

discrete classes of individuals (age, life history stage or size). To calibrate these models, 4 

longitudinal data are collected at the individual level to estimate demographic parameters. 5 

However, several sources of uncertainty can complicate parameter estimation, such as 6 

imperfect detection of individuals inherent to monitoring in the wild and uncertainty in 7 

assigning a state to an individual. Here, we show how recent statistical models can help 8 

overcome these issues. We focus on hidden process models that run two time series in parallel, 9 

one capturing the dynamic of the true states and the other consisting of observations arising 10 

from these underlying possibly unknown states. In a first case study, we illustrate hidden 11 

Markov models with an example of how to accommodate state uncertainty using Frequentist 12 

theory and maximum likelihood estimation. In a second case study, we illustrate state-space 13 

models with an example of how to estimate lifetime reproductive success despite imperfect 14 

detection, using a Bayesian framework and Markov Chain Monte Carlo simulation. Hidden 15 

process models are a promising tool as they allow population biologists to cope with process 16 

variation while simultaneously accounting for observation error. 17 

 18 

Keywords: capture-recapture; hidden Markov models; lifetime reproductive success; 19 

multievent models; multistate models; state-space models; state uncertainty 20 

21 
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1. INTRODUCTION 1 

Structured population models (Tuljapurkar & Caswell 1997; Caswell 2001) allow a 2 

detailed description of population change over time by accounting for the number of 3 

individuals in discrete classes (grouped according to age, stage or state). These models are 4 

widely used in plant and animal demographic studies to assess population dynamics as they 5 

allow the projection of future population size, estimation of asymptotic population growth rate, 6 

age structure, net reproductive rate, generation time and life expectancy among other 7 

descriptive statistics. Matrix models have been used to assess population viability (e.g., 8 

Ghimire et al. 2008), evaluate the effects of management strategies on life history strategies 9 

(e.g., Servanty et al. 2011) and investigate the feedback between demography and evolution 10 

(van Tienderen 2000, see also Gamelon et al. [2011] for a recent application). 11 

Traditionally, structured population models are calibrated using longitudinal data 12 

collected at the individual level. These data are analyzed with statistical models to estimate 13 

demographic parameters like survival, growth, dispersal and fecundity, which are then entered 14 

into structured population models. However, several sources of uncertainty are associated with 15 

parameter estimation that need to be properly accounted for. First, individuals are difficult to 16 

monitor in the wild (mobile animals in particular) because they may or may not be observed at 17 

a given sampling occasion. This raises the issue of imperfect detection, which, if ignored, can 18 

lead to biased estimates and flawed inference about demographic parameters (e.g., Nichols 19 

1992, Gimenez et al. 2008). Second, there can be uncertainty related to measurement error, in 20 

particular, correctly assigning a state to an individual, even when the individual is observed or 21 

captured. This may be the gender of an individual whenever sex is determined through 22 

behavioral clues, or epidemiological status if serological tests generate false positives or 23 

negatives, or reproductive status whenever the number of offspring is visually determined by 24 

counting the number of young accompanying their parents.  25 
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To handle the complexity of the dynamics of free-ranging populations and 1 

accommodate the various sources of uncertainty associated with parameter estimation, there is 2 

a need to integrate structured population models with novel statistical tools. In this paper, we 3 

aim to review and demonstrate how recent statistical models can help bring theoretical models 4 

(mechanisms) and the analysis of empirical data (patterns) together. We will focus our 5 

attention on hidden process models (see Box 1) that have recently received much attention in 6 

the literature (Buckland et al. 2004; 2007; Newman et al. 2006). In hidden process models, two 7 

time series are run in parallel: one captures the dynamic of the true (latent) states via a 8 

stochastic process model; the other is static and describes the observations that are made from 9 

these underlying but possibly unknown states.  10 

In the first section, we review standard multistate capture-recapture models (see Box 1; 11 

Lebreton et al. 2009) that are used to estimate key demographic parameters, which are then fed 12 

to structured population models. We pay particular attention to the imperfect detection of 13 

individuals in the wild for analyzing individual longitudinal data. In the second and third 14 

sections, we reformulate longitudinal multistate models as hidden process models, either as 15 

hidden Markov models (HMM; see Box 1, Pradel 2005) or state-space models (SSM; see Box 16 

1, Gimenez et al. 2007). In both sections, case studies are used to illustrate these models. In the 17 

second section, we show how hidden-Markov models can be used to deal with uncertainty in 18 

the assignment of reproductive status and its importance when assessing life-history trade-offs. 19 

In the third section, we show how state-space models can be used to estimate lifetime 20 

reproductive success (sensu Clutton-Brock 1988) while accounting for a detection probability 21 

less than one. Finally, we discuss the limitations of hidden process models as well as several 22 

extensions of these models. 23 

 24 

 25 

2. OVERVIEW OF MULTISTATE CAPTURE-RECAPTURE MODELS  26 
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 1 

Capture-recapture (CR; see Box 1) models have become a central tool in population biology 2 

for estimating demographic parameters under imperfect detection of individuals (Lebreton et 3 

al. 1992). CR models were originally designed to estimate population size, with demographic 4 

parameters such as survival probabilities progressively incorporated in these models, first as 5 

nuisance parameters, and eventually as the main focus (for the early history see Lebreton et al. 6 

2009 p. 93 ff). The standard Cormack-Jolly-Seber model (see Box 1; Cormack 1964, Jolly 7 

1965, Seber 1965) is based on the embedding of two distinct processes: survival (with survival 8 

probabilities denoted as  ) and detection (with recapture probabilities denoted as p) over 9 

discrete time occasions. These parameters are indexed appropriately depending on the type of 10 

variation of interest (e.g., time, age or sex; Lebreton et al. 1992). 11 

A notable feature of the original development of CJS models is that the survival and the 12 

detection processes were viewed as intimately entangled. Adequately representing how they 13 

were imbricated was indeed at the core of early methodological developments to obtain a 14 

likelihood that could be used to properly estimate the parameters. For instance, under time-15 

dependence, the probability that an individual is never seen again after occasion i, denoted as 16 

c i
, is obtained through a backward recurrence relationship (Cormack, 1964), accounting for 17 

the fact that an individual may die between occasion i and i+1 or survive and not be detected:  18 

ci =1-fi +fi (1- pi+1)ci+1
 19 

with c last occasion =1. 20 

However, when comparing various types of detection, it clearly appeared that the survival-21 

mortality process was a background process distinct from the detection process. For instance 22 

for the same time-dependent survival process, one must be able to accommodate several 23 

situations illustrated in Figure 1 (see also Lebreton et al. 1999): i) complete detection, as might 24 

occur in developed countries for the human population (with administrative declaration of 25 



 6 

deaths), ii) incomplete detection of live individuals, i.e., live recaptures or resightings, to be 1 

analyzed with CJS models or iii) incomplete detection of deaths, as in ‘dead recoveries’ of 2 

banded birds (usually by the general public) to be analyzed with so called dead-recovery 3 

models (Brownie et al. 1985).  4 

 5 

[Figure 1 about here] 6 

 7 

In the survival process, death or survival between two sampling occasions is treated as strictly 8 

conditional on the fact that the individual is alive at the onset of the target interval: the system 9 

has no memory, i.e. the survival process is a Markov chain. Hence, CJS models are implicitly 10 

made up of a Markov chain on top of which is an imperfect observation process (e.g., Lebreton 11 

et al. 1999). In other words, CJS models are hidden process models where the demographic 12 

process is represented by a (first-order) Markov chain (see next sections) that is only partially 13 

observed due to imperfect detection. Conveniently, the explicit representation of the survival 14 

process in CJS models as a two-state Markov chain (alive / dead) readily provides the 15 

probability of individual histories, without having to use the complicated c  parameters 16 

mentioned above (Caswell and Fujiwara 2004, pp. 477-478). 17 

However, representation of the survival process as a Markov chain did not capture much 18 

attention for some time for a number of reasons. First, CR models were considered to be 19 

specific and exotic statistical tools, in particular because of the historical focus on population 20 

size estimation and the associated difficulties in producing an adequate fully stochastic model 21 

(Jolly 1965). The focus on the estimation of demographic flows developed only in the late 80s 22 

(Burnham et al. 1987; Clobert and Lebreton , 1987). Second, while the succession of events 23 

such as survival and death in CR models was clearly Markovian, historically, the statistical 24 

point of views on CR models and Markov chains were radically different: when considering n 25 
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individuals moving over T time steps according to a Markov chain, the development of 1 

stochastic process theory for Markov chains was centered on asymptotic results when T tends 2 

to infinity, such as ergodicity for instance; on the contrary, CR models asymptotic results, such 3 

as the optimality of maximum likelihood estimators for example, are derived for n tending to 4 

infinity for a fixed value of T. Third, parameter estimation for Markov chains under partial 5 

observation was not fully developed at that time (e.g., Lawless and McLeish 1984) and could 6 

not offer solutions to the CR situation. 7 

The initially slow development of the Markov chain approach to analyzing individual histories 8 

is illustrated in Figure 2. The first papers explicitly using this point of view were published in 9 

the early 1990s, and from there on, parallel growth in human and animal population studies 10 

took place at a common rate of ~ 9 % a year. 11 

 12 

[Figure 2 about here] 13 

 14 

Modeling survival as a hidden process has several strong advantages. First, the process model 15 

can easily be made more complex or detailed to address new biological questions. Existing CR 16 

extensions, such as multisite (Arnason 1972, 1973; Hestbeck et al. 1991) and recruitment 17 

(Clobert et al. 1994) models, entered this common framework; new generalizations could 18 

easily be produced, such as multisite recruitment models (Lebreton et al. 2003) and multistate 19 

CR models (reviewed in detail by Lebreton et al. (2009), and Williams et al. 2002 pp. 454-20 

468). Second, it linked CR statistical models with parallel developments in population 21 

dynamics models and notably matrix population models (Caswell 2001 p. 37). These models 22 

are based on a reasonable representation of differences among individuals, through a finite 23 

number of so-called ‘i-state variables’ that summarize relevant information on the past life of 24 

an individual to determine its future in terms of, e.g., individual physiology, reproduction or 25 

death (Diekmann and Heesterbeek 2000). The same idea is clearly inherent in multistate CR 26 
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models. The empirical use of these models requires that individual data should translate into 1 

parameter estimates, i.e. estimates of probabilities of the transition from, say, life to death, 2 

rosette to flowering plant or non-breeder to breeder. Several papers have addressed estimation 3 

and the use of estimates in multistate dynamics models (e.g., Caswell and Fujiwara 2004). 4 

Third, the observation process can also be made more complex and tuned to specific situations. 5 

Dupuis (1995) was among the first to distinguish clearly between the two processes in CR 6 

models, considering the transitions between states as a Markov chain and imperfect detection 7 

as an independent process generating ‘missing data’. Soon, however, the detection process was 8 

considered to be potentially more complex, e.g., with the development and systematic 9 

exploration of the use of unobservable states for modeling temporary emigration (Kendall and 10 

Bjorkland 2001) and recruitment (Pradel and Lebreton 1999). Specific models for ‘mixtures of 11 

information’ (Burnham 1993) considered detection of individuals either as alive or at the time 12 

of death. They appear as specific multistate CR models based on the two states alive / just dead 13 

(Lebreton et al. 1999). The generalization of the observation process currently includes models 14 

that account for uncertainty in the assessment of states (Kendall et al. 2003). The observation 15 

process then considers a probabilistic relationship between the underlying states (such as 16 

breeder vs. non-breeder) and ‘events’ (such as seen at nest or seen out of a nest). Hence, an 17 

individual seen out of a nest may be in either state. Earlier approaches were specific to 18 

permanent states (such as sex, Nichols et al. 2004), but the more general models are multistate 19 

CR models that account for state uncertainty, so-called multievent models (Pradel 2005). The 20 

movement towards understanding and unifying CR models as hidden process models (Figure 21 

3) has followed rapidly with the development of specific statistical tools for hidden process 22 

models, either hidden-Markov models or state-space models. We review these developments in 23 

the following next two sections. 24 

 25 

[Figure 3 about here] 26 
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3. HIDDEN MARKOV MODELS: DEALING WITH UNCERTAINTY IN STATE 3 

ASSIGNMENT 4 

 5 

3.1. Hidden-Markov modeling 6 

3.1.1. HMM for capture-recapture data 7 

In the above multistate CR models, it is assumed that the state of an individual is 8 

ascertained upon encounter. This poses no difficulty if the state is a geographical location (e.g., 9 

wintering site or breeding colony e.g.), but is less obvious when the state is reproductive status 10 

(breeder or non-breeder) or a physiological state like diseased vs. healthy. Diagnosis is 11 

typically attempted based upon some criterion like the presence of a brood patch or nest-12 

building activity (for a breeder) or antibody level (for a potentially diseased individual). The 13 

distinction between the criterion and the state leads to models that distinguish the visible layer 14 

(the criterion) from the hidden layer (the state). This distinction between what is observed and 15 

what is inferred is key to hidden process models. Because the hidden layer is a first order 16 

Markov chain, this naturally leads to the introduction of a HMM for analyzing CR data. The 17 

key step is to recognize that whether an individual is observed or not may itself be considered 18 

as belonging to the ‘observable’ layer. This conceptual leap led to the definition of multievent 19 

CR models (see Box 1; Pradel 2005), which both generalize multistate CR models to 20 

accommodate uncertainty in state assignment and firmly establish that CR models are a 21 

particular type of HMMs. However, unlike in HMMs, the recorded information in multievent 22 

models is named ‘events’ rather than ‘observations’, because the record can be a ‘non-23 

observation’. 24 

3.1.2. Review of HMM applications to estimate demographic parameters 25 
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HMMs have a tremendous potential with applications in all domains of ecology (Pradel 1 

2009), but they historically have been seldom used. An obvious application is in epidemiology 2 

(Conn & Cooch 2009). Another is sex identification in monomorphic or weakly polymorphic 3 

species where clues are mainly derived from behavior (Nichols et al. 2004; Pradel et al. 2010). 4 

A less obvious application is investigating the role of memory in movements among a discrete 5 

set of sites. When movements between the successive occasions are determined not only by the 6 

position occupied at a particular occasion but also by some previous positions, the previous 7 

positions must enter in the definition of the state. Then, when an individual is encountered, it 8 

may happen that because the previous relevant positions have not been observed, the exact 9 

state is unknown. This invalidates the use of multistate CR models but HMMs can be used 10 

(Rouan et al. 2009). The most elaborate application to date makes use of information from nest 11 

inspection to study the probability of skipping behavior and nest changing in a colony of 12 

Cory’s shearwater (Sanz-Aguilar et al. 2011). A more methodological example is the 13 

incorporation of mark loss in mark-recapture models during a double-mark study (Juillet et al. 14 

2011). Another interesting application copes with the issue of keeping track of the number of 15 

breeding episodes when detectability is less than one (Desprez et al. 2011; Pradel et al. 2011). 16 

It is also possible to account for tag loss and different causes of mortality (Tavecchia et al. 17 

2012). However, by far, the greatest number of applications relates to class heterogeneity 18 

whereby a given individual belongs to a particular unknown class for the duration of the study. 19 

Cubaynes et al. (2010) emphasize the importance of explicitly modeling capture heterogeneity 20 

to avoid potentially large biases in the estimation of population size (see Ebert et al. 2010 for a 21 

review) and Crespin et al. (2008) point out that heterogeneity in capture rate may mirror social 22 

hierarchy. Véran et al. (2007) and Oliver et al. (2011) used capture heterogeneity to correct for 23 

unequal sampling over space. Péron et al. (2010a) went further by modeling class 24 

heterogeneity in survival, detection and movement simultaneously and assessed its influence 25 

on the study of senescence. Péron et al. (2010b) analyzed in further depth the significance of 26 
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movement class heterogeneity within a population. Given all these examples, we were 1 

surprised to not find studies of reproduction that account for uncertainty in the breeding status. 2 

Identification of reproductive status is not always obvious and failing to acknowledge this 3 

problem may lead to mistakes or at least to a loss of useful information. This issue is 4 

particularly important in studies of life-history trade-offs. Here we develop an example of how 5 

such data could be handled.  6 

 7 

3.2. Case study 1: Dealing with uncertain states 8 

3.2.1. Data and models 9 

Data were collected between 1940 and 1957 by Lance Richdale on Sooty shearwaters 10 

Puffinus griseus (titis hereafter) and were reanalyzed using multistate CR models by Scofield 11 

et al. (2001; see also Gimenez et al. 2005).  12 

Following the way the data were collected, four states were originally considered: (1) 13 

Breeder (B); (2) Keeping company with another bird in a burrow; (3) Alone in a burrow; (4) 14 

On the surface. Because of numerical issues, Scofield et al. (2001) pooled 2-3-4 together in a 15 

Non-Breeder state (NB) that includes failed breeders (birds that had bred previously but were 16 

currently skipping reproduction or divorced) and pre-breeders (birds that had not yet bred). 17 

Note that because burrows were not checked before hatching, some birds in the category NB 18 

might have bred and failed before being checked. We therefore regard those birds in the B state 19 

as successful breeders, and those in the NB state as a mixture of non-breeders, pre-breeders and 20 

failed breeders.  21 

We start by fitting a model with state-specific survival, detection and transition 22 

probabilities between states, with all parameters constant over time. The states were {non-23 

breeder, breeder, dead} = {NB, B, D}, and the events were {non-detected, detected as not a 24 

successful breeder, detected as a successful breeder} = {0, 1, 2}. Upon its first encounter, an 25 

individual has a probability π
B
 to be a breeder and the complement probability to be a non-26 
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breeder. Then, it moves among the states according to a first-order Markov chain that can be 1 

described by the state specific survival probabilities 
NB

 and 
B
 and the transition probabilities 2 

conditional on survival ψ
NB→B

 and ψ
B→NB

. The state process can be represented by the 3 

transition matrix with departure states in rows and arrival states in columns: 4 

 5 

f NBy NB®NB f NBy NB®B 1-f NB

f By B®NB f ByB®B 1-f B

0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

. 6 
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Equivalently, it can be represented as the product of a survival matrix by a conditional 8 

transition matrix: 9 

 10 

f NB 0 1-f NB

0 f B 1-f B

0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

´

y NB®NB y NB®B 0

yB®NB yB®B 0

0 0 1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

. 11 
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The event process conditional on underlying states is described via the detection probabilities 13 

p
NB

 and p
B
. This event can be summarized by a row-stochastic matrix (i.e., probabilities in a 14 

row sum up to one) with states in rows and events in columns: 15 

 16 

1- pNB pNB 0

1- pB 0 pB

1 0 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

. 17 

 18 

For instance, in row 1 column 2 is the probability that a non-breeder is detected as not a 19 

successful breeder p
NB

.  20 
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To demonstrate how uncertain detection of reproductive status could be analyzed, we 1 

generated uncertainty in the assignment of Non-Breeder vs. Breeder as follows. For each 2 

individual at each detection occasion: a Non-Breeder was assumed to be judged a Non-Breeder 3 

with probability 0.2 (and assigned to event 1), and not judged with the complementary 4 

probability 0.8 (and assigned to the ambiguous event 3), while a Breeder was assumed to be 5 

judged a Breeder with probability 0.7 (and then assigned to event 2), and not judged with the 6 

complementary probability 0.3 (and assigned to event 3). This procedure was implemented in 7 

R (R Development Core Team 2011; see Appendix A2). To analyze these imperfect data, only 8 

the event process changes. In addition to the detection probabilities, we add state-specific 9 

probabilities of breeding state assignment δ
NB

 and δ
B
. With the same presentation as before, the 10 

event process becomes: 11 

 12 

1- pNB pNBdNB 0 pNB(1-dNB)

1- pB 0 pBdB pB(1-dB)

1 0 0 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

. 13 

 14 

Note that the new event ‘breeding state not ascertained’ (column 4) can arise for non-breeders 15 

(first row) as well as breeders (second row), though with potentially different probabilities. 16 

This matrix can also be written as a product of two matrices, highlighting the successive 17 

processes of detection and breeding state ascertainment: 18 

 19 

 

1- pNB pNB 0

1- pB 0 pB

1 0 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

´

1 0 0 0

0 dNB 0 1-dNB

0 0 dB 1-dB

é

ë

ê
ê
ê

ù

û

ú
ú
ú
. 20 
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Note that when the animal is first encountered, the capture process is not modeled because an 22 
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animal must be encountered at least once to enter the data set. But the reproductive state 1 

ascertainment remains valid. Models with or without imperfect assignment of reproductive 2 

state were implemented in the freely downloadable program E-SURGE (Choquet et al. 2009; 3 

see Appendix A1 for details).  4 

 5 

3.2.2. Results 6 

The confidence intervals for the assignment probabilities include the true value, despite 7 

the considerable loss of information due to uncertain state, in particular for the non-breeders 8 

which are recognized as such only 20% of the time (Table 1). The estimates of other 9 

parameters remain similar to those of the original model. The most notable and logical change 10 

is a loss of precision. However, in a real study, there would probably be on the contrary a gain 11 

of precision because the data chosen for analysis with multistate models are those deemed most 12 

reliable. In contrast, the model with uncertainty would be run on the larger dataset that includes 13 

the less reliable data. For this reason, precision should be enhanced by explicitly dealing with 14 

breeding state uncertainty.  15 

 16 

 [Table 1 about here] 17 
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4. STATE-SPACE MODELS: ESTIMATING LIFETIME REPRODUCTIVE SUCCESS 19 

 20 

4.1. State-space modeling 21 

4.1.1. SSM for capture-recapture data 22 

Parallel to the HMM formulation of CR models, there has been increasing use of state-23 

space models (SSM) to handle data on marked individuals. State-space models are a 24 

generalization of hidden Markov models in that the states are not necessarily governed by a 25 

Markov process. In practice, parameters of SSMs have been estimated in a Bayesian 26 



 15 

framework (using Markov Chain Monte Carlo [MCMC] simulation of the joint posterior 1 

distribution of parameters; see section 4.2.3) while HMM have been fit in a Frequentist 2 

framework using maximum likelihood methods. CR models were reformulated as SSMs by 3 

several authors (Gimenez et al., 2007; Royle, 2008; Schofield and Barker, 2008) to distinguish 4 

the underlying demographic process from the observation process. 5 

 6 

4.1.2. Use of SSMs to estimate demographic parameters data – a survey  7 

The SSM formulation provides a great deal of flexibility and has led to substantial 8 

progress in modeling key demographic parameters. Link and Barker (2005) showed how to 9 

estimate correlations between demographic parameters such as survival and reproductive rates. 10 

Servanty et al. (2010) used this approach to estimate cause-specific mortalities and test for 11 

additivity in mortality. Other applications include comparisons among species (Papadatou et 12 

al., 2011), spatial structure (Péron et al., 2011) and the study of migration (Calvert et al., 2009; 13 

O’Hara et al., 2009). Demographic parameters can be estimated for species with complex life 14 

cycles using SSMs (Clark et al., 2005; Buoro et al., 2010). Like HMM, important 15 

developments included the incorporation of individual heterogeneity via random effects 16 

(Schofield and Barker, 2011; Royle, 2008; Marzolin et al., 2011; see Gimenez and Choquet 17 

2010 for an implementation of individual random effects in HMM). In addition, Gimenez et al. 18 

(2006; 2009) used SSM to estimate selection gradients and visualize fitness surfaces based on 19 

capture-recapture data, while Papaïx et al. (2010) showed how to estimate components of 20 

phenotypic variance that can be attributed to genetic factors, environmental factors and other 21 

unknown factors, hence quantifying heritability of demographic parameters. All these 22 

applications have used SSM to estimate demographic parameters. However, SSM also allows 23 

the estimation of the unknown latent states. To our knowledge, this has rarely been attempted, 24 

although it could be useful in reconstructing individuals’ fates and population dynamics 25 

(Gimenez et al., in prep). We develop an example of this below.  26 
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 1 

 2 

4.2. Case study 2: Measuring Lifetime Reproductive Success in the wild  3 

 4 

4.2.1. Estimating fitness in the wild can be difficult  5 

Lifetime Reproductive Success (LRS), the number of young measured at some stage by 6 

an individual during its lifespan is a single-generation measure of the individual’s contribution 7 

to future generations (Clutton-Brock, 1988; Newton, 1989) and thus provides a reliable 8 

measure of individual fitness (see Brommer et al. 2004 for an empirical demonstration). The 9 

estimation of LRS requires information on the number of offspring an individual has produced 10 

and successfully raised at some stage (e.g., born, weaned or fledged, first reproducing) at each 11 

reproductive attempt. In theory then, exhaustive monitoring of individuals over their whole 12 

reproductive life is needed to estimate LRS. In the field, however, estimating LRS is difficult, 13 

because individuals are typically observed (or recaptured) only a fraction of their lifetime. In 14 

years when a given individual is not observed, whether it gives birth or not and how many 15 

offspring it produces at birth or at the end of the parental care period if it does breed remain 16 

unknown. In the following section, we show that, by considering two states (breeder vs. non-17 

breeder) with the associated number of offspring produced in a SSM, reliable estimates of LRS 18 

can be obtained while accounting for detection probability less than one. A similar approach 19 

was proposed by Rouan et al. (2009b) who used HMM to compute LRS. 20 

 21 

4.2.2. Data and models  22 

We illustrate our approach using the reproductive histories of 211 female roe deer that 23 

were monitored in the Trois Fontaines forest, North-East France, between 1976 and 2006 (see 24 

e.g. McLoughlin et al. 2007 for further details about this monitoring). We developed a CR 25 

model to analyze these live recaptures of female roe deer. In line with recent work by Gimenez 26 



 17 

et al. (2007), Royle (2008) and Schofield and Barker (2008), we used a state-space formulation 1 

of CR models that explicitly separates the demographic process of interest (survival status in a 2 

particular reproductive state) from the observations (the data). We considered five states: alive 3 

non-breeder (NB), alive and weaning one fawn (B1), alive and weaning two fawns (B2), alive 4 

and weaning three fawns (B3) and dead (D). We denoted Xi,t the random state vector taking 5 

values (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1) if, at time t, individual i is in 6 

state NB, B1, B2, B3 or D, respectively. Based on the roe deer life history (see e.g. Gaillard et 7 

al. 1998), we considered several possible observations that were generated from these 8 

underlying states: the animal is not seen (coded 0), the animal is seen without any fawn (coded 9 

1), the animal is seen with one fawn (coded 2), the animal is seen with two fawns (coded 3) 10 

and the animal is seen with three fawns (coded 4) in the dataset. We denoted Yi,t the random 11 

observation vector taking values (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1) if, at 12 

time t, individual i is not seen or seen with zero, one, two or three fawns respectively.  13 

The model has several parameters. We modeled the probability fi,t

k  that an individual i 14 

alive at time t in state k = NB (non-breeder) or B (breeder whatever the number of fawns 15 

weaned) survives to time t + 1. Age-dependence in fi,t

k  was modeled using three classes: 16 

yearling (1 to 2 years), prime–aged (2 to 5 years) and old adults (6 years and older) according 17 

to previous survival analyses (see e.g. Gaillard et al. 1993). We also modeled the probability 18 

yi,t

k®k '  that an individual i makes a transition between states k and k’ (k, k’ = NB, B1, B2 or B3) 19 

between occasion t and t + 1. Finally, we considered the probability pi,t

k  that an individual i is 20 

recaptured at time t in state k = NB or B. Note that, although it is possible, we do not consider 21 

individual effects on these parameters, so that the index i is dropped hereafter. 22 

The state-space model relies on a combination of two sets of equations: the state 23 

equations, which specify the state of individuals at time t + 1 given their state at time t, and the 24 
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observation equations, which specify the observation of individuals at time t given their state at 1 

time t. The state-space formulation of the CR model (Gimenez et al. 2007) is given by: 2 

Xi,t+1 Xi,t ~ multinomial 1, Xi,t
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where the two equations above are the state and the observation equations, respectively. In the 4 

state equation, the matrix gathers the conditional probabilities of being in a state at a particular 5 

time occasion (columns) given the state at the previous time occasion (rows). Given that an 6 

individual is alive in a given state, it can survive and move to another state, survive and remain 7 

in the same state or die. To ensure that these probabilities are within the interval [0, 1] and sum 8 

to 1, we used a generalized (or multinomial) logit link function for the transition probabilities 9 

(Choquet 2008). Consider for example the four transition probabilities from state NB to one of 10 

the four states NB, B1, B2 and B3. We considered the probability of remaining in the same 11 

state as a reference (one minus the sum of the three other transition probabilities) and used the 12 

transformation 
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log  for k = B1, B2 or B3 (see Appendix B for technical details). In 13 

the observation equation, the matrix gathers the conditional probability of being observed or 14 

not at a particular time occasion (columns) given the state at this current occasion (rows). 15 

Given that an individual is alive in state non-breeder or breeder, it can be recaptured or not in 16 
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state non-breeder or breeder respectively. Given that an individual is dead, it is missed with 1 

certainty. We had also to specify the probability of being in a given state when first captured. 2 

Because first reproduction starts at 2 years in roe deer (Gaillard et al., 1992) and females are 3 

marked in their first winter at about 8 months of age (hence as non-breeder, Gaillard et al. 4 

1993), we considered the probability of being in the state non-breeder when first captured to be 5 

unity, and null for any other state.  6 

 7 

4.2.3. Estimation of LRS using MCMC methods in a Bayesian framework 8 

We used MCMC simulations in a Bayesian context (McCarthy 2007; King et al. 2009; 9 

Kéry and Schaub 2011; Royle and Dorazio 2008; Link and Barker 2011) to fit the above SSM. 10 

Prior distributions need to be specified for the parameters of a given model. Bayes’ theorem is 11 

then used to update the priors using the likelihood to obtain posterior probabilities of all model 12 

parameters. The MCMC algorithm then generates values from a Markov chain whose 13 

stationary distribution is the joint posterior distributions of all model parameters. We used 14 

empirical means and standard deviations to summarize these posterior parameter distributions. 15 

A nice feature of MCMC algorithms is that reproductive states can be treated as 16 

parameters to be estimated, just like survival, transition or recapture probabilities (see Newman 17 

et al. 2008 and Toni et al. 2009 for alternatives to MCMC). We produced posterior 18 

distributions for breeding states of individuals, which were used to calculate LRS. Specifically, 19 

for each MCMC iteration, we calculated for each individual the number of fawns it weaned per 20 

time step and then computed an average over all (post burn-in) iterations for each of the 21 

females. Summarizing across individuals, we obtained the frequency distribution of LRS. We 22 

quantified uncertainty around the LRS estimate by computing a ‘mean’ standard deviation 23 

which was obtained as an average, for a particular value of reproductive output, of all the 24 

individual LRS standard deviation for individuals having this specific number of offspring (see 25 

Appendix B for more details).  26 
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We provided vague prior distributions for all model parameters to induce little prior 1 

knowledge. Specifically, we chose uniform distributions on [0, 1] for the recapture and 2 

survival probabilities, and normal distributions with mean zero and variances 0.01 for the logit 3 

of the transition probabilities. We conducted a sensitivity analysis by modifying these priors 4 

using beta distributions with informative moments and posterior estimates of parameters were 5 

not changed.  6 

Two MCMC chains with over-dispersed initial values were generated using 50,000 7 

iterations with 10,000 burn-in iterations. Convergence was assessed using the Gelman and 8 

Rubin statistic, which compares the within- to the between-variability of chains started at 9 

different and dispersed initial values (Gelman 1996). Mixing was checked visually by 10 

inspecting the chains. The simulations were performed using JAGS (Plummer 2003) and the R 11 

package rjags was used to call JAGS, export results in R and calculate LRS. The code is 12 

available in Appendix B. 13 

 14 

4.2.4. Results 15 

Posterior mean estimates for all parameters of the model are provided in Table 2. There 16 

was strong heterogeneity in detection probability according to reproductive status, with breeder 17 

less prone to recapture than non-breeders. Survival decreased with increasing age, regardless of 18 

reproductive status.  19 

 20 

[Table 2 about here] 21 

 22 

Much of the density of the distribution of LRS falls at zero (Figure 4): there were many 23 

individuals that did not successfully wean any fawns over their entire lifetime. We also 24 

observed a long tail in the LRS distribution, suggesting that some females had very high 25 

reproductive output. 26 
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[Figure 4 about here] 2 

 3 

 4 

 5 

 6 

5. DISCUSSION 7 

Multistate CR models are a valuable tool for estimating demographic parameters in the 8 

wild when detection probability is less than one. Their extension to hidden process models 9 

allows improved estimation of demographic parameters by accounting for variation in the state 10 

process (e.g., demographic stochasticity) while dealing with observation error. Using the same 11 

data that one would analyze with multistate models, SSM allows the estimation of 12 

demographic parameters as well as unknown states with imperfect detection (a feature we used 13 

to estimate LRS in section 4.2). By optimizing the use of all available information including 14 

those data that could not be used in multistate analyses, HMM allow us to cope with 15 

uncertainty in state assignment (section 3.2). 16 

Traditionally, in the CR literature, HMM are fit in a Frequentist framework while SSM 17 

are fitted in a Bayesian framework. This does not need to be the case (de Valpine 2009), and 18 

examples of Frequentist analyses of SSMs are becoming available (Lele et al. 2007; de Valpine 19 

2011). We advocate pragmatism when making the decision of one framework over the other 20 

(Gimenez 2008). This decision can be made based on one’s programming skills or familiarity 21 

with software. However, there is a risk of using a sledgehammer to crack a nut by fitting 22 

unnecessarily complex models that come with difficulties (Bolker 2009; Cressie et al. 2009) 23 

like non-identifiability for example (Gimenez et al. 2003, 2009; Luo et al. 2009; Rouan et al. 24 

2009a). We encourage practitioners to think first of the biological question to be addressed, and 25 

resort to the Bayesian or Frequentist approach accordingly. For example, in the roe deer 26 
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example (section 4.2), we aimed at estimating LRS. We opted for SSM fit in a Bayesian 1 

framework using MCMC methods because it allowed the simultaneous estimation of unknown 2 

reproductive states and demographic parameters while accounting for parameter estimation 3 

error (Figure 2). We could have used Frequentist alternatives to compute LRS (as shown by 4 

Rouan et al. 2009b). 5 

In the roe deer data analysis (section 4.2), we assumed that uncertainty in assessing the 6 

reproductive status was due to the issue of detection only: if a female was seen in the field, its 7 

reproductive status corresponded to the observation made. This was a fair assumption since 8 

fawns closely follow their mother during the period considered (Gaillard et al. 2000). However, 9 

if this assumption were to be violated, one could easily incorporate uncertainty in state 10 

assignment in the calculation of LRS by adapting the model used in the titis data analysis 11 

(section 3.2). 12 

We reviewed two types of hidden process models, both having a discrete space of 13 

states. Continuous hidden process models have never been used to our knowledge but could be 14 

useful in fitting an alternative to matrix models known as integral projection models developed 15 

by Easterling et al. (2000) for plant populations. In contrast with matrix models, which require 16 

discretizing individuals’ states into classes, demographic parameters are modeled as continuous 17 

functions of individuals’ states in integral projection models (e.g., size in plants or body mass 18 

in animals). Continuous hidden process models could be used as a unifying framework to 19 

combine the analysis of individual data, the construction of integral projection models and the 20 

projection of population fate by considering relevant states as being continuous. 21 

The extension of hidden process models to the analysis of other sources of information 22 

than individual data also holds promise. In particular, Besbeas et al. (2002) developed an 23 

integrated framework to jointly analyze individual data using CR models and count data 24 

collected at the population level. So-called integrated population models use hidden process 25 

models to build the likelihood of count data (e.g., Schaub et al. 2007), while standard product-26 
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multinomials are used to form the likelihood of capture-recapture data. The formulation of 1 

integrated population models in a unifying framework using HMM or SSM for both count and 2 

individual data would certainly benefit from the flexibility of hidden process models. 3 

 4 

 5 
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FIGURE LEGENDS 1 

Figure 1: Three types of registration of a same discrete time survival process. Top: follow-up 2 

data, bottom left: CJS models, bottom right: dead recovery models (see text for details). The 3 

complete registration is a particular case of each of the two other ones. 4 

Figure 2: Number of papers about Markov models (keywords ‘Markov’ or ‘Markovian’) in 5 

human and animal population biology (keywords ‘man or human’ and ‘animal or mammals or 6 

birds’ respectively) extracted from the Web of Science (search completed on the 9
th

 of August, 7 

2011). Predicted trends were obtained from a Poisson regression in which both the year and the 8 

type of population biology (human vs. animal) effects were significant on an additive scale.  9 

Figure 3: Schematic representation of a hidden process model for an individual i between two 10 

sampling occasions t – 1 and t. The first layer is a succession of hidden states (solid circles) or 11 

latent states of individual i at time t (Xi,t) depending on its states at time t − 1 (Xi,t−1). The 12 

dynamic of the states is driven by transition probabilities, e.g., survival probability if states are 13 

alive or dead. The second layer corresponds to observation or not of individual i at time t (Yi,t) 14 

conditional on individual i being in state Xi,t. These events are driven by some probabilities, 15 

e.g., detection probabilities if observations are being captured or not. The observation process 16 

is the visible part of the state process. Note that this representation holds for both hidden-17 

Markov models and state-space models. 18 

Figure 4: Frequency distribution of lifetime reproductive success in roe deer. Error bars are +/- 19 

1 ‘mean’ standard deviation where ‘mean’ standard deviation was obtained as an average, for a 20 

particular value of reproductive output, of all the individual LRS standard deviation for 21 

individuals having this specific number of weaned offspring (see Appendix B for more details). 22 

 23 

24 
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TABLE LEGENDS 1 

Box 1: Glossary (alphabetical order) 2 

Table 1: Parameter maximum likelihood estimates (MLE) with standard errors (SE) for the 3 

hidden-Markov model fitted to the titis data, with and without uncertainty in state assignment. 4 

All parameters are probabilities. Note that the probability of remaining non-breeder and the 5 

probability of making the transition from state breeder to state non-breeder are not displayed 6 

but can be obtained as a complement. 7 

Table 2: Monte Carlo parameter numerical summaries (posterior means with standard 8 

deviations) from the state-space model fitted to the roe deer data. All parameters are 9 

probabilities. Note that the probability of remaining in the same reproductive state is not 10 

displayed but can be obtained as a complement.11 
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Figure 4: 1 
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Box 1: 1 

CAPTURE-RECAPTURE (CR): A generic term embedding several protocols for monitoring 2 

(mainly) plants and animals in the wild using marks to uniquely identify individuals. The 3 

analysis of these data allows the estimation of, e.g., survival, dispersal and abundance while 4 

explicitly accommodating for detection probability less than one. 5 

CORMACK-JOLLY-SEBER MODEL (CJS): A capture-recapture model that is used for open 6 

populations to estimate time-dependent survival and detection probabilities. The Cormack-7 

Jolly-Seber model is easily formulated as a hidden process model by considering two states 8 

(alive or dead) and two observations or events (detected or not). The dynamic of states is 9 

governed by a Markov model parameterized with survival probabilities while the observations 10 

are made from these states according to detection probabilities. 11 

HIDDEN MARKOV MODEL (HMM): A particular case of state-space model in which the states 12 

are Markovian, i.e. the next state depends only on the current state and not on the sequence of 13 

states that occurred before. 14 

HIDDEN PROCESS MODEL: A generic term referring to either a state-space model or a hidden 15 

Markov model.  16 

MULTIEVENT MODEL: A particular type of hidden Markov model. Multievent models 17 

correspond to extensions of multistate models that allow accommodating uncertainty in state 18 

assignment.  19 

MULTISTATE MODEL: An extension of the Cormack-Jolly-Seber model that allows estimation 20 

of transition between states. Examples of such states are geographical sites, behavioral or 21 

physiological conditions like, e.g., breeding vs. non-breeding or healthy vs. diseased.   22 

STATE-SPACE MODEL (SSM): A model that runs two time series in parallel, one captures the 23 

dynamic of the true states (latent) and the other consists of observations that are made from 24 

these underlying but possibly unknown states.  25 

26 
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Table 1: 1 

parameter 

Reproductive state 

uncertainty  

ignored 

Reproductive state 

uncertainty 

modeled 

being a breeder upon first encounter π
B
 0.704 (0.014) 0.704 (0.028) 

survival of non-breeders 
NB

 0.801 (0.016) 0.814 (0.016) 

survival of breeders 
B
 0.849 (0.016) 0.837 (0.019) 

transition non-breeder to breeder ψ
NB→B

 0.249 (0.021) 0.219 (0.025) 

transition breeder to breeder ψ
B→B

 0.761 (0.021) 0.774 (0.049) 

detection of non-breeders p
NB

 0.597 (0.028) 0.565 (0.028) 

detection of breeders p
B
 0.563 (0.027) 0.598 (0.032) 

non-breeder state assignment δ
NB

 NA 0.188 (0.014) 

breeder state assignment δB NA 0.738 (0.055) 

2 
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Table 2: 1 

parameter 

posterior mean estimate  

(standard deviation) 

transition non-breeder to weaning 1 fawn ψ
NB→B1

  0.160 (0.033) 

transition non-breeder to weaning 2 fawns ψ
NB→B2

 0.149 (0.031) 

transition non-breeder to weaning 3 fawns ψ
NB→B3

 0.208 (0.036) 

transition weaning 1 fawn to non-breeder ψ
B1→NB

 0.274 (0.067) 

transition weaning 1 to 2 fawns ψ
B1→B2

 0.163 (0.068) 

transition weaning 1 to 3 fawns ψ
B1→B3

 0.316 (0.086) 

transition weaning 2 fawns to non-breeder ψ
B2→NB

 0.229 (0.059) 

transition weaning 2 to 1 fawns ψ
B2→B1

 0.159 (0.059) 

transition weaning 2 to 3 fawns ψ
B2→B3

 0.302 (0.082) 

transition weaning 3 fawns to non-breeder ψ
B3→NB

 0.261 (0.048) 

transition weaning 3 to 1 fawns ψ
B3→B1

 0.156 (0.045) 

transition weaning 3 to 2 fawns ψ
B3→B2

 0.224 (0.052) 

 detection of breeders p
B
 0.341 (0.032) 

detection of non-breeders p
NB

 0.821 (0.110) 

survival of yearling non-breeders 
NB

(y) 0.941 (0.027) 

survival of prime-age non-breeders 
NB

(pa) 0.843 (0.031) 

survival of old non-breeders 
NB

(o) 0.648 (0.057) 

survival of prime-age non-breeders 
B
(pa) 0.934 (0.019) 

survival of old non-breeders 
NB

(o) 0.831 (0.030) 

3 
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 Appendix A1. Instructions for fitting the HMM to titis data in program E-SURGE 1 

To fit the model without uncertainty in E-SURGE, three states are considered {alive non-2 

breeder, alive breeder, dead} = {NB, B, D}, and the events are three as well {non-detected, 3 

seen non-successful breeder, seen successful breeder} = {0,1,2}. 4 

In GEPAT, declare two steps for the transitions (survival then conditional transitions). 5 

Initial state:   *  6 

 7 

Transition 1 (survival): 

























*

*

*





S  8 

Transition 2 (conditional transition): 

























*

*

*





T  9 

 10 

Event: 

























*

*

*





C  11 

 12 

 13 

In GEMACO, the syntax is: 14 

 15 
For Initial State: IS = i  16 
For Transition:  17 

S (i.e. step 1) = f  18 
T ( i.e. step 2) = f 19 

For Event: C = firste+nexte.f 20 
 21 

To fit the model with uncertainty in E-SURGE, the same three states are required {alive non-22 

breeder, alive breeder, dead} = {NB, B, D}, but the events are four {non-detected, seen and 23 

ascertained as non-breeder, seen and ascertained as breeder, not ascertained} = {0, 1, 2, 3}. 24 

In GEPAT, declare two steps for the transitions (survival then conditional transitions) and two 25 

steps for the events (capture then ascertainment). 26 

Initial state:   *  27 

Transition 1 (survival): 

























*

*

*





S  28 



 45 

Transition 2 (conditional transition): 

























*

*

*





T  1 

 2 

Event 1 (capture): 

























*

*

*





C  3 

Event 2 (ascertainment): 

























*

*

*



A  4 

 5 

In GEMACO, the syntax is: 6 

 7 
For Initial State: IS = i  8 
For Transition:  9 

S (i.e. step 1) = f  10 
T ( i.e. step 2) = f 11 

For Event:  12 
C (i.e. step 1) = firste + nexte.f  13 
A (i.e. step 2) = f 14 
 15 

16 
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 Appendix A2. R Code for generating uncertainty in titis data 1 

To artificially generate uncertainty on both the states non-breeder and breeder, we used the R 2 

script below to alter the raw capture-recapture data 3 

 4 
# original data are stored in R matrix titi with individuals in rows and years in columns 5 
# 1 seen as non-breeder 6 
# 2 seen as breeder 7 
# 0 not seen 8 
 9 
# nb of capture occasions 10 
ny <- ncol(titi) 11 
# nb of individuals 12 
nind <- nrow(titi) 13 
 14 
# the amended data with uncertainty are stored in R matrix titi2  15 
titi2 <- titi  16 
for (i in 1:nind) 17 
{ 18 
for (j in 1:ny){ 19 
# 1 seen and ascertained Non-Breeder (with probability .2) 20 
# 2 seen and ascertained Breeder (with probability .7) 21 
# 3 seen but not ascertained (Non-Breeders with probability .8 + Breeders with probability .3) 22 
# 0 not seen 23 
 24 
# Non-Breeders are ascertained with probability .2 25 
if (titi[i,j] == 1) 26 
{ 27 
temp <- rbinom(1,size=1,prob=.2)  28 
if (temp == 1) titi2[i,j] <- 1 # if ascertained NB, event = 1 29 
if (temp == 0) titi2[i,j] <- 3 # if not ascertained, event = 3 30 
} 31 
 32 
# Breeders are ascertained with probability .7 (event = 1),  33 
# or not ascertained with probability .3 (event = 2) 34 
if (titi[i,j] == 2)  35 
{ 36 
temp <- rbinom(1,size=1,prob=.7) 37 
if (temp == 1) titi2[i,j] <- 2 # if ascertained B, event = 2 38 
if (temp == 0) titi2[i,j] <- 3 # if not ascertained, event = 3 39 
} 40 
 41 
} 42 
} 43 
 44 

 45 

46 
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 Appendix B. BUGS and R codes to estimate LRS using SSM fitted to deer data 1 

############################################################################## 2 
 3 
# 0 - READ IN DATA (subsample of 50 individuals from original dataset used in the paper) 4 
 5 
############################################################################## 6 
 7 
mydata <- matrix( 8 
 9 
c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0, 10 
 11 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0, 12 
 13 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0, 14 
 15 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,1,0,1,0,0, 16 
 17 
0,0,0,0,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 18 
 19 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0, 20 
 21 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,0,0,0, 22 
 23 
0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 24 
 25 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,0,0,1,0, 26 
 27 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0, 28 
 29 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,1, 30 
 31 
0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 32 
 33 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 34 
 35 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1, 36 
 37 
0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 38 
 39 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0, 40 
 41 
0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 42 
 43 
0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 44 
 45 
0,0,1,1,1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 46 
 47 
0,0,0,0,1,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 48 
 49 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0, 50 
 51 
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 52 
 53 
0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 54 
 55 
0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 56 
 57 
0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 58 
 59 



 48 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0, 1 
 2 
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 3 
 4 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0, 5 
 6 
0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 7 
 8 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,0,1,0,0,0,0,0,0, 9 
 10 
0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0, 11 
 12 
0,0,0,0,0,1,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 13 
 14 
0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 15 
 16 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0, 17 
 18 
0,0,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 19 
 20 
0,0,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 21 
 22 
0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 23 
 24 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0, 25 
 26 
0,0,0,0,0,0,0,0,1,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0, 27 
 28 
0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 29 
 30 
0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 31 
 32 
0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 33 
 34 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,0, 35 
 36 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0, 37 
 38 
0,0,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 39 
 40 
0,0,0,0,0,0,0,1,0,1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 41 
 42 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,1,0,0, 43 
 44 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0, 45 
 46 
0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 47 
 48 
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),byrow=T,nrow=50) 49 
 50 
 51 
 52 
repro<-matrix( 53 
 54 
c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,1,0,0,0,0,0, 55 
 56 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,2,0,0,0,0,0,0,0, 57 
 58 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,2,0, 59 
 60 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,2,0,2,2,1,0,0, 61 



 49 

 1 
0,0,0,0,0,0,0,1,3,3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 2 
 3 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,2,0,0,0,0,0,0, 4 
 5 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,3,3,2,2,2,0,0,0,0, 6 
 7 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 8 
 9 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,0,3,2,1,0,1,0, 10 
 11 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,0,0,2,0,0,0, 12 
 13 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,1,0, 14 
 15 
0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 16 
 17 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 18 
 19 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 20 
 21 
0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 22 
 23 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 24 
 25 
0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 26 
 27 
0,0,0,3,1,0,3,3,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 28 
 29 
0,0,0,0,3,3,3,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 30 
 31 
0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 32 
 33 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,3,0,2,2,0, 34 
 35 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 36 
 37 
0,0,0,0,0,0,0,0,2,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 38 
 39 
0,0,0,0,0,0,0,0,1,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 40 
 41 
0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 42 
 43 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1,2,0,0, 44 
 45 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 46 
 47 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 48 
 49 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 50 
 51 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,2,0,1,2,3,2,2,0,0,0,0,0, 52 
 53 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,2,0,0,3,1,2,0,0,0,0,0,0,0,0, 54 
 55 
0,0,0,0,0,0,3,3,1,3,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 56 
 57 
0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 58 
 59 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0, 60 
 61 



 50 

0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1 
 2 
0,0,0,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 3 
 4 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 5 
 6 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0, 7 
 8 
0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 9 
 10 
0,0,0,0,0,0,0,0,2,3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 11 
 12 
0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 13 
 14 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 15 
 16 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,3,0,0,0,3,0, 17 
 18 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 19 
 20 
0,0,0,0,3,3,0,3,0,3,2,3,3,3,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 21 
 22 
0,0,0,0,0,0,0,0,2,1,1,0,0,3,2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0, 23 
 24 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 25 
 26 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0, 27 
 28 
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 29 
 30 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),byrow=T,nrow=50) 31 
 32 
 33 
 34 
################################################################## 35 
# 1 - DATA MANIPULATION 36 
################################################################## 37 
 38 
# Data are in matrix ‘mydata’, one female per row, with coding as follows:  39 
# 0 = female not observed; 40 
# 1 = female observed with no fawn; 41 
# 2 = female observed with 1 fawn; 42 
# 3 = female observed with 2 fawns; 43 
# 4 = female observed with 3 fawns. 44 
 45 
# number of individuals  46 
n <- dim(mydata)[[1]]  47 
 48 
# number of capture occasions 49 
K <- dim(mydata)[[2]]  50 
 51 
# compute date of first capture 52 
e <- NULL 53 
for (i in 1:n){ 54 
temp <- 1:K 55 
e <- c(e,min(temp[mydata[i,]>=1]))} 56 
 57 
# compute number of states and remove structural zeros  58 
# (typically prior first capture) 59 
lgr = NULL 60 
for (i in 1:n) 61 



 51 

{ 1 
lgr = c(lgr,length(e[i]:K)) 2 
} 3 
lgr = 1:sum(lgr) 4 
 5 
index = matrix(NA,nrow=n,ncol=K) 6 
ind=1 7 
for (i in 1:n) 8 
{ 9 
for (j in e[i]:K) 10 
{ 11 
index[i,j] = lgr[ind] 12 
ind=ind+1 13 
} 14 
} 15 
 16 
# compute age 17 
age <- matrix(NA,nrow=nrow(mydata),ncol=ncol(mydata)) 18 
for (i in 1:nrow(age)){ 19 
 for (j in e[i]:ncol(age)){ 20 
  if (j == e[i]) age[i,j] <- 1 # yearling 21 
  if ((j > e[i]) & (j <= e[i]+5)) age[i,j] <- 2 # prime-age 22 
  if (j > e[i]+5) age[i,j] <- 3 # senescent 23 
  } 24 
 } 25 
 26 
################################################################## 27 
# 2 - BUGS MODEL 28 
################################################################## 29 
 30 
sink("multistatect.bug") 31 
cat(" 32 
 33 
# BUGS code of the state-space formulation  34 
# of capture-recapture models (O. Gimenez, May, 2011) 35 
 36 
# notation used 37 
 38 
# OBSERVATIONS 39 
# 0 = female not observed; 40 
# 1 = female observed with no fawn; 41 
# 2 = female observed with 1 fawn; 42 
# 3 = female observed with 2 fawns; 43 
# 4 = female observed with 3 fawns. 44 
 45 
# STATES 46 
# NB = non-breeding female; 47 
# B1 = female breeding with 1 fawn; 48 
# B2 = female breeding with 2 fawns; 49 
# B3 = female breeding with 3 fawns; 50 
# B4 = dead. 51 
 52 
# parameters 53 
# phiNB  survival prob. of non-breeding individuals  / by age 54 
# phiB  survival prob. of breeding individuals / by age 55 
# pNB  detection prob. of NB individuals  56 
# pB  detection prob. of B individuals  57 
# psiNBB1 transition prob. from NB to B1 58 
# psiB1B2 transition prob. from B1 to B2 59 
# psiB2B3 transition prob. from B2 to B3 60 
# psiB1B3 transition prob. from B1 to B3 61 



 52 

# piNB prob. of being in initial state NB 1 
 2 
model 3 
{ 4 
 5 
 ############## 6 
 # LIKELIHOOD 7 
 ############## 8 
  9 
 # probabilities for each initial state 10 
  px0[1] <- 1 # prob. of being in initial state NB 11 
  px0[2] <- 0 # prob. of being in initial state B1 12 
  px0[3] <- 0 # prob. of being in initial state B2 13 
  px0[4] <- 0 # prob. of being in initial state B3 14 
  px0[5] <- 0 # because of the conditioning on first capture, prob. of being in initial state dead is 0 15 
  16 
 # probabilities of observations at a given occasion given states at this occasion 17 
  po[1,1] <- 1-pNB 18 
  po[1,2] <- pNB 19 
  po[1,3] <- 0 20 
  po[1,4] <- 0 21 
  po[1,5] <- 0 22 
 23 
  po[2,1] <- 1-pB 24 
  po[2,2] <- 0 25 
  po[2,3] <- pB 26 
  po[2,4] <- 0 27 
  po[2,5] <- 0 28 
 29 
  po[3,1] <- 1-pB 30 
  po[3,2] <- 0 31 
  po[3,3] <- 0 32 
  po[3,4] <- pB 33 
  po[3,5] <- 0 34 
 35 
  po[4,1] <- 1-pB 36 
  po[4,2] <- 0 37 
  po[4,3] <- 0 38 
  po[4,4] <- 0 39 
  po[4,5] <- pB 40 
 41 
  po[5,1] <- 1 42 
  po[5,2] <- 0 43 
  po[5,3] <- 0 44 
  po[5,4] <- 0 45 
  po[5,5] <- 0 46 
  47 
 for (i in 1:N)  # for each female 48 
 { 49 
  50 
 # estimated probabilities of initial states are the proportions in each state at first capture occasion 51 
 alive[i,First[i]] ~ dcat(px0[1:5]) 52 
 53 
  for (j in (First[i]+1):Years)  # loop over time 54 
 55 
  { 56 
# define age-dependent survival probabilities  57 
# if ageij = 1, then phi = phi-young 58 
# if ageij = 2, then phi = phi-subadult 59 
# if ageij = 3, then phi = phi-adult 60 
phiNB[i,j-1] <- phiNBy*equals(age[i,j-1],1)+phiNBsa*equals(age[i,j-1],2)+phiNBa*equals(age[i,j-1],3)  61 



 53 

phiB[i,j-1] <- 0 * equals(age[i,j-1],1) + phiBsa * equals(age[i,j-1],2) + phiBa * equals(age[i,j-1],3) 1 
   2 
  # probabilities of states at a given occasion given states at previous occasion 3 
  # uses mulitnomial logit for the transition probabilities between breeding states 4 
  px[1,i,j-1,1] <- phiNB[i,j-1] * 1/(1+exp(alpha[1,1])+exp(alpha[1,2])+exp(alpha[1,3])) 5 
  px[1,i,j-1,2] <- phiNB[i,j-1] * exp(alpha[1,1])/(1+exp(alpha[1,1])+exp(alpha[1,2])+exp(alpha[1,3])) 6 
  px[1,i,j-1,3] <- phiNB[i,j-1] * exp(alpha[1,2])/(1+exp(alpha[1,1])+exp(alpha[1,2])+exp(alpha[1,3])) 7 
  px[1,i,j-1,4] <- phiNB[i,j-1] * exp(alpha[1,3])/(1+exp(alpha[1,1])+exp(alpha[1,2])+exp(alpha[1,3])) 8 
  px[1,i,j-1,5] <- 1-phiNB[i,j-1] 9 
   10 
  px[2,i,j-1,1] <- phiB[i,j-1] * exp(alpha[2,1])/(1+exp(alpha[2,1])+exp(alpha[2,2])+exp(alpha[2,3])) 11 
  px[2,i,j-1,2] <- phiB[i,j-1] * 1/(1+exp(alpha[2,1])+exp(alpha[2,2])+exp(alpha[2,3])) # 12 
  px[2,i,j-1,3] <- phiB[i,j-1] * exp(alpha[2,2])/(1+exp(alpha[2,1])+exp(alpha[2,2])+exp(alpha[2,3])) 13 
  px[2,i,j-1,4] <- phiB[i,j-1] * exp(alpha[2,3])/(1+exp(alpha[2,1])+exp(alpha[2,2])+exp(alpha[2,3])) 14 
  px[2,i,j-1,5] <- 1-phiB[i,j-1]  15 
   16 
  px[3,i,j-1,1] <- phiB[i,j-1] * exp(alpha[3,1])/(1+exp(alpha[3,1])+exp(alpha[3,2])+exp(alpha[3,3])) 17 
  px[3,i,j-1,2] <- phiB[i,j-1] * exp(alpha[3,2])/(1+exp(alpha[3,1])+exp(alpha[3,2])+exp(alpha[3,3])) 18 
  px[3,i,j-1,3] <- phiB[i,j-1] * 1/(1+exp(alpha[3,1])+exp(alpha[3,2])+exp(alpha[3,3])) # 19 
  px[3,i,j-1,4] <- phiB[i,j-1] * exp(alpha[3,3])/(1+exp(alpha[3,1])+exp(alpha[3,2])+exp(alpha[3,3])) 20 
  px[3,i,j-1,5] <- 1-phiB[i,j-1]  21 
 22 
  px[4,i,j-1,1] <- phiB[i,j-1] * exp(alpha[4,1])/(1+exp(alpha[4,1])+exp(alpha[4,2])+exp(alpha[4,3])) 23 
  px[4,i,j-1,2] <- phiB[i,j-1] * exp(alpha[4,2])/(1+exp(alpha[4,1])+exp(alpha[4,2])+exp(alpha[4,3])) 24 
  px[4,i,j-1,3] <- phiB[i,j-1] * exp(alpha[4,3])/(1+exp(alpha[4,1])+exp(alpha[4,2])+exp(alpha[4,3])) 25 
  px[4,i,j-1,4] <- phiB[i,j-1] * 1/(1+exp(alpha[4,1])+exp(alpha[4,2])+exp(alpha[4,3])) 26 
  px[4,i,j-1,5] <- 1-phiB[i,j-1]  # 27 
 28 
  px[5,i,j-1,1] <- 0 29 
  px[5,i,j-1,2] <- 0 30 
  px[5,i,j-1,3] <- 0 31 
  px[5,i,j-1,4] <- 0 32 
  px[5,i,j-1,5] <- 1 33 
 34 
  ## STATE EQUATIONS ## 35 
  # draw states at j given states at j-1 36 
  alive[i,j] ~ dcat(px[alive[i,j-1],i,j-1,1:5]) 37 
 38 
  ## OBSERVATION EQUATIONS ## 39 
  # draw observations at j given states at j 40 
  mydata[i,j] ~ dcat(po[alive[i,j],1:5]) 41 
 42 
  } 43 
  44 
 } 45 
 46 
######### 47 
# PRIORS  48 
######### 49 
 50 
pNB ~ dunif(0, 1) # non-breeder detectability 51 
pB ~ dunif(0, 1) # breeder detectability 52 
 53 
phiBsa ~ dunif(0, 1) # breeder survival sub-adult 54 
phiBa ~ dunif(0, 1) # breeder survival adult 55 
 56 
phiNBy ~ dunif(0, 1) # non-breeder survival young 57 
phiNBsa ~ dunif(0, 1) # non-breeder survival sub-adult 58 
phiNBa ~ dunif(0, 1) # non-breeder survival adult 59 
 60 
# transition probabilites - multinomial logit 61 



 54 

for (i in 1:4){ 1 
 for (j in 1:3){ 2 
  alpha[i,j] ~ dnorm(0,0.1) 3 
         } 4 
     } 5 
  6 
# for each female at each occasion, store its state 7 
for (i in 1:N){ 8 
 for (j in First[i]:Years){ 9 
  lrs[indicateur[i,j]] <- alive[i,j] 10 
                       } 11 
           } 12 
 13 
  14 
} 15 
 16 
",fill=TRUE) 17 
sink() 18 
 19 
################################################################## 20 
# 3 - BAYESIAN COMPUTATION WITH JAGS 21 
################################################################## 22 
 23 
# data 24 
mydatax <- list(N=n,Years=K,mydata=as.matrix(mydata+1),First=e,indicateur=index,age=as.matrix(age))  25 
 26 
# first list of inits 27 
alive = mydata 28 
for (i in 1:n) { 29 
 for (j in 1:K) { 30 
  if (j > e[i] & mydata[i,j]==0) {alive[i,j] = which(rmultinom(1, 1, c(1/4,1/4,1/4,1/4))==1)} 31 
  if (j < e[i]) {alive[i,j] = NA} 32 
 } 33 
} 34 
alive <- as.matrix(alive) 35 
 36 
init1 <- list(pB=0.5,phiNBy=0.3,alive=alive) 37 
# second list of inits 38 
init2 <- list(pB=0.5,phiNBy=0.6,alive=alive) 39 
# concatenate list of initial values 40 
inits <- list(init1,init2) 41 
 42 
# specify the parameters to be monitored 43 
parameters <- c("phiBsa","phiBa","phiNBy","phiNBsa","phiNBa","pB","pNB","alpha","lrs") 44 
 45 
# load R package to call JAGS from R 46 
library(rjags) 47 
 48 
# run JAGS 49 
start<-as.POSIXlt(Sys.time()) 50 
jmodel <- jags.model("multistatect.bug", mydatax, inits, n.chains = 2,n.adapt = 50000) 51 
jsample <- coda.samples(jmodel, parameters, n.iter=10000, thin = 1) 52 
end <-as.POSIXlt(Sys.time()) 53 
duration = end-start 54 
 55 
# save results 56 
save(jsample,jmodel,duration,file='agedeer30.Rdata') 57 
 58 
################################################################## 59 
# 4 - RESULTS 60 
################################################################## 61 
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 1 
# check convergence 2 
plot(jsample, trace = TRUE, density = FALSE,ask = dev.interactive()) 3 
gelman.diag(jsample) 4 
 5 
# numerical summaries and posterior distributions 6 
summary(jsample) 7 
plot(jsample, trace = FALSE, density = TRUE,ask = dev.interactive())  8 
 9 
#-- display transition probabilities (back-transformation using inverse multinomial logit) 10 
 11 
# psiNBNB psiNBB1 psiNBB2 psiNBB3 12 
a12 <- c(jsample[[1]][,'alpha[1,1]'],jsample[[2]][,'alpha[1,1]']) 13 
a13 <- c(jsample[[1]][,'alpha[1,2]'],jsample[[2]][,'alpha[1,2]']) 14 
a14 <- c(jsample[[1]][,'alpha[1,3]'],jsample[[2]][,'alpha[1,3]']) 15 
a11 <- rep(0,length(a12)) ## ref 16 
a1<-cbind(a11,a12,a13,a14) 17 
apply(exp(a1)/apply(exp(a1),1,sum),2,mean) 18 
apply(exp(a1)/apply(exp(a1),1,sum),2,sd) 19 
 20 
# psiB1NB psiB1B1 psiB1B2 psiB1B3 21 
a21 <- c(jsample[[1]][,'alpha[2,1]'],jsample[[2]][,'alpha[2,1]']) 22 
a23 <- c(jsample[[1]][,'alpha[2,2]'],jsample[[2]][,'alpha[2,2]']) 23 
a24 <- c(jsample[[1]][,'alpha[2,3]'],jsample[[2]][,'alpha[2,3]']) 24 
a22 <- rep(0,length(a21)) ## ref 25 
a2<-cbind(a21,a22,a23,a24) 26 
apply(exp(a2)/apply(exp(a2),1,sum),2,mean) 27 
apply(exp(a2)/apply(exp(a2),1,sum),2,sd) 28 
 29 
# psiB2NB psiB2B1 psiB2B2 psiB2B3 30 
a31 <- c(jsample[[1]][,'alpha[3,1]'],jsample[[2]][,'alpha[3,1]']) 31 
a32 <- c(jsample[[1]][,'alpha[3,2]'],jsample[[2]][,'alpha[3,2]']) 32 
a34 <- c(jsample[[1]][,'alpha[3,3]'],jsample[[2]][,'alpha[3,3]']) 33 
a33 <- rep(0,length(a31)) ## ref 34 
a3<-cbind(a31,a32,a33,a34) 35 
apply(exp(a3)/apply(exp(a3),1,sum),2,mean) 36 
apply(exp(a3)/apply(exp(a3),1,sum),2,sd) 37 
 38 
# psiB3NB psiB3B1 psiB3B2 psiB3B3 39 
a41 <- c(jsample[[1]][,'alpha[4,1]'],jsample[[2]][,'alpha[4,1]']) 40 
a42 <- c(jsample[[1]][,'alpha[4,2]'],jsample[[2]][,'alpha[4,2]']) 41 
a43 <- c(jsample[[1]][,'alpha[4,3]'],jsample[[2]][,'alpha[4,3]']) 42 
a44 <- rep(0,length(a41)) ## ref 43 
a4<-cbind(a41,a42,a43,a44) 44 
apply(exp(a4)/apply(exp(a4),1,sum),2,mean) 45 
apply(exp(a4)/apply(exp(a4),1,sum),2,sd) 46 
 47 
#----- compute LRS 48 
 49 
# merge two MCMC chains 50 
res <- rbind(jsample[[1]],jsample[[2]]) 51 
dim(res) # 20000 x 962 52 
lrs <- res[,13:955] 53 
dim(lrs) 54 
 55 
# number of simulations 56 
nrowarray = dim(lrs)[1] 57 
 58 
# matrix of estimated states 59 
lrsind = array(NA,c(nrowarray,n,K)) 60 
for (k in 1:nrowarray) 61 
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{ 1 
ind=1 2 
for (i in 1:n) 3 
{ 4 
for (j in e[i]:K) 5 
{ 6 
lrsind[k,i,j] = lrs[k,index[i,j]] 7 
ind=ind+1 8 
} 9 
} 10 
} 11 
dim(lrsind) 12 
 13 
lrstot <- matrix(0,nrow=n,ncol=nrowarray) 14 
for (kk in 1:nrowarray){ 15 
 for (i in 1:n){ 16 
  for (j in e[i]:K){ 17 
   if (lrsind[kk,i,j] == 1) lrstot[i,kk] <- lrstot[i,kk] + 0 18 
   if (lrsind[kk,i,j] == 2) lrstot[i,kk] <- lrstot[i,kk] + 1 19 
   if (lrsind[kk,i,j] == 3) lrstot[i,kk] <- lrstot[i,kk] + 2 20 
   if (lrsind[kk,i,j] == 4) lrstot[i,kk] <- lrstot[i,kk] + 3 21 
   if (lrsind[kk,i,j] == 5) lrstot[i,kk] <- lrstot[i,kk] + 0 22 
              } 23 
         } 24 
             }   25 
 26 
# compute LRS, credible intervals and stadard deviation 27 
lrsfinal <- apply(lrstot,1,median) 28 
lrs.lb <- apply(lrstot,1,quantile,probs=2.5/100) 29 
lrs.ub <- apply(lrstot,1,quantile,probs=97.5/100) 30 
lrs.sd <- apply(lrstot,1,sd) 31 
 32 
# frequency distribution of LRS 33 
lrsfinal.mod <- as.factor(lrsfinal) 34 
res <- NULL 35 
for(i in levels(lrsfinal.mod)) 36 
{ 37 
mask=(lrsfinal.mod==i) 38 
res <- c(res,mean(lrs.sd[mask])) 39 
} 40 
barx <- barplot(table(lrsfinal),col="white",ylim=c(0,60),xlab="Lifetime reproductive success", ylab="Number of 41 
individuals") 42 
arrows(barx,table(lrsfinal)+res, barx, table(lrsfinal)-res, angle=90, code=3,length = 0.05) 43 
 44 
 45 
 46 


