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a b s t r a c t 

In this paper, we investigate the impact of environmental factors on the dynamical trans- 

mission of cholera within a human community. We propose a mathematical model for the

dynamical transmission of cholera that incorporates the virulence of bacteria and the com- 

mensalism relationship between bacteria and the aquatic reservoirs on the persistence of

the disease. We provide a theoretical study of the model. We derive the basic reproduc- 

tion number R 0 which determines the extinction and the persistence of the infection. We 

show that the disease-free equilibrium is globally asymptotically stable whenever R 0 ≤ 1 , 

while when R 0 > 1 , the disease-free equilibrium is unstable and there exists a unique en- 

demic equilibrium point which is locally asymptotically stable on a positively invariant

region of the positive orthant. The sensitivity analysis of the model has been performed

in order to determine the impact of related parameters on outbreak severity. Theoretical

results are supported by numerical simulations, which further suggest the necessity to im- 

plement sanitation campaigns of aquatic environments by using suitable products against

the bacteria during the periods of growth of aquatic reservoirs.

 

 

 

 

 

 

 

 

1. Introduction

Cholera was largely eliminated from industrialized countries by water and sewage treatment over a century ago. Today, it

remains a significant cause of morbidity and mortality in developing countries, where it is a marker for inadequate drinking

water and sanitation infrastructure. After several years of steady increase from 2007, the number of cholera cases reported

by the World Health Organization (WHO), as well as the number of countries which reported cholera cases, showed a

considerable decrease [1] . Yet, the disease is still a threat to many countries. For instance in 2012 alone, a cumulative

total of 245,393 cases, including 3034 deaths with a case-fatality rate of 1.2%, were reported by WHO from all continents.

This involves 48 countries among which, 27 from Africa, 12 from Asia, 6 from Americas and 3 from Europe and Oceania.

Furthermore, the recent cholera outbreaks in the following countries led to a large number of infectious and deaths [1] :
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Angola (2012), Cameroon (2010–2012), Congo (2008, 2012), Haiti (2010–2011), India (2007), Iraq (2008, 2012), Kenya (2010),

Nigeria (2010), Philippines (2012), UK (2012), Vietnam (2009) and Zimbabwe (2008–2009). 

Vibrio cholerae ( V. cholerae ) is a Gram-negative, comma-shaped bacterium that causes cholera in humans. Cholera is an

acute intestinal infection caused by the ingestion of contaminated foods and water with V. cholerae bacterium. Among the

200 serogroups of V. cholerae , only V. cholerae O1 and O139 are responsible of cholera disease [2] . The etiological agent passes

through and survives the gastric acid barrier of the stomach and then penetrates the mucus lining that coats the epithelium

[3] . Once they colonise the intestinal gut, they produce enterotoxin (which stimulates water and electrolyte secretion by the

endothelial cells of the small intestine) that leads to watery diarrhea. If left untreated, it leads to death within hours. In

human volunteer studies, the infection dose was determined to be 10 8 − 10 11 cells [4] . Cholera is characterized, in its most

severe form, by the sudden onset of acute watery diarrhea that can lead to death by severe dehydration. V. cholerae can

stay in faeces without losing its infectious ability for 7–14 days and shed back to the environment. The main reservoirs of

V. cholerae are people and aquatic sources.

It has been discovered that environmental aquatic bacteria such as V. Cholerae O1 and V. cholerae non-O1 have ability to

survive to the stress caused by the variation of some environmental factors, such as temperature, pH or the lack of nutri-

tional resources [5,6] . The adaptation of these bacteria to their environment will lead to metabolic and phenotypic changes

that will condition their survival; what can be compared to a phenomenon of dormancy. Cells are considered “viable but

non-culturable ” (VNC) because the main effect of this change is the loss of the ability to be cultivated on a bacteriolog-

ical culture medium [7] . This dormancy state has been considered for many species of bacteria as a survival strategy in

the natural environment [5,6,8–10] . The state change to the cultivable state is possible particularly if the factors causing

stress become favorable to the development and growth of the bacterial population. This phenomenon implies to reconsider

the thinking concerning the survival of pathogenic bacteria scattered into the environment and its dynamics in the aquatic

ecosystem. This cell viability (VNC) is considered as a possible hypothesis at the origin of “disappearance” of the bacteria

of the aquatic ecosystem during the colder months. Also, in the aquatic environment, V. cholerae has been reported to be

associated with a variety of living organisms, including animals with an exoskeleton of chitin, aquatic plants, protozoa, bi-

valves, waterbirds, as well as abiotic substrates (e.g. sediments). Most of these are well-known or putative environmental

reservoirs for the bacterium, defined as places where the pathogen lives over time, with the potential to be released and

to cause human infection. Thus, the bacteria are strongly associated with the population of phytoplankton and zooplankton

organisms forming commensal, antagonism, parasitism, competition, or symbiotic relationships. In this work, we will focus

on the commensalism relationship between phytoplankton and V. cholerae . This commensalism relationship greatly enhances

the bacterium’s ability to survive in an aquatic environment, as the exoskeleton provides the bacterium with an abundant

source of carbon and nitrogen. 

The dynamics of cholera are complex due to the multiple interactions between the human host and the pathogen in the

water environment [8–19] , which contributes to both direct and indirect transmission pathways. Many studies supported

that V. cholerae O1 and O139 are commensal to crustacean zooplankton, notably copepods, which are present both in their

gut and in biofilms on their chitinous surfaces [10–17] . Furthermore, V. cholerae is present throughout the year in and on

its zooplankton host, and V. cholerae serogroup O1 has been shown to attach preferentially to zooplankton, but also to

some species of phytoplankton in waters [16] . Its commensal existence provides protection from grazing by heterotrophic

nanoflagellates and also from toxic chemicals, including those used to disinfect drinking water, such as alum and chlorine

[17] . V. cholerae, like all Vibrio species, produces chitinase(s), with chitin serving as a nutrient source [18] . Also, Kirschner

et al. demonstrated that association with zooplankton is important for V. cholerae non-O1/non-O139 serogroup isolates en-

demic in Neusiedler See, a large, shallow, moderately saline-alkaline lake in Central Europe [14] . A significant correlation

was observed between the seasonal pattern in frequency of occurrence of V. cholerae and increased zooplankton biomass

[14] . A deep understanding of the disease dynamics would have a significant impact on the effective prevention and con-

trol strategies [18,19] . Mathematical modeling and numerical simulations have the potential, and offer a promising way,

to achieve this. Many efforts have been and are still being devoted to the modeling of this disease. For a chronological

history of the modeling of cholera, we refer the reader to the work [21] which mentions the first mathematical model

developed in [20–25] . Some theoretical studies have been carried out on the mathematical modeling of cholera transmis-

sion dynamics [26–29] . To our best knowledge, none of these mentioned works on cholera models have considered the

change of metabolism of bacteria and the commensal relationships between bacteria and the population of phytoplankton

and zooplankton. 

In this paper, we explore the impact of environmental factors on the dynamical transmission of cholera within a human

community. We formulate a mathematical model for cholera disease, which incorporates some key epidemiological and bi-

ological features of the disease such as the waning of recovery-induced immunity of recovered individuals, the virulence

of bacteria and the commensal relationships between bacteria and the population of phytoplankton and zooplankton. We

present the theoretical analysis of the model. We compute the disease-free equilibrium and derive the basic reproduction

number R 0 that depends on the rate of appearance and loss of virulence of bacteria and the carrying capacity of the pop-

ulation of phytoplankton and zooplankton. We do an in-depth analysis of the global asymptotic stability of the disease-free

equilibrium and the local asymptotic asymptotical stability of the endemic equilibrium. The sensitivity analysis of the model

is carried out to identify the most influential parameters on the model output variables, that is the most robust estimations

that are required. Numerical simulations are presented to support the theory and to get insight on the role of the virulence

of bacteria and the commensal relationship between bacteria and the population of phytoplankton and zooplankton on the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dynamics of the disease. Through numerical simulations, we found that the virulence of bacteria can increases the number

of infected individuals and the mechanism of interaction between V. cholerae and environmental reservoirs would be the

critical factor in the hatching of these bacteria in the environment. 

The rest of the paper is organized as follows. After the formulation of the model in Section 2 , we present its quantita-

tive and qualitative analysis in Section 3 . Numerical simulations are provided in Section 4 . The last Section is devoted to

concluding remarks on how our work fits in the literature. 

2. Model formulation

We consider a heterogeneous population formed of humans, vibrio cholera and environmental reservoirs (i.e. the popu-

lation of phytoplankton and zooplankton). The proposed model classifies the human population according to their disease

status, namely: susceptible individuals S , symptomatic infected individuals with cholera I 1 , asymptomatic infected individu-

als with cholera I 2 and recovered individuals R . Thus, the total human population at time t is given by 

N(t) = S(t) + I 1 (t) + I 2 (t) + R (t) . (1)

The population of bacteria is divided into four subclasses with different properties: free virulent bacteria F V (i.e. free in the

environment and can infect susceptible individuals), free benign bacteria F B (i.e. free in the water but cannot infect suscep-

tible individuals), environmental virulent bacteria E V (i.e. fixed in aquatic resources and can infect susceptible individuals)

and environmental benign bacteria E B (i.e. fixed in aquatic resources and cannot infect susceptible individuals). Thus, the

total population of bacteria at time t is 

B (t) = F V (t) + F B (t) + E V (t) + E B (t) . (2)

The populations of phytoplankton and zooplankton at time t is denoted by P ( t ). 

Susceptible individuals are recruited through birth and immigration at constant rate �. The source of infection is through

oral ingestion of faecal contaminated water or food. Susceptible individuals may become infected either by contact with in-

fected individuals or by ingestion of V. Cholerae content in the surrounding waters, infected fruits, vegetables and crustacean.

Thus, the infection is regulated by the exposure with free pathogenic vibrios and infected water food at rates βF and βE

per unit of time through the logistic dose-response F V / (F V + K F ) and E V / (E V + K E ) where K F and K E are respectively, the

concentrations of free virulent and environmental virulent bacteria that yield 50% of chance for a susceptible individual

to catch the infection [22] . Also, infected individual generates secondary infections through direct contact with susceptible

individuals at rate βI (I 1 + I 2 ) /N, where β I is the human-to-human per capita contact rate per unit time. Thus, the force of

infection is 

λ = βF 
F V 

F V + K F 

+ βE 
E V 

E V + K E 

+ βI 
I 1 + I 2

N 

. (3)

We assume that a proportion p of newly infected individuals becomes symptomatic infected individuals and the comple-

mentary part (1 − p) becomes asymptomatic infected individuals and enters the I 2 class. Once infected, asymptomatic and

symptomatic individuals I 1 and I 2 can recover from the disease at constant rates r 1 and r 2 , respectively. As suggested by

many studies in the literature, recovered individuals may only have partial immunity [2,25,30,31] . Since the recover from

the disease does not confer a total immunity to recovered individuals, recovered individuals loss their protection and return

to the susceptible class S at rate δ. However, it is important to point out that there is no yet a vaccine inducing a long-term

protection against cholera [31] . Infected individuals I 1 and I 2 contribute to the concentration of vibrios at constant rates

α1 and α2 , respectively. Susceptible, infected and recovered individuals have the same natural death rate μh . Symptomatic

infected individuals die because of disease at constant rate d . 

For the population of bacteria, when living conditions are unfavorable, pathogenic vibrios, i.e. those in the classes F V and

E V become benign and enter the F B and E B classes at constant rates ϕb and θb , respectively. Also, when living conditions

become favorable, benign bacteria, i.e. those in the F B and E B classes become pathogenic and move to the F V and E V classes at

constant rates ϕv and θ v , respectively. Pathogens are assumed to grow and decay at the same rates g and μb , respectively.

Experimentally, it has been prove that μb > g [12] . We assume that free virulent and benign bacteria, i.e. those in the F V
and F B classes become environmental virulent and benign bacteria (i.e. those in the E V and E B classes) by clinging on the

population of phytoplankton and zooplankton at rate ηP/ (Q f + P ) where η is the force of commensalism of environmental

virulent and benign bacteria with respect to the population of phytoplankton and zooplankton per unit of time and Q f a

positive constant. Without loss of generality, we assume that a proportion ε of environmental bacteria (i.e. those in the

E V and E B classes) takes advantage of their association with the populations of phytoplankton and zooplankton to face

stress caused by climatic conditions. Thus, the environmental virulent and benign bacteria survive at rate ε ( μb − g ) du to

their commensal relationship with the populations of phytoplankton and zooplankton. We assume that the population of

phytoplankton and zooplankton experiences a logistic growth with a carrying capacity M p and maximum growth rate r . 

The structure of the model is shown in Fig. 1 . The dashed arrow indicates contamination of the environment by infected

humans. 



Fig. 1. Flow chart of the transmission dynamics of the cholera model.

 

 

 

The dynamics of the disease can be described by the following system of non linear differential equations: ⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨ 

⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ 

˙ S = � + δR − ( λ + μh ) S, 
˙ I 1 = pλS − (μh + r 1 + d) I 1 , 
˙ I 2 = (1 − p) λS − (μh + r 2 ) I 2 , 
˙ R = r 1 I 1 + r 2 I 2 − (δ + μh ) R, 

˙ F V = α1 I 1 + α2 I 2 + ϕ v F B −
(

D 1 + ϕ b + η P 
Q f + P 

)
F V , 

˙ F B = ϕ b F V −
(

D 1 + ϕ v + η P 
Q f + P 

)
F B , 

˙ E V = η P 
Q f + P F V + θv E B − ( D 2 + θb ) E V , 

˙ E B = η P 
Q f + P F B + θb E V − ( D 2 + θv ) E B , 

˙ P = rP (1 − P 
M p

) , 

(4) 

where λ is defined as in Eq. (3) , D 1 = μb − g and D 2 = D 1 ε. 

First of all, let us recall some useful results that we will use in the sequel. 

Definition 1. Consider the following systems in x ∈ R 

n : 

˙ x = f (t, x ) , (5) 

˙ y = g(y ) , (6) 

where f and g are continuous and locally Lipschitz functions in x so that the solutions exist for all t ≥ 0. System (5) is called

asymptotically autonomous with limit system (6) if f ( t, x ) → g ( y ) as t → ∞ uniformly in x ∈ R 

n . 

Lemma 1 [32] . Let x e be a locally asymptotically stable equilibrium of (6) and ω the ω-limit set of a forward bounded solution

x ( t ) of (5) . If ω contains a point y 0 such that the solution y of (6) , with y (0) = y 0 converges to x e as t → ∞ , then ω = { x e } , i.e.

x ( t ) → x e as t → ∞ . 

Corollary 1 [32] . If the solutions of system (5) are bounded and the equilibrium x e of the limit system (6) is globally asymptoti-

cally stable, then every solution x ( t ) of the system (5) satisfies x ( t ) → x e as t → ∞ . 



Table 1

Numerical values for the parameters of model system (4) .

Definition Symbols Estimated Source

Recruitment rate � 28 day −1 Assumed

Exposure rate to infected people β I 0.005 person −1 day −1 Assumed

Exposure rate to infected waters βF 0.002 person −1 day −1 Assumed

Exposure rate to infected water’s foods infected βE 0.001 person −1 day −1 Assumed

Proportion of symptomatic infected human p 0.2 [25]

Waning rate of treatment induced-immunity δ 0.0 0 092 day −1 [30]

Natural mortality rate of humans μh 0.0104 day −1 [33]

Cholera induced mortality d 0.046 day −1 [34]

Recovery rate of symptomatic infected individuals r 1 0.045 day −1 [35]

Recovery rate of asymptomatic infected individuals r 2 0.0045 day −1 Assumed

Pathogen shed rate of symptomatic infected individuals α1 70 Cells day −1 person −1 [25]

Pathogen shed rate of asymptomatic infected individuals α2 10 Cells day −1 person −1 [25]

Decay rate of pathogens μb 1.06 day −1 [22]

Growth rate of pathogens g 0.73 day −1 [22]

Proportion of environmental bacteria that survives ε 0.7 Assumed

Commensalism force of environmental bacteria η 0.05 day −1 reservoir −1 Assumed

Carrying capacity of the aquatic environment M p 10 10 Assumed

Concentration of free V. Cholerae in water K F 10 4 Assumed

Concentration of environmental V. Cholerae in water K E 10 6 [22]

Half of number of infected reservoirs Q f 10 5 Assumed

Growth rate of reservoirs r 0.01 day −1 Assumed

Rate at which benign bacteria becomes virulent bacteria ϕv 0.05 day −1 Assumed

Rate at which virulent bacteria becomes benign bacteria ϕb 0.008 day −1 Assumed

Rate at which environmental benign bacteria

become environmental virulent bacteria θ v 0.08 day −1 Assumed

Rate at which environmental virulent bacteria

become environmental benign bacteria θ b 0.005 day −1 Assumed

 

 

 

 

 

 

 

 

Since P ∗ = M p is a globally asymptotically stable equlibrium of the population dynamics of phytoplankton and zooplank-

ton 

˙ P = rP (1 − P 
M p 

) then P ( t ) → M p as t → + ∞ uniformly. Therefore, from Lemma 1 and Corollary 1 , model system (4) is

reduced to⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎩ 

˙ S = � + δR − ( λ + μh ) S, 
˙ I 1 = p 1 λS − ω 1 I 1 , 
˙ I 2 = p 2 λS − ω 2 I 2 , 
˙ R = r 1 I 1 + r 2 I 2 − (δ + μh ) R, 

˙ F V = α1 I 1 + α2 I 2 + ϕ v F B −
(
ϕ b + η + D 1 

)
F V , 

˙ F B = ϕ b F V −
(
ϕ v + η + D 1 

)
F B , 

˙ E V = ηF V + θv E B − ( θb + D 2 ) E V , 
˙ E B = ηF B + θb E V − ( θv + D 2 ) E B , 

(7)

where p 1 = p, p 2 = 1 − p, ω 1 = μh + r 1 + d , ω 2 = μh + r 2 and η = η
M p

Q f + M p 
.

The parameter values used for numerical simulations are given in Table 1 . 

3. Mathematical analysis

3.1. Basic properties 

3.1.1. Positivity of solutions 

We investigate the asymptotic behavior of orbits starting in the nonnegative cone R 

8 + . Obviously, model system (7) which

is a C ∞ differential system, admits a unique maximal solution for any associated Cauchy problem. 

Theorem 1. Let (t 0 = 0 , X 0 = (S(0) , I 1 (0) , I 2 (0) , R (0) , F V (0) , F B (0) , E V (0))) ∈ R × R 

8 + and for T ∈ ]0 , + ∞ ] , ([0 , T [ , X =
(S(t) , I 1 (t) , I 2 (t) , R (t) , F V (t) , F B (t) , E V (t) , E B (t))) the maximal solution of the Cauchy problem associated to model system

(7) . Then, ∀ t ∈ [0; T [, X(t) ∈ R 

8+ 

Proof. Let 

� = 

{
˜ t ∈ [0 ; T [ | S(t) > 0 , I 1 (t) > 0 , I 2 (t) > 0 , R (t) > 0 , F V (t) > 0 , 

F B (t) > 0 , E V (t) > 0 and E B (t) > 0 ∀ t ∈ ]0 , ˜ t [
}
.

By continuity of function S, I 1 , I 2 , R, F V , F B , E V and E B , one can see that � 	 = ∅ . Let ˜ T = sup �. Now, we are going to show

that ˜ T = T . Suppose ˜ T < T , then one has that S, I , I , R, F , F , E and E are non negative on [0 ; ˜ T [ . At ˜ T , at least one of
1 2 V B V B 



 

 

 

 

 

 

 

 

 

 

 

the following conditions is satisfied S( ̃  T ) = 0 , I 1 ( ̃  T ) = 0 , I 2 ( ̃  T ) = 0 , R ( ̃  T ) = 0 , F V ( ̃  T ) = 0 , F B ( ̃  T ) = 0 , E V ( ̃  T ) = 0 and E B ( ̃  T ) = 0 .

Suppose S( ̃  T ) = 0 , then from the first equation of model system (7) , one has 

d 

dt 

(
Se 

∫ t 
0 ( λ(r)+ μh ) dr 

)
= (� + δR ) e 

∫ t 
0 ( λ(r)+ μh ) dr . (8) 

Integrating Eq. (8) from 0 to ˜ T yields 

S( ̃  T ) = e −
∫ ˜ T 

0 ( λ(r)+ μh ) dr 

(
S(0) + 

∫ T̃

0

(
e 
∫ t 

0 ( λ(r)+ μh ) dr 
)
. (� + δR (t )) dt 

)
> 0 .

Similarly, one can show that I 1 ( ̃  T ) > 0 , I 2 ( ̃  T ) > 0 , R ( ̃  T ) > 0 , F V ( ̃  T ) > 0 , F B ( ̃  T ) > 0 , E V ( ̃  T ) > 0 and E B ( ̃  T ) > 0 . This is a con-

tradiction. Then, ˜ T = T and consequently the maximal solution ( S ( t ), I 1 ( t ), I 2 ( t ), R ( t ), F V ( t ), F B ( t ), E V ( t ), E B ( t )) 
T of the Cauchy

problem associated to model system (7) is positive. This achieves the proof. �

3.1.2. Invariant region 

We first split model system (7) into two parts, the human population (i.e. S ( t ), I 1 ( t ), I 2 ( t ) and R ( t )) and the pathogen

population (i.e. F V ( t ), F B ( t ), E V ( t ) and E B ( t )). Then, using model system (7) , the dynamics of the total human population

satisfy 

˙ N = � − μh N − dI 1 ≤ � − μh N. (9) 

Integrating the above differential inequality yields 

0 ≤ N(t) ≤ �

μh 

+ 

(
N(0) − �

μh 

)
e −μh t , ∀ t ≥ 0 , 

where N (0) is the initial value of N ( t ). It implies that 0 ≤ N(t) ≤ �

μ
for all t ≥ 0 if N(0) ≤ �

μ
. Now, using the fact that

I 1 ( t ) ≤�/ μh and I 2 ( t ) ≤�/ μh , the dynamics of bacteria satisfies 

˙ B ≤ α
�

μh 

− ξB, (10) 

where α = max { α1 , α2 } and ξ = min { D 1 , D 2 } . Integrating Eq. (10) gives

0 ≤ B (t) ≤ α�

ξμh 

+ 

(
B (0) − α�

ξμh 

)
e −ξ t , ∀ t ≥ 0 , 

where B (0) represents the initial value of B ( t ). It then follows that B (t) ≤ α�

ξμh 

for all t ≥ 0 if B (0) ≤ α�

ξμh 

. Thus, the region:

� = 

{
(S, I 1 , I 2 , R, F V , F B , E V , E B ) ∈ R 

8 
+ , N ≤ �

μh 

and B ≤ α�

ξμh 

}
, (11) 

is positively invariant and attracting for model system (7) . Then, it is sufficient to consider the dynamics of the flow gener-

ated by model system (7) in �. 

Remark 1. Every maximal solution of model system (7) are global. 

3.2. Disease-free equilibrium and its stability 

Model system (7) has a disease-free equilibrium obtained by setting the right-hand side of equations in model system

(7) to zero with I 1 = I 2 = 0 . The disease-free equilibrium is

Q 0 = ( S 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , (12) 

where S 0 = 

�
μh 

. 

The linear stability of Q 0 is governed by the basic reproductive number [36,37] . The stability of this equilibrium will be

investigated using the next generation operator [38,39] . Using the notations in van den Driessche and Watmough [39,40] for

model system (7) , the Jacobian matrices F and V at the DFE for the new infection and remaining transfer terms are, respec-

tively given by 

F = 

⎡
⎢ ⎢ ⎢⎢⎢⎣

p 1 βI p 1 βI p 1 S 0 
βF 

K F 
0 p 1 S 0 

βE 

K E 
0 

p 2 βI p 2 βI p 2 S 0 
βF 

K F 
0 p 2 S 0 

βE 

K E 
0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

⎤
⎥⎥⎥ ⎥ ⎥⎦V = 

⎡
⎢⎢ ⎢⎢⎣

ω 1 0 0 0 0 0 

0 ω 2 0 0 0 0 

−α1 −α2 M b −ϕ v 0 0 

0 0 −ϕ b M v 0 0 

0 0 −η 0 N b −θv
0 0 0 −η −θb N v

⎤
⎥⎥⎥ ⎥⎦,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where M b = ϕ b + η + D 1 , M v = ϕ v + η + D 1 , N v = θv + D 2 and N b = θb + D 2 . 

Following Van den Driessche and Watmough [39] , the basic reproduction number of model system (7) is 

R 0 = ρ(F V 

−1 ) = R 01 + R 02 , (13)

where ρ(F V −1 ) is the spectral radius of the next generation matrix F V −1 , R 01 and R 02 are respectively, the symptomatic

infection and asymptomatic infection induced basic reproduction numbers given by 

R 0 i = βI 
p i
ω i 

+ βF

p i αi S 0 
(
ϕ v + η + D 1 

)
ω i K F 

(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

) (14)

+ βE 

p i αi S 0 η

[(
ϕ v + η + D 1 

)
( θv + D 2 ) + ϕ b θv 

]
ω i K E D 2 ( D 2 + θb + θv ) 

(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

) , i ∈ { 1 , 2 } . (14)

The threshold quantity R 0 measures the average number of new cholera infections generated by a single infective in a

completely susceptible population without any intervention. 

The relevance of the reproduction number is due to the following result established from Theorem 2 in [39] . 

Lemma 2. The disease-free equilibrium Q 0 of model system (7) is locally asymptotically stable in � whenever R 0 ≤ 1 and un-

stable whenever R 0 > 1 . 

The biological implication of Lemma 2 is that a sufficiently small flow of infectious individuals will not generate outbreak

of the disease unless R 0 > 1 . For a better control on the disease, the global asymptotic stability (GAS) of the DFE is needed.

Actually, enlarging the basin of attraction of Q 0 to be the entire � is, for the model under consideration a more challenging

task involving relatively new result. We use the result of Kamgang and Sallet [41,50] for the global stability of the disease-

free equilibrium for a class of epidemiological models. 

Using the result of Kamgang and Sallet [50] , model system (7) can be written in the following form: {
˙ x s = A 1 (x )(x s − x 0 s ) + A 12 (x ) x i ,
˙ x i = A 2 (x ) x i , 

(15)

where x s = (S, R ) T represents the class of non infected individuals (i.e. susceptible and recovered individuals), x i =
(I 1 , I 2 , F V , F B , E V , E B ) 

T represents the class of infected individuals (i.e. symptomatic infected individuals, asymptomatic in-

fected individuals, virulent-free bacteria, benign-free bacteria, virulent-environmental bacteria and benign-environmental

bacteria), x = (x s , x i ) 
T and x 0 s = (S 0 , 0) with S 0 the non zero component of the disease-free equilibrium. Matrice A 1 ( x ), A 12 ( x )

and A 2 ( x ) in Eq. (15) are defined by 

A 1 (x ) = 

[
−(μh + λ) δ

0 −(δ + μh ) 

]
, A 12 (x ) = 

[
−βI S 0

N
−βI S 0

N
− βF S 0

F V + K F 0 − βF S 0
E V + K E 0 

r 1 r 1 0 0 0 0 

]
and 

A 2 (x ) = 

⎡
⎢⎢⎢⎢⎢⎣

−ω 1 + 

p 1 βI S
N 

p 1 βI S
N

p 1 βF S
F V + K F 0 

p 1 βE S
E V + K E 0 

p 2 βI S
N

−ω 2 + 

p 2 βI S
N 

p 2 βF S
F V + K F 0 

p 2 βE S
E V + K E 0 

α1 α2 −ϕ b − η − D 1 ϕ v 0 0 

0 0 ϕ b −ϕ v − η − D 1 0 0 

0 0 η 0 −θb − D 2 θv 
0 0 0 η θb −θv − D 2

⎤
⎥⎥⎥⎥ ⎥⎦.

The conditions H 1 − H 5 below must be met to guarantee the global asymptotic stability (GAS) of Q 0 . 

H 1 : Model system (15) is defined on a positively invariant set D of the nonnegative orthant. Model system (15) is dissi-

pative on D. 

H 2 : The sub-system ˙ x s = A 1 (x s , 0)(x s − x 0 s ) is globally asymptotically stable at the equilibrium x 0 s on the canonical projec-

tion of D on R 

2 + . 
H 3 : The matrix A 2 ( x ) is Metzler (A Metzler matrix is a matrix with off-diagonal entries nonnegative [33,35] ) and irre-

ducible for any given x ∈ D. 

H 4 : There exists an upper-bound matrix A 2 for M = { A 2 (x ) | x ∈ D } with the property that either: A 2 / ∈ M or if A 2 ∈ M

then for any x ∈ D such that A 2 = A 2 (x ) , x ∈ R 

2 + × { 0 } (i.e. the points where the maximum is realized are contained in

the disease-free sub-manifold). 

H 5 : ρ( A 2 ) ≤ 0 where ρ( A 2 ) denotes the largest real part of the eigenvalues of A 2 . 

The result of Kamgang–Sallet approach [50] uses the algebraic structure of model system (15) , namely the fact that A 1 ( x )

and A 2 ( x ) are Metzler matrices. Since in the said approach the matrix A 2 ( x ) is required to be irreducible, we further restrict

the domain of the system to: 

D = { ( x s , x i ) ∈ �, x s 	 = 0 } . (16)



 

 

 

 

 

 

 

 

 

The set D is positively invariant because only the initial point of any trajectory can have x s = 0 (see Theorem 1 ). Indeed,

from the first and fourth equations of model system (7) , one has S ′ > 0 and R ′ > 0 whenever S = 0 and R = 0 . Therefore, we

restrict the domain of system (15) to D where A 2 ( x ) irreducible. Thus, one has that 

A 2 (x ) is Metzler and irreducible for all x ∈ D. (17) 

The sub-system: 

˙ x s = A 1 (x s , 0)(x s − x 0 s ) , 

is equivalent to {
˙ S = � + δR − μh S, 
˙ R = −(δ + μh ) R. 

(18) 

Resolving the above equations and taking the limit of solutions when t go to infinity yields 

lim 

t→ + ∞
S(t) = 

�

μ
and lim 

t→ + ∞
R (t) = 0 .

Therefore, 

x 0 s = (S 0 , 0) is a globally asymptotically stable equilibrium of the 

reduced system (18) on the sub-domain D. 

(19) 

Then, the hypothesis H 2 is satisfied. 

The theorem of Kamgang and Sallet (see [50] , Theorem 4.3) gives the GAS of the DFE of a dissipative system of the form

(15) which satisfies (17) and (19) provided there exists a matrix A 2 ( x ) with the following additional properties:⎧⎨ 

⎩ 

A 2 (x ) ≤ Ā 2 , x ∈ D, 

if A 2 ( ̄x ) = Ā 2 for some x̄ = ( ̄x 1 , ̄x 2 ) 
T ∈ D then x̄ 2 = 0 , 

α( ̄A 2 ) ≤ 0 . 

(20) 

The equality A 2 (x ) = A 2 is possible only when S = N = S 0 and F v = E v = 0 which implies that x i = 0 . Therefore, the first and

second conditions in (20) hold. Note that Ā 2 is a Metzler matrix which satisfies the stability condition of Kamgang and Sallet

[50] .

Now, using the fact that S 
N ≤ 1 , S

F V + K F ≤ S 0 
K F

and 

S
E V + K E ≤

S 0 
K E

, one has 

A 2 = 

⎡
⎢⎢⎢⎢⎢⎣

−ω 1 + p 1 βI p 1 βI 
p 1 βF S 0

K F
0 

p 1 βE S
K E

0 

p 2 βI −ω 2 + p 2 βI
p 2 βF S 0

K F
0 

p 2 βE S 0
K E

0 

α1 α2 −ϕ b − η − D 1 ϕ v 0 0 

0 0 ϕ b −ϕ v − η − D 1 0 0 

0 0 η 0 −θb − D 2 θv 
0 0 0 η θb −θv − D 2

⎤
⎥⎥⎥⎥ ⎥⎦.

From the above expression of Ā 2 , one can observe that there is a maximum which is uniquely realized in D at Q 0 and this

maximum is then the block of the Jacobian of model system (15) at the disease-free equilibrium Q 0 , corresponding to the

matrix A 2 ( x ), and the condition H 4 is satisfied. 

Now, we check the condition H 5 . Note that the condition ρ( A 2 ) ≤ 0 implies that A 2 is a stable Metzler matrix. We show

in Appendix A that the condition ρ( A 2 ) ≤ 0 is equivalent to R 0 ≤ 1 . 

We can now apply Theorem 4.3 in Kamgang and Sallet [50] and conclude that the disease-free equilibrium (x 0 s , 0) is GAS

in D. From Eq. (16) , for the points of D where x s = 0 , and the disease-free equilibrium is GAS on �. 

We have established the following result about the global stability of the disease-free equilibrium Q 0 . 

Theorem 2. The disease-free equilibrium point Q 0 of model system (7) is globally asymptotically stable in � if R 0 < 1 and

unstable if R > 1 . 
0 



 

 

 

 

 

 

 

 

 

3.3. Endemic equilibrium and its stability 

Let Q 

∗ = 

(
S ∗, I ∗

1 
, I ∗

2 
, R ∗, F ∗

V 
, F ∗

B 
, E ∗

V 
, E ∗

B 

)
be any endemic equilibrium (EE) of model system (7) with S ∗ 	 = 0, I ∗

1 
	 = 0 , I ∗

2 
	 = 0 ,

R ∗ 	 = 0, F ∗
V 

	 = 0 , F ∗
B 

	 = 0 , E ∗
V 

	 = 0 and E ∗
B 

	 = 0 satisfying the following system of equations: ⎧⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

� + δR 

∗ − ( λ∗ + μh ) S 
∗ = 0 ,

p 1 λ
∗S ∗ − ω 1 I 

∗
1 = 0 ,

p 2 λ
∗S ∗ − ω 2 I 

∗
2 = 0 ,

r 1 I 
∗

1 + r 2 I 
∗

2 − (δ + μh ) R 

∗ = 0 ,

α1 I 
∗

1 + α2 I 
∗

2 + ϕ v F 
∗

B −
(
ϕ b + η + D 1 

)
F ∗V = 0 , 

ϕ b F 
∗

V −
(
ϕ v + η + D 1 

)
F ∗B = 0 , 

ηF ∗V + θv E 
∗

B − ( θb + D 2 ) E 
∗

V = 0 ,

ηF ∗B + θb E 
∗

V − ( θv + D 2 ) E 
∗

B = 0 ,

(21)

where 

λ∗ = βF 

F ∗V 
F ∗

V 
+ K F

+ βE 

E ∗V 
E ∗

V 
+ K E

+ βI 

I ∗1 + I ∗2
S ∗ + R 

∗ + I ∗
1 

+ I ∗
2

, (22)

is the force of infection at the endemic steady state. 

Expressing the endemic states S ∗, I ∗
2 
, R ∗, F ∗

V 
, F ∗

B 
, E ∗

V 
and E ∗

B 
as a function of I ∗

1 
and λ∗ gives 

S ∗ = 

�

λ∗ + μh 

+ δ
r 1 ω 2 p 1 + r 2 ω 1 p 2 

( λ∗ + μh ) ( δ + μh ) 
I ∗1 , I ∗2 = 

ω 1 p 2 
ω 2 p 1 

I ∗1 R 

∗ = 

r 1 ω 2 p 1 + r 2 ω 1 p 2 

( λ∗ + μh ) ( δ + μh ) 
I ∗1 , 

F ∗V = 

(
ϕ v + η + D 1 

)
( α1 ω 2 p 1 + α2 ω 1 p 2 ) 

ω 2 p 1 
(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

) I ∗1 , F ∗B = 

ϕ b ( α1 ω 2 p 1 + α2 ω 1 p 2 ) 

ω 2 p 1 
(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

) I ∗1 , 

E ∗V = 

η

(
θv ϕ b + ( θv + D 2 ) 

(
ϕ v + η + D 1 

))
( α1 ω 2 p 1 + α2 ω 1 p 2 ) 

D 2 ( D 2 + θb + θv ) 
(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

)
ω 2 p 1 

I ∗1 and 

E ∗B = 

(
ϕ b + 

θb 

(
θv ϕ b + ( θv + D 2 ) 

(
ϕ v + η + D 1 

))
D 2 ( D 2 + θb + θv ) 

) 

η( α1 ω 2 p 1 + α2 ω 1 p 2 ) 

( θv + D 2 ) ω 2 p 1 
(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

) I ∗1 . 

(23)

From the second equation of (23) , using the expression of S ∗ defined as in Eq. (23) , one has 

I ∗1 = 

λ∗ p 1 �( δ + μh ) 

λ∗
[
w 1 

(
δ
(
1 − r 1 p 1 

ω 1
− r 2 p 2 

ω 2

)
+ μh 

)]
+ ω 1 μh ( μh + δ) 

> 0 , (24)

because 1 − r 1 p 1 
ω 1 

− r 2 p 2 
ω 2

≥ 0 . Now, after plugging Eqs. (21) and (24) into Eq. (22) , one obtains the following fourth order

polynomial equation in λ∗: 

c 4 ( λ
∗) 4 + c 3 ( λ

∗) 3 + c 2 ( λ
∗) 2 + c 1 ( λ

∗) + c 0 = 0 , (25)

where ⎧⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

c 0 = �ca 10 ( 1 − R 0 ) , 
c 1 = a 10 c� + a 4 a 11 − βI aa 1 a 10 − βI μh aa 1 a 4 , 
c 2 = c�a 5 a 6 + a 4 a 10 + aa 1 a 11 − βI aa 1 a 9 − βI μh aa 1 a 5 a 6 , 
c 3 = a 5 a 6 a 4 + aa 1 a 10 − βI aa 1 a 5 a 6 , 
c 4 = aa 1 a 5 a 6 , 

with 

a = p 1 �( δ + μh ) , b = 

[
w 1 

(
δ
(
1 − r 1 p 1 

ω 1
− r 2 p 2 

ω 2

)
+ μh 

)]
, c = ω 1 μh ( μh + δ) , 

L F = 

K F ω 2 p 1 
(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

)(
ϕ v + η + D 1 

)
( α1 ω 2 p 1 + α2 ω 1 p 2 )

,

L E = 

K E D 2 ( D 2 + θb + θv ) 
(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

)
ω 2 p 1 

η

(
θv ϕ b + ( θv + D 2 ) 

(
ϕ v + η + D 1 

))
( α1 ω 2 p 1 + α2 ω 1 p 2 ) 

,

a 1 = 

ω 1 p 2
ω 2 p 1 

+ 1 , a 2 = 

r 1 ω 2 p 1 + r 2 ω 1 p 2 
�(δ + μh )

(δ + 1) , a 3 = a 2 � + a 1 μh , a 4 = a 3 a + b�, 

a 5 = a + L F b, a 6 = a + L E b, a 7 = a 6 βF + a 5 βE , a 8 = ( βF L E + βE L F ) c,
a 9 = ( a 5 L E + a 6 L F ) c and a 10 = L E L F c 

2 . 

The coefficient c 4 of the polynomial equation (25) is always non-negative and c 0 is positive (negative) if R 0 is less than

(greater than) the unity, respectively. It is established in Appendix B that when R 0 > 1 , the coefficients c 1 , c 2 and c 3 are

negative. Then, using the Descartes Rules of Signs, we have established the following result. 



Table 2

PRCC of model’s parameters (Range variation at 10%).

PRCCs and significance

Parameters Value Range S I 1 I 2 R F V F B E V E B

� 28 [ 25 . 2 − 30 . 8 ] 0.8803 ∗∗ 0.6937 ∗∗ 0.6631 ∗∗ 0.6598 ∗∗ 0.5476 ∗∗ 0.4183 ∗ 0.5910 0.4431 ∗∗

β I 0.005 [ 0 . 0045 − 0 . 0055 ] −0.2688 0.6937 0.2365 0.2956 ∗ 0.1745 0.41883 0.3356 0.2653

βE 0.002 [ 0 . 0018 − 0 . 0022 ] −0.1353 0.1935 −0.0968 −0.1234 0.0971 −0.0903 0.1603 0.1125

βF 0.001 [ 0 . 0099 − 0 . 0011 ] −0.9889 ∗∗ 0.0713 ∗∗ 0.9859 ∗∗ 0.9832 ∗∗ 0.9867 ∗∗ 0.9701 ∗∗ 0.9859 ∗∗ 0.9760 ∗∗

p 0.2 [ 0 . 18 − 0 . 22 ] 0.1192 0.9878 0.0495 −0.5979 ∗∗ 0.1641 0.3047 −0.0341 −0.0878

δ 0.0092 [ 0 . 00828 − 0 . 01012 ] 0.0394 0.1327 ∗∗ 0.6248 ∗∗ −0.0040 −0.0912 0.0726 0.0117 ∗∗ −0.1857

μh 0.0104 [ 0 . 00936 − 0 . 01144 ] −0.8240 ∗∗ 0.6041 ∗∗ −0.7880 ∗∗ −0.7796 ∗∗ −0.6503 ∗∗ −0.6748 ∗∗ −0.7778 −0.6439 ∗∗

d 0.046 [ 0 . 0414 − 0 . 0506 ] 0.1243 −0.7035 −0.2977 ∗ 0.0329 −0.1527 0.0397 0.0571 −0.0370

r 1 0.045 [ 0 . 0405 − 0 . 0495 ] 0.0269 −0.2694 −0.3407 ∗ −0.0470 −0.0618 0.0492 −0.1669 −0.1778

r 2 0.0045 [ 0 . 00405 − 0 . 00495 ] 0.2967 0.0020 −0.0690 0.4106 ∗ −0.0501 0.10 0 0 −0.2711 0.0060

α1 70 [ 63 − 77 ] −0.0515 0.1223 0.0095 0.1375 −0.0299 −0.1155 0.0521 −0.1372

α2 10 [ 9 − 11 ] −0.2413 0.1057 0.4115 ∗ 0.1063 0.4178 ∗ −0.5242 ∗∗ 0.6710 ∗∗ 0.5103 ∗∗

μb 1.06 [ 1 . 166 − 0 . 954 ] 0.2856 −0.3243 ∗ −0.2310 0.3129 ∗ −0.5023 ∗∗ −0.6204 ∗∗ −0.5981 ∗∗ −0.3899 ∗∗

ε 0.7 [ 0 . 63 − 0 . 77 ] −0.0265 −0.0561 −0.1823 0.0694 0.0058 −0.0542 −0.3708 ∗∗ −0.3042 ∗∗

η 0.05 [ 0 . 045 − 0 . 055 ] −0.4620 0.0142 −0.0608 −0.2353 −0.1945 −0.1064 0.4895 ∗∗ 0.1999 ∗∗

M p 10 10
[
9 . 10 9 − 11 . 10 9 

]
0.2193 −0.0834 −0.0948 −0.0831 −0.1258 −0.1146 −0.1313 −0.1571

K f 10 4
[
9 . 10 3 − 11 . 10 3 

]
0.5150 ∗∗ −0.01886 −0.3617 −0.2497 −0.27561 −0.2324 −0.2212 −0.3234

K e 10 6
[
9 . 10 5 − 11 . 10 5 

]
−0.0408 −0.0114 0.0406 −0.0105 0.0291 −0.0820 −0.1877 0.1115 ∗

Q f 10 5
[
9 . 10 4 − 11 . 10 4 

]
−0.0445 −0.1472 0.1098 0.1938 −0.1765 0.0907 −0.1261 0.0209

ϕv 0.05 [ 0 . 045 − 0 . 055 ] 0.1264 0.0806 0.0179 −0.0497 0.0146 −0.1073 0.0760 0.1398

ϕb 0.008 [ 0 . 0072 − 0 . 0088 ] −0.0018 0.0605 0.0110 0.0056 −0.1079 0.4828 ∗∗ 0.0326 0.0272

θ v 0.08 [ 0 . 072 − 0 . 088 ] −0.0449 0.1800 −0.0066 0.1137 0.2243 −0.0831 0.0493 −0.3147

θ b 0.005 [ 0 . 0045 − 0 . 0055 ] −0.0769 0.1243 −0.1240 0.0298 −0.0396 0.0758 −0.0606 0.1721

g 0.73 [ 0 . 657 − 0 . 803 ] 0.0371 0.0190 −0.0167 −0.0931 −0.1565 −0.0368 0.1056 −0.1801

∗: p -value < 0.01, ∗∗: p -value < 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 1. Model system (7) has exactly one endemic equilibrium whenever R 0 > 1 . 

In order to analyze the stability of the endemic equilibrium point of model system (7) , we make use of the Centre

Manifold theory [42] as described by Theorem 4.1 of Castillo-Chavez and Song [43] stated in Appendix C for convenience to

establish the local asymptotic stability of the endemic equilibrium Q 

∗ of model system (7) . 

The following result has been established. 

Theorem 3. The endemic equilibrium Q 

∗ of model system (7) is locally asymptotically stable in � when R 0 > 1 but close to 1. 

4. Numerical studies

In this section, we give numerical simulations that support the theory presented in the previous sections. 

4.1. Sensitivity analysis of model’s parameters 

We carry out sensitivity analysis to ascertain the uncertainty of the parameters to the model output. This is vital since

it enables us to identify critical input parameters that should be the center of focus if the disease is to be contained. Sen-

sitivity and uncertainty analysis are performed using the Latin hypercube sampling (LHS) scheme, a Monte–Carlo stratified

sampling method that allows us to obtain an unbiased estimate of the model output for a given set of input parameter val-

ues. The parameter space is simultaneously sampled without replacement and assuming statistical independence between

the parameters. The selected sample is used to compute unbiased estimates of output values for state variables. We use a

predefined variation of the model parameters at 10% and 50% relative to the referential values. Using algorithm from [44] ,

we compute the partial ranking correlation coefficient (PRCC) of parameters against model’s variables S, I 1 , I 2 , R, F V , F B ,

E V , E B . We use a fairly large sample of size N = 10 0 0 to identify relationships between parameters and output variables. A

positive (negative) correlation coefficient corresponds to an increasing (decreasing) monotonic trend between the model’s 

variable and the parameter under consideration. 

Note that, one parameter in Tables 2 and 3 is said “significantly correlate to one state variable” if absolute value of PRCC

is more than 0.5 and p -value < 0.001. 

Table 4 presents the six most influential parameters of model system (7) . According to the result obtained in Table 4 , the

parameters μh , βF , μb , α2 , β I and r 2 are the six most influential parameters of model system (7) . This suggests that effective

control strategy would be the implementation of intense awareness campaigns of the population on the risks of contact

transmission which should be combined with a fast strategies of treatment and of isolation of infectious symptomatic. 



Table 3

PRCC of model’s parameters (Range variation at 50%).

PRCCs and significance

Parameters Value Range S I 1 I 2 R F V F B E V E B

� 28 [ 14 − 29 . 4 ] 0.9215 ∗∗ 0.4233 ∗∗ 0.3548 ∗ 0.3681 ∗∗ 0.3173 ∗ 0.3525 ∗ 0.3863 ∗∗ 0.2517

β I 0.005 [ 0 . 0025 − 0 . 0075 ] 0.0826 0.9406 ∗∗ 0.8887 ∗∗ 0.9558 ∗∗ 0.8697 ∗∗ 0.8725 ∗∗ 0.8765 ∗∗ 0.9105 ∗∗

βE 0.002 [ 0 . 001 − 0 . 003 ] −0.0804 0.3207 ∗ 0.2544 0.0424 0.0738 0.1712 0.1446 −0.1088

βF 0.001 [ 0 . 0 0 05 − 0 . 0015 ] 0.0028 0.4938 ∗∗ 0.5930 ∗∗ 0.6196 ∗∗ 0.2462 0.6131 ∗∗ 0.2672 0.4966 ∗∗

p 0.2 [ 0 . 1 − 0 . 3 ] −0.0897 −0.2107 −0.2580 −0.8732 ∗∗ −0.2193 −0.0640 −0.0468 −0.0159

δ 0.0092 [ 0 . 0046 − 0 . 0138 ] −0.0141 0.7355 ∗∗ 0.0774 −0.1115 −0.0920 −0.1193 0.0419 0.1303

μh 0.0104 [ 0 . 0052 − 0 . 0152 ] −0.9628 ∗∗ 0.9801 ∗∗ −0.9808 ∗∗ −0.9910 ∗∗ −0.9662 ∗∗ −0.9670 ∗∗ −0.9742 ∗∗ −0.9747 ∗∗

d 0.046 [ 0 . 0023 − 0 . 069 ] 0.0932 0.2739 −0.1921 −0.1270 −0.0995 −0.2957 ∗∗ −0.2107 0.0233

r 1 0.045 [ 0 . 0225 − 0 . 999 ] −0.0832 −0.5946 ∗∗ 0.0146 −0.0976 −0.1121 −0.0317 −0.0375 −0.0538

r 2 0.0045 [ 0 . 0023 − 0 . 0068 ] 0.2169 −0.8859 ∗∗ −0.8761 ∗∗ −0.7932 ∗∗ −0.8601 ∗∗ −0.8006 ∗∗ −0.8183 ∗∗ −0.8432 ∗∗

α1 70 [ 35 − 105 ] 0.0282 −0.0556 −0.0249 0.1119 0.0395 0.1792 −0.1018 −0.1228

α2 10 [ 5 − 15 ] −0.0958 0.4179 ∗∗ 0.4652 ∗∗ 0.5015 ∗∗ 0.7972 ∗∗ 0.7828 ∗∗ 0.8085 ∗∗ 0.8189 ∗∗

μb 1.06 [ 0 . 53 − 1 . 59 ] 0.0122 −0.1853 −0.3066 ∗ −0.4817 ∗∗ −0.6259 ∗∗ −0.8264 ∗∗ −0.7240 ∗∗ −0.6708 ∗∗

ε 0.70 [ 0 . 35 − 1 . 05 ] −0.1372 −0.3436 ∗ −0.3108 ∗ −0.3438 −0.0661 −0.0782 −0.7714 ∗∗ −0.8614 ∗∗

η 0.05 [ 0 . 025 − 0 . 075 ] 0.0991 −0.2597 −0.0425 −0.2707 ∗ −0.4009 ∗∗ −0.6689 ∗∗ 0.5781 ∗∗ 0.3653 ∗

M p 10 10
[
5 . 10 9 − 15 . 10 9 

]
0.0871 0.1311 −0.0075 −0.1945 0.0501 −0.0033 0.1670 0.2016

K f 10 4
[
5 . 10 3 − 15 . 10 3 

]
0.1003 −0.6834 ∗∗ −0.4120 ∗∗ −0.4736 −0.3451 ∗ −0.5114 ∗∗ −0.4302 ∗∗ −0.4844 ∗∗

K e 10 6
[
5 . 10 5 − 15 . 10 5 

]
0.0217 −0.0623 0.0643 −0.2704 ∗∗ −0.1310 −0.1799 −0.0786 0.0622

Q f 10 5
[
5 . 10 4 − 15 . 10 4 

]
0.0304 0.2013 0.0466 0.1384 −0.0885 0.6970 0.0422 0.0178

ϕv 0.05 [ 0 . 025 − 0 . 075 ] −0.0353 0.2926 ∗ 0.0323 −0.1808 0.0889 −0.0491 −0.0606 0.1984

ϕb 0.008 [ 0 . 004 − 0 . 012 ] 0.1397 0.1711 −0.0136 −0.0275 0.0514 0.107 ∗∗1 0.1886 0.3448 ∗

θ v 0.08 [ 0 . 04 − 0 . 12 ] 0.1623 −0.0232 −0.0076 0.2911 0.0886 −0.0290 0.0304 −0.3943 ∗∗

θ b 0.005 [ 0 . 0025 − 0 . 0075 ] 0.1112 −0.2210 −0.0086 0.0344 0.0936 −0.0995 −0.0044 0.6996 ∗∗

g 0.73 [ 0 . 365 − 1 . 095 ] 0.1778 0.0299 −0.0296 0.2503 −0.0364 −0.2758 −0.0337 0.2175

∗: p -value < 0.01, ∗∗: p -value < 0.001 

Table 4

The six most influential parameters of model system

(7) .

Number of state variables significantly correlate

Parameters Range 10% Range 50% Total

μh 7 8 15

βF 7 5 12

μb 4 4 8

α2 3 5 8

β I 1 7 8

r 2 0 7 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. General dynamics 

Numerical simulations using a set of reasonable parameter values in Table 1 are carried out for illustrative purpose and

to support the analytical results. 

The associated bifurcation diagram using the parameter values of Table 1 is depicted in Fig. 2 . From this figure, it clearly

appears that model system (7) exhibits a forward bifurcation, that is the disease-free equilibrium is stable if R 0 ≤ 1 , while

if R 0 > 1 , the disease-free equilibrium is unstable and there exists a unique endemic equilibrium which is stable. 

Fig. 3 is an illustration of Theorem 2 , showing the GAS of the disease-free equilibrium of model system (7) using various

initial conditions when βI = 0 . 002 , βF = 0 . 002 and βE = 0 . 001 (so that R 0 = 0 . 4552 < 1 ). All other parameter values are as

in Table 1 . It illustrates that the disease disappears in the host population when R 0 ≤ 1 . 

Fig. 4 shows the stability of the endemic equilibrium Q 

∗ of model system (7) as demonstrated in Theorem 3 when

βI = 0 . 02 , βF = 0 . 02 and βE = 0 . 01 (so that R 0 = 3 . 9034 > 1 ). All other parameter values are as in Table 1 . Although the

stability of the endemic equilibrium have been established analytically in a neighborhood of R 0 = 1 , numerical simulations

show that the endemic equilibrium is stable over a wide range of values of R 0 > 1 . 

Now, numerical simulations are carried out to investigate the impact of varying the proportion of symptomatic infected

individuals, the effect of the virulence of bacteria and the role of the population of phytoplankton and zooplankton on the

dynamical transmission of cholera within a human community. In all simulations, the transmission rates are chosen to be

βI = 0 . 02 , βE = 0 . 01 and βF = 0 . 02 (so that R 0 > 1 ). All other parameter values are as in Table 1 . In all simulations, model

system (7) was simulated with the following initial conditions which have been chosen arbitrarily: S(0) = 10 0 0 , I 1 (0) = 10 ,

I (0) = 50 , R (0) = 30 , F (0) = 50 , 0 0 0 , F (0) = 10 , 0 0 0 , E (0) = 50 , 0 0 0 and E (0) = 10 , 0 0 0 . The “Total of infected human
2 V B V B 



Fig. 2. Bifurcation diagram of model system (7) . The notations DFE and EE stand for disease-free equilibrium and endemic equilibrium, respectively.

Fig. 3. GAS of the disease-free equilibrium Q 0 ( Theorem 2 ).

 

 

 

 

 

 

 

 

 

population” is a cumulative value of I 1 and I 2 . The “Total concentration of bacteria” is also a cumulative value of F V , F B , E B 
and E V . Results of numerical simulations are depicted in Figs. 5 and 6 . 

Case 1 : Most people infected with cholera (80%) are asymptomatic and appear healthy although they carry the bacteria

for two or three weeks and excrete them in wastewater. Since they carry bacteria for a long time than symptomatic

infected without knowing, they can infect people around them. They contributes more to the spread of the disease

[2,25] . Symptomatic infected can live with the disease for five day maximal. 

To study the impact of the proportion of asymptomatic infected individuals on the outbreak of the infection, model

system (7) was simulated for three different values of 1 − p: 1 − p = 0 . 9 (so that R 0 = 4 . 1581 ), 1 − p = 0 . 8 (so that

R 0 = 3 . 9034 ) and 1 − p = 0 . 5 (so that R 0 = 3 . 1392 ). From Fig. 5 (a), it is evident that as p increases (i.e. 1 − p de-

creases), the total number of infected individuals decreases. This means that the presence of asymptomatic infected

individuals within a human population contributes considerably to the spread of the disease. Since asymptomatic in-

fected individuals are healthy carriers, it’s difficult to identify them within a heterogeneous population for a possible



Fig. 4. Stability of the endemic equilibrium Q ∗ ( Theorem 3 ). 

Fig. 5. Time series of the total number of infected individuals for three different values (a) the proportion of symptomatic infected individual η and (b)

the virulence of bacteria θv = ϕ v . 

 

 

 

 

 

 

 

 

treatment or isolation. Hence, it is urgent to educate the public on hygiene rules to avoid the intersection of the food

chain with excrement chain. 

Case 2 : Here, we are interested to the case when the bacteria become more virulent. Without loss of generality, we

assume that θ v and ϕv have the same value, that is θv = ϕ v . Model system (7) was simulated for three different values

of θv = ϕ v : θv = ϕ v = 0 . 05 (so that R 0 = 4 . 1581 ), θv = ϕ v = 0 . 3 (so that R 0 = 4 . 4042 ) and θv = ϕ v = 0 . 6 (so that R 0 =
4 . 5268 ). From Fig. 5 (b), the effect of virulence bacteria on infected people seems to be limited from θv = ϕ v = 0 . 3 .

This is du to the contacts between infected people and bacteria. Thus, even if bacteria are too virulent contact with

human, adequate contacts between human and bacteria are necessary to trigger or favorise an cholera epidemic. 

Case 3 : According to biological review, the environmental reservoirs of V. cholerae promote the growth of the bacteria

in the aquatic environment [45–48] . Fig. 6 (a) shows the effect of varying the carrying capacity of the population of



Fig. 6. Time series of the total concentration of bacteria for three different values of (a) the carrying capacity of aquatic reservoirs M p and (b) the proportion

of environmental bacteria that survives after their association with aquatic reservoirs η.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

phytoplankton and zooplankton on the dynamics of bacteria. The simulation was performed for three different values

of the carrying capacity of the population of phytoplankton and zooplankton M p : M p = 10 7 (so that R 0 = 3 . 7848 ),

M p = 10 10 (so that R 0 = 3 . 9034 ) and M p = 10 13 (so that R 0 = 4 . 0183 ). It clearly appears that as M p increases, the

concentration of the total bacteria increases. This is why, it is recommended to clean or destroy the potential risk

areas where these reservoirs are growing. This will result on the reduction of the value of M p . 

Case 4 : Simulation results in Fig. 6 (b) illustrate the impact of varying the proportion of environmental bacteria that

survives after their association with aquatic reservoirs on the dynamics of bacteria for three different values of η:

η = 0 . 01 (so that R 0 = 4 . 1581 ), η = 0 . 3 (so that R 0 = 5 . 1322 ) and η = 0 . 6 (so that R 0 = 6 . 6087 ). As expected by the

result obtained in [49] , it confirms the critical role of the reservoirs on the endemicity of cholera. Thus, the commen-

sal association between bacteria and reservoirs may play an important role in the outbreak of cholera epidemic by

favoring persistence of the pathogen during inter-epidemic periods. 

4.3. Impact of environmental factors 

Many studies in the literature supported that the bacteria associated with the zooplankton showed seasonal abundance,

with the largest numbers occurring in the early spring and again in the summer, when zooplankton total numbers were

correspondingly large [5–7,13–16] . Approximately 0.01–40% of the total water column bacteria were associated with zoo-

plankton, with the percentage of the total water column bacteria population associated with zooplankton varying by season.

Indeed, the variation of environmental factors may explain the seasonality of the disease either by exerting a direct influ-

ence on the bacterial reservoirs capacity ( M p ) or even on their metabolism ( ϕ v , ϕ b , θ v , θb ) [46] . Thus, the parameters ϕv ,

ϕb , θ v , θb and M p of model system (7) are assumed to be time-dependent parameters. 

The virulent bacteria proportion in term of temperature ( T ) can be modeled as: 

ϕ v = 

(
1 + e −( 0 . 61 ×T −17 . 25 ) 

)−1
. (26) 

Also, the parameter θ v can be modeled as follows: 

θv = ϕ v + ( 1 − ϕ v ) 
(
1 − e kε 

)
, with k > 0 , (27) 

where ε measures the capacity of environmental bacteria to face unfavorable conditions. If a living bacteria is not virulent

it is assumed to be “viable but non-culturable” so that we have 

ϕ b = 1 − ϕ v and θb = 1 − θv . (28) 

The carrying capacity M p of V. cholerae in the environment is assumed to be the following periodic function: 

M p (t) = M mean 

(
1 + ̃

 k sin ( 
2 π

P 
t) 
)
. (29) 

Note that M p is a periodic function with the period P = 365 days. Without loss of generality, we choose M mean = 10 6 and
˜ k = 0 . 99 . 



Fig. 7. Temperatures in Douala during 2005–2011 (Source: Postdam Institute of Climatology (PIK)).

Fig. 8. Simulations of model system (7) showing the effect of varying of the commensalism force η on (a) bacteria density and (b) infected population.

 

 

 

 

 

 

 

 

 

 

The real data and the fitted curve of temperature in Douala (Cameroon) during period going from 2005 to 2011 are

shown in Fig. 7 . We use the cftool in Matlab R2015a to fit the statistical data of temperature and we obtain 

T (t) = 82 . 27 sin (0 . 0 0 09097 x + 0 . 7393) + 55 . 7 sin (0 . 001133 x + 3 . 683) 

+ 0 . 3052 sin (0 . 003942 x + 5 . 162) + 1 . 42 sin (0 . 01734 x + 0 . 7017)

+ 0 . 1663 sin (0 . 01001 x + 0 . 4355) (30)

Now, we derive some simulations in order to evaluate the both impact of metabolic change and density reservoirs in

bacteria and infected population. Model system (7) is simulated with the time-dependent parameters ϕ v , ϕ b , θ v , θb and M p .

Fig. 8 is obtained for three different values of η which represents the commensalism intensity between bacteria et reser-

voirs. From Fig. 8 (a), it clearly appears that this association play an important role on the persistence of bacteria in en-

vironment. Also, from Fig. 8 (b), one can observe that the commensalism force η does not impacts evenly the number of

infected people. This implies that cholera epidemic can be limited or avoided even if the associated reservoirs of bacteria

are exponentially growing. 

Fig. 9 presents the result of numerical simulations of model system (7) for three different values of the mean number of

bacteria reservoirs M mean . It illustrates the growth of bacteria is also exponential when M mean grow, but that of infected is

relatively moderate like previously. 



Fig. 9. Simulations of model system (7) showing the effect of mean reservoirs capacity M mean on (a) bacteria density and (b) infected population.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion

In this paper, we have proposed and analyzed a deterministic model for the dynamical transmission of cholera within

a human community. The considered model takes into account the change of metabolism of bacteria and the commensal

relationship of bacteria with the environmental reservoirs on the persistence of the disease. Indeed, in many cholera models

in the literature, these biological facts have been neglected through unrealistic assumptions such as V. cholerae are always

virulent [16] and at birth, V. cholerae are hyperinfectious, lose their virulence after certain time and remains non hyper

infection until the end of their live [19,20] . 

In this work, we have considered a mathematical model for the dynamical transmission of cholera in which the following

biological and epidemiological facts are incorporated: (i) the waning of recovery-induced of immunity of recovered individu-

als (ii) the virulence of bacteria and (iii) the commensal relationship between bacteria and the population of phytoplankton

and zooplankton. The objective was to investigate the impact of environmental factors on the dynamical transmission of

cholera within a human population. A qualitative analysis of the model has been presented. Our findings on the long term

dynamics of the system can be summarized as follows. 

1. We computed the disease-free equilibrium and derived the basic reproduction number R 0 that determines the outcome

of the disease.

2. We proved that the disease-free equilibrium is globally asymptotically stable whenever R 0 ≤ 1 on a positively invariant

region.

3. We showed that the model has a unique endemic equilibrium when R 0 > 1 . We also established the local asymptotic

stability of the unique endemic equilibrium when R 0 > 1 but close to 1.

4. The sensitivity analysis of the system has been performed. We found that in an epidemic situation it is urgent to sen-

sibilize population about the risk of transmission through contact and to take on charge rapidly the infected people by

isolating them from susceptible

5. Numerical results have been presented to illustrate and validate theoretical results. Though numerical simulation, we

found that the aquatic reservoirs are playing a significant role among the factors explaining the causes of endemicity of

these disease.

Different im provements and extensions of the model on which we are still working include: introducing of time-

dependent parameters in order to integrate fluctuation of environmental factors du to periodic variations of climate, control

strategies and extension to 2 patches. 
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Appendix A. Proof of ρ( A 2 ) ≤ 0 ⇔ R 0 ≤ 1 

Herein, we show that the condition ρ( A ) ≤ 0 is equivalent to R ≤ 1 . 
2 0 



 

 

 

 

 

 

 

 

To check condition ( H 5 ) of theorem from Kamgang and Sallet [50] , we will use the following lemma: 

Lemma 3. : Let M be a square Metzler matrix written in block form M = 

[
A B 

C D 

]
where A and D are square matrices. Then,

the matrix M is Metzler stable if and only if matrices A and D − CA 

−1 B (or D and A − BD 

−1 C) are Metzler stable. 

The matrix Ā 2 can be expressed in the form of the matrix M with 

A = 

[
−ω 1 + p 1 βI p 1 βI 

p 2 βI −ω 2 + p 2 βI

]
, B = 

[
p 1 βF S 0

K F
0 

p 1 βE S 0
K E

0 

p 2 βF S 0
K F

0 

p 2 βE S 0
K E

0 

]
,

C = 

⎡
⎢ ⎣ 

α1 α2 

0 0 

0 0 

0 0 

⎤
⎥⎦ and D = 

⎡
⎢⎣

−M b ϕ v 0 0 

ϕ b −M v 0 0 

η 0 −N b θv 
0 η θb −N v

⎤
⎥ ⎦ 

.

The matrix A is Metzler stable if and only if βI < 

ω 1 ω 2
ω 2 p 1 + ω 1 p 2 . A simple calculation yields 

A − BD 

−1 C = 

[
−(ω 1 − p 1 βI ) + R 01 F + R 01 E p 1 βI + ( R 02 F + R 02 E ) 

p 1 
p 2 

p 2 βI + ( R 01 F + R 01 E ) 
p 2 
p 1 

−(ω 2 − p 2 βI ) + R 02 F + R 02 E 

]
,

where 

R 0 iF = βF 

p i αi S 0 
(
ϕ v + η + D 1 

)
ω i K F 

(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

) ,

R 0 iE = βE 

p i αi S 0 η

[(
ϕ v + η + D 1 

)
( θv + D 2 ) + ϕ b θv 

]
ω i K E D 2 ( D 2 + θb + θv ) 

(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

) ,

(31)

for i ∈ {1, 2}. Then, it is easy to verify that the matrices A and A − BD 

−1 C are Metzler stable if and only if R 0 ≤ 1 . 

Appendix B. Proof of the non positivity of coefficients of the polynomial equation (25) when R 0 > 1 

Herein, we show that the coefficients c 1 , c 2 and c 3 of the polynomial (25) are all negative whenever R 0 > 1 . 

Let 

R 0 E = R 01 E + R 02 E , R 0 F = R 01 F + R 02 F , R 0 I = β1 

(
p 1
ω 1 

+ p 2
ω 2 

)
and 

χ = 

μh 

ω 2 
[ δω 1 ( ( 1 − r 2 ) ω 1 p 2 + ( 1 − r 1 ) ω 2 p 1 ) + ( ω 2 p 1 + ω 1 p 2 ) �μh ] + ( r 1 ω 2 p 1 + r 2 ω 1 p 2 ) p 1 �(δ + 1) . 

With the above notations, the coefficients c 0 , c 1 , c 2 , c 3 and c 4 of the polynomial equation (25) become ⎧⎪ ⎪⎪ ⎪ ⎪ ⎪⎨
⎪⎪⎪⎪ ⎪ ⎪ ⎩ 

c 0 = �L E L F c 
3 ( 1 − R 0 ) , 

c 1 = �c 2 [ a 5 L E ( 1 − R 0 I − R 0 E ) + a 6 L F ( 1 − R 0 I − R 0 F ) ] 
+ L E L F c 

2 [ χ( 1 − R 0 F − R 0 E ) + S 0 c ( 1 − R 0 ) ] ,
c 2 = aa 1 L E L F c 

3 ( 1 − R 0 F − R 0 E ) + χc [ a 5 L E ( 1 − R 0 E ) + a 6 L F ( 1 − R 0 F ) ] 
+ S 0 c 

2 ( 1 − R 0 I ) [ L E a 5 ( 1 − R 0 E ) + L F a 6 ( 1 − R 0 F ) ] ,
c 3 = a 5 a 6 χ + a 5 a 6 S 0 c ( 1 − R 0 I ) + aa 1 c [ L E a 5 ( 1 − R 0 E ) + L F a 6 ( 1 − R 0 F ) ] , 
c 4 = aa 1 a 5 a 6 . 

(32)

Then, it clearly appears that c i > 0, i ∈ {1, 2, 3, 4} when R 0 ≤ 1 . Therefore, when R 0 > 1 , the coefficients c i , i ∈ {1, 2, 3, 4} are

all negative. Consequently, the polynomial equation (25) has exactly one real positive solution when R 0 > 1 . 

Appendix C. Proof of Theorem 3 

In this Appendix, we give the proof of Theorem 3 on the local stability of the endemic equilibrium point of sys-

tem (7) . To do so, the following simplification and change of variables are made first to all. Let x 1 = S, x 2 = I 1 , x 3 =
I 2 , x 4 = R, x 5 = F V , x 6 = F B , x 7 = E V and x 8 = P so that N = x 1 + x 2 + x 3 + x 4 . Further, by using the vector notation x =
(x , x , x , x , x , x , x , x ) T , model system (7) can be written in the form ˙ x = f (x ) with f = ( f , f , f , f , f , f , f , f ) T as
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 



 

 

 

 

 

 

 

 

 

follows: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ x 1 = � + δx 4 − ( λ + μh ) x 1 , 
˙ x 2 = p 1 λx 1 − ω 1 x 2 , 
˙ x 3 = p 2 λx 1 − ω 2 x 3 , 
˙ x 4 = r 1 x 2 + r 2 x 3 − (δ + μh ) x 4 , 
˙ x 5 = α1 x 2 + α2 x 3 + ϕ v x 6 − M b F V ,
˙ x 6 = ϕ b x 5 − M v x 6 , 
˙ x 7 = ηx 5 + θv x 8 − N b x 7 , 
˙ x 8 = ηx 6 + θb x 7 − N v x 8 , 

(33) 

where λ = βF 
x 5 

x 5 + K f + βE 
x 7 

x 7 + K e + βI 
x 2 + x 3 

x 1 + x 2 + x 3 + x 4 . System (33) has a DFE given by Q 0 = ( S 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) where S 0 = 

�
μh 

. The

Jacobian of system (33) at the DFE Q 0 is 

J(Q 0 ) = 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μh −βI −βI δ −βF 
S 0
K F

0 −βE 
S 0
K E

0 

0 −(ω 1 − p 1 βI ) p 1 βI 0 p 1 βF 
S 0 
K F

0 p 1 βE 
S 0
K E

0 

0 p 2 βI −(ω 2 − p 2 βI ) 0 p 2 βF 
S 0 
K F 

0 p 2 βE 
S 0
K E

0 

0 r 1 r 2 −(δ + μh ) 0 0 0 0 

0 α1 α2 0 −M b ϕ v 0 0 

0 0 0 0 ϕ b −M v 0 0 

0 0 0 0 η 0 −N b θv 
0 0 0 0 0 η θb −N v

⎤
⎥⎥⎥⎥⎥ ⎥⎥⎥⎦

.

The basic reproduction number of the transformed (linearized) model system (33) is the same as that of the original model

given by Eq. (7) . Therefore, choosing β I as a bifurcation parameter by solving for β I when R 0 = 1 , one obtains 

βI = β∗
I = 

[
1 −

(
βF S 0 ( ϕ v +η+ D 1 ) 

K F ( η+ D 1 ) ( η+ D 1 + ϕ b + ϕ v ) 
+ 

βE S 0 η[ ( ϕ v +η+ D 1 ) ( θv + D 2 ) + ϕ b θv ]
K E D 2 ( D 2 + θb + θv ) ( η+ D 1 ) ( η+ D 1 + ϕ b + ϕ v ) 

)∑ 2
i =1

p i αi

ωi

]
ω 1 ω 2

p 1 ω 2 + p 2 ω 1 . (34) 

It follows that the Jacobian J( Q 0 ) of system (33) at the DFE Q 0 , with βI = β∗
I 
, denoted by J θ∗ has a simple zero eigenvalue

(with all other eigenvalues having negative real parts). Hence, the Centre Manifold theory [43] can be used to analyze the

dynamics of system (33) . In particular, the theorem in Castillo and Song [37] , reproduced below for convenience, will be

used to show that when R 0 > 1 there exists an endemic equilibrium of system (33) which is locally asymptotically stable

for R 0 near 1 under certain conditions. 

Theorem 4 (Castillo-Chavez and Song [42] ) . Consider the following general system of ordinary differential equations with a

parameter �: 

dz 

d t 
= f (x, �) , f : R 

n × R and f ∈ C 2 (R 

n , R ) , (35)

where 0 is an equilibrium point of the system (that is, f (0, �) ≡ 0 for all �) and assume 

1. A = D z f (0 , 0) =
(

∂ f i 
∂z j 

(0 , 0) 
)

is the linearization matrix of system (35) around the equilibrium 0 with � evaluated at 0. Zero

is a simple eigenvalue of A and other eigenvalues of A have negative real parts; 

2. Matrix A has a right eigenvector u and a left eigenvector v (each corresponding to the zero eigenvalue). Let f k be the k th

component of f and 

a = 

n ∑ 

k,i, j=1

v k u i u j 

∂ 2 f k 
∂x i ∂x j 

(0 , 0) and b = 

n ∑ 

k,i =1

v k u i 

∂ 2 f k 
∂x i ∂�

(0 , 0) , 

then, the local dynamics of the system around the equilibrium point 0 is totally determined by the signs of a and b. 

1. a > 0, b > 0 . When �< 0 with | �|  1, 0 is locally asymptotically stable and there exists a positive unstable equilibrium; when

0 < � 1, 0 is unstable and there exists a negative, locally asymptotically stable equilibrium;

2. a < 0, b < 0 . When �< 0 with | �|  1, 0 is unstable; when 0 < � 1, 0, is locally asymptotically stable equilibrium, and there

exists a positive unstable equilibrium;

3. a > 0, b < 0 . When �< 0 with | �|  1, 0 is unstable and there exists a locally asymptotically stable negative equilibrium; when

0 < � 1, 0 is stable, and a positive unstable equilibrium appears;

4. a < 0, b > 0 . When � changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a

negative unstable equilibrium becomes positive and locally asymptotically stable.

In order to apply the above theorem, the following computations are necessary (it should be noted that we are used β∗
I 

as the bifurcation parameter, in place of � in Theorem 4 ). 



 

 

 

Eigenvectors of J β∗
I 

: For the case when R 0 = 1 , it can be shown that the Jacobian of system (33) has a right eigenvector

(corresponding to the zero eigenvalue), given by U = (u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 , u 8 ) 
T , where 

u 1 = −ζ1 u 2 , u 2 = u 2 > 0 , u 3 = ζ3 u 2 , u 4 = ζ4 u 2 , u 5 = ζ5 u 2 , 

u 6 = ζ6 u 2 , u 7 = ζ7 u 2 and u 8 = ζ8 u 2 , 

where 

ζ1 = 

1 

μh 

[
1 − δr 1 

δ + μh 

+ p 2 ω 1

p 1 ω 2

(
1 − δr 2

δ + μh 

)
+ S 0

(
βF 

K F 

ζ5 + 

βE 

K E 

ζ7 

)]
, ζ3 = 

p 2 ω 1 

p 1 ω 2 

,

ζ4 = 

r 1 p 1 ω 2 + r 2 p 2 ω 1 

p 1 ω 2 ( δ + μh ) 
, ζ5 = 

(
ϕ v + η + D 1 

)
( α1 p 1 ω 2 + α2 p 2 ω 1 ) 

p 1 ω 2 

(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

) , ζ6 = 

ϕ b 

ϕ v + η + D 1 

ζ5 , 

ζ7 = 

η

(
(ϕ v + η + D 1 )(θv + D 2 ) + θv ϕ b 

)(
ϕ v + η + D 1 

)
D 2 ( D 2 + θb + θv ) 

ζ5 and ζ8 = 

θb (ϕ v + η + D 1 ) + (θb + D 2 ) ϕ b (
(ϕ v + η + D 1 )(θv + D 2 ) + θv ϕ b 

)ζ7 .

Similarly, the components of the left eigenvectors of J β∗
I 

(corresponding to the zero eigenvalue), denoted by V =
(v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 ) T , are given by 

v 1 = 0 , v 2 = v 2 > 0 , v 3 = �3 v 2 , v 4 = 0 , v 5 = �5 v 2 , v 6 = �6 v 2 , v 7 = �7 v 2 and v 8 = �8 v 2 ,
where 

�3 = 

p 1 β
∗
I α1 + α2 

(
ω 1 − p 1 β

∗
I 

)
p 2 β∗

I 
α2 + α1 

(
ω 2 − p 2 β∗

I 

) ,

�5 = 

(
ϕ v + η + D 1 

)
βF S 0 (p 1 + p 2 �3 ) + η

((
ϕ v + η + D 1 

)
�7 + ϕ v �8 

)
K F 

(
η + D 1

)(
η + D 1 + ϕ b + ϕ v 

)
�6 = 

ϕ v βE S 0 (p 1 + p 2 �3 ) + η

((
ϕ b + η + D 1 

)
�8 + ϕ v �7 

)
K E 

(
η + D 1 

)(
η + D 1 + ϕ b + ϕ v 

) ,

�7 = 

( θv + D 2 ) βE S 0 ( p 1 + p 2 �3 )

K E D 2 ( D 2 + θb + θv ) 
and �8 = 

θv 

θv + D 2 

�7

Using Eq. (34) we can easily deduce that ω 1 − p 1 β
∗
I 

> 0 and ω 2 − p 2 β
∗
I 

> 0 , this ensures the fact that �3 > 0

Computation of b : For the sign of b , it can be shown that the associated non-vanishing partial derivatives of f are 

∂ 2 f 1 
∂ x 2 ∂ β∗

I 

= −1 , 
∂ 2 f 1 

∂ x 3 ∂ β∗
I 

= −1 , 
∂ 2 f 2 

∂ x 2 ∂ β∗
I 

= p 1 , 
∂ 2 f 2 

∂ x 3 ∂ β∗
I 

= p 1 , 

∂ 2 f 3 
∂ x 2 ∂ β∗

I 

= p 2 and 

∂ 2 f 3 
∂ x 3 ∂ βI 

= p 2 . 

It follows that 

b = v 2 
∑ 8

i =1 u i 

∂ 2 f 2 
∂ x i ∂ β

∗
I 

+ v 3
8 ∑ 

i =1

u i 

∂ 2 f 3 
∂ x i ∂ β

∗
I 

,

= u 2 v 2 
(

1 + 

p 2 ω 1

p 1 ω 2 

)
( p 1 + �3 p 2 ) > 0 . 

Computation of a : For system (33) , the associated non-zero partial derivatives of f (at the DFE Q 0 ) are given by: 

∂ 2 f k +1 

∂ x 1 ∂ x 5 
= 

βF 

K F 

p k , 
∂ 2 f k +1 

∂ x 1 ∂ x 7 
= 

βE 

K E 

p k , 
∂ 2 f k +1 

∂ 2 x 2 
= 

−2 β∗
I pk

S 0 
,

∂ 2 f k +1 

∂ x 2 ∂ x 3 
= 

−2 β∗
I p k 

S 0 
,
∂ 2 f k +1 

∂ x 2 ∂ x 4 
= 

−β∗
I p k

S 0 
∂ 2 f k +1 

∂ 2 x 3 
= 

−2 β∗
I p k

S 0 
and 

∂ 2 f k +1 

∂ x 3 ∂ x 4 
= 

−β∗
I p k 

S 0 
for k ∈ { 1 , 2 } . 

It then follows that 

a = v 2 
8 ∑ 

j,i =1 

u i u j 

∂ 2 f 2 
∂x i ∂x j 

+ v 3
8 ∑ 

j,i =1

u i u j 

∂ 2 f 3 
∂x i ∂x j 

= −v 2 u 

2 
2

[
ζ1 ζ5 βF 

K F 

+ ζ1 ζ7 βE 

K E

+ 

2 β∗
I 

S 0 
+ 

2 ζ3 β
∗
I 

S 0 
+ ζ2 β

∗
I 

S 0

]
( p 1 + p 2 �3 ) < 0 . 

Thus, a < 0 and b > 0. So (by Theorem 4 , Item(4)) we have established the result about the local stability of the endemic

equilibrium of model system (7) . We point out that this result holds for R > 1 but close to 1. This achieves the proof. 
0 
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