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In this paper, we investigate the impact of environmental factors on the dynamical transmission of cholera within a human community. We propose a mathematical model for the dynamical transmission of cholera that incorporates the virulence of bacteria and the commensalism relationship between bacteria and the aquatic reservoirs on the persistence of the disease. We provide a theoretical study of the model. We derive the basic reproduction number R 0 which determines the extinction and the persistence of the infection. We show that the disease-free equilibrium is globally asymptotically stable whenever R 0 ≤ 1 , while when R 0 > 1 , the disease-free equilibrium is unstable and there exists a unique endemic equilibrium point which is locally asymptotically stable on a positively invariant region of the positive orthant. The sensitivity analysis of the model has been performed in order to determine the impact of related parameters on outbreak severity. Theoretical results are supported by numerical simulations, which further suggest the necessity to implement sanitation campaigns of aquatic environments by using suitable products against the bacteria during the periods of growth of aquatic reservoirs.

Introduction

Cholera was largely eliminated from industrialized countries by water and sewage treatment over a century ago. Today, it remains a significant cause of morbidity and mortality in developing countries, where it is a marker for inadequate drinking water and sanitation infrastructure. After several years of steady increase from 2007, the number of cholera cases reported by the World Health Organization (WHO), as well as the number of countries which reported cholera cases, showed a considerable decrease [1] . Yet, the disease is still a threat to many countries. For instance in 2012 alone, a cumulative total of 245,393 cases, including 3034 deaths with a case-fatality rate of 1.2%, were reported by WHO from all continents. This involves 48 countries among which, 27 from Africa, 12 from Asia, 6 from Americas and 3 from Europe and Oceania. Furthermore, the recent cholera outbreaks in the following countries led to a large number of infectious and deaths [1] : Angola (2012), Cameroon (2010Cameroon ( -2012)), Congo (2008Congo ( , 2012)), Haiti (2010Haiti ( -2011)), India (2007), Iraq (2008,2012), Kenya (2010), Nigeria (2010), Philippines (2012), UK (2012), Vietnam (2009) and Zimbabwe (2008Zimbabwe ( -2009)).

Vibrio cholerae ( V. cholerae ) is a Gram-negative, comma-shaped bacterium that causes cholera in humans. Cholera is an acute intestinal infection caused by the ingestion of contaminated foods and water with V. cholerae bacterium. Among the 200 serogroups of V. cholerae , only V. cholerae O1 and O139 are responsible of cholera disease [START_REF] Janny | Cholera epidemic in africa: analysis of a multifactorial etiology[END_REF] . The etiological agent passes through and survives the gastric acid barrier of the stomach and then penetrates the mucus lining that coats the epithelium [START_REF] Reidl | Vibirio cholerae and cholera : out of the water and into the host[END_REF] . Once they colonise the intestinal gut, they produce enterotoxin (which stimulates water and electrolyte secretion by the endothelial cells of the small intestine) that leads to watery diarrhea. If left untreated, it leads to death within hours. In human volunteer studies, the infection dose was determined to be 10 8 -10 11 cells [START_REF] Libonati | Response of man to infection with vibrio cholerae: clinical, serologic, and bacteriologic responses to a known inoculum[END_REF] . Cholera is characterized, in its most severe form, by the sudden onset of acute watery diarrhea that can lead to death by severe dehydration. V. cholerae can stay in faeces without losing its infectious ability for 7-14 days and shed back to the environment. The main reservoirs of V. cholerae are people and aquatic sources.

It has been discovered that environmental aquatic bacteria such as V. Cholerae O1 and V. cholerae non-O1 have ability to survive to the stress caused by the variation of some environmental factors, such as temperature, pH or the lack of nutritional resources [START_REF] Grimes | Viable, but non-culturable vibrio cholerae and related pathogens in the environment: implication forrelease of genetically engineered microorganisms[END_REF][START_REF] Xu | Survival and viability of non-culturable escherichia coli and vibrio cholerae in the estuarine and marine environment[END_REF] . The adaptation of these bacteria to their environment will lead to metabolic and phenotypic changes that will condition their survival; what can be compared to a phenomenon of dormancy. Cells are considered "viable but non-culturable " (VNC) because the main effect of this change is the loss of the ability to be cultivated on a bacteriological culture medium [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] . This dormancy state has been considered for many species of bacteria as a survival strategy in the natural environment [START_REF] Grimes | Viable, but non-culturable vibrio cholerae and related pathogens in the environment: implication forrelease of genetically engineered microorganisms[END_REF][START_REF] Xu | Survival and viability of non-culturable escherichia coli and vibrio cholerae in the estuarine and marine environment[END_REF][START_REF] Chava | Response and tolerance of toxigenic vibro cholerae o1 to cold temperatures[END_REF][START_REF] Rahman | Detection of vibrio cholerae o1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods[END_REF][START_REF] Mukundan | Ecological study of vibrio cholerae in vellore[END_REF] . The state change to the cultivable state is possible particularly if the factors causing stress become favorable to the development and growth of the bacterial population. This phenomenon implies to reconsider the thinking concerning the survival of pathogenic bacteria scattered into the environment and its dynamics in the aquatic ecosystem. This cell viability (VNC) is considered as a possible hypothesis at the origin of "disappearance" of the bacteria of the aquatic ecosystem during the colder months. Also, in the aquatic environment, V. cholerae has been reported to be associated with a variety of living organisms, including animals with an exoskeleton of chitin, aquatic plants, protozoa, bivalves, waterbirds, as well as abiotic substrates (e.g. sediments). Most of these are well-known or putative environmental reservoirs for the bacterium, defined as places where the pathogen lives over time, with the potential to be released and to cause human infection. Thus, the bacteria are strongly associated with the population of phytoplankton and zooplankton organisms forming commensal, antagonism, parasitism, competition, or symbiotic relationships. In this work, we will focus on the commensalism relationship between phytoplankton and V. cholerae . This commensalism relationship greatly enhances the bacterium's ability to survive in an aquatic environment, as the exoskeleton provides the bacterium with an abundant source of carbon and nitrogen.

The dynamics of cholera are complex due to the multiple interactions between the human host and the pathogen in the water environment [START_REF] Chava | Response and tolerance of toxigenic vibro cholerae o1 to cold temperatures[END_REF][START_REF] Rahman | Detection of vibrio cholerae o1 in the aquatic environment by fluorescent-monoclonal antibody and culture methods[END_REF][START_REF] Mukundan | Ecological study of vibrio cholerae in vellore[END_REF][START_REF] Small | Influence of water temperature, salinity, and ph on survival and growth of toxigenic vibrio cholerae serovar o1 associated with live copepods in a laboratory microcosms[END_REF][START_REF] Morris | Cholera transmission : the 443 host, pathogen and bacteriophage dynamics[END_REF][START_REF] De Magny | Role of zooplankton diversity in vibrio cholerae population dynamics and in the incidence of cholera in the bangladesh sundarbans[END_REF][START_REF] Kirschner | Rapid growth of planktonic vibrio cholerae non-o1/non-o139 strains in a large alkaline lake in austria: dependence on temperature and dissolved organic carbon quality[END_REF][START_REF] Huq | Ecological relationships between vibrio cholerae and planktonic crustacean copepods[END_REF][START_REF] Chowdhury | Effect of alum on free-living and copepod-associated vibrio cholerae o1 and o139[END_REF][START_REF] Hunt | Conservation of the chitin utilization pathway in the vibrionaceae[END_REF][START_REF] Dobson | Cholera and climate : revisiting the quantitative evidence[END_REF][START_REF] David | Hyperinfectivity: a critical element in the ability of v. cholerae to cause epidemics?[END_REF] , which contributes to both direct and indirect transmission pathways. Many studies supported that V. cholerae O1 and O139 are commensal to crustacean zooplankton, notably copepods, which are present both in their gut and in biofilms on their chitinous surfaces [START_REF] Mukundan | Ecological study of vibrio cholerae in vellore[END_REF][START_REF] Small | Influence of water temperature, salinity, and ph on survival and growth of toxigenic vibrio cholerae serovar o1 associated with live copepods in a laboratory microcosms[END_REF][START_REF] Morris | Cholera transmission : the 443 host, pathogen and bacteriophage dynamics[END_REF][START_REF] De Magny | Role of zooplankton diversity in vibrio cholerae population dynamics and in the incidence of cholera in the bangladesh sundarbans[END_REF][START_REF] Kirschner | Rapid growth of planktonic vibrio cholerae non-o1/non-o139 strains in a large alkaline lake in austria: dependence on temperature and dissolved organic carbon quality[END_REF][START_REF] Huq | Ecological relationships between vibrio cholerae and planktonic crustacean copepods[END_REF][START_REF] Chowdhury | Effect of alum on free-living and copepod-associated vibrio cholerae o1 and o139[END_REF][START_REF] Hunt | Conservation of the chitin utilization pathway in the vibrionaceae[END_REF] . Furthermore, V. cholerae is present throughout the year in and on its zooplankton host, and V. cholerae serogroup O1 has been shown to attach preferentially to zooplankton, but also to some species of phytoplankton in waters [START_REF] Chowdhury | Effect of alum on free-living and copepod-associated vibrio cholerae o1 and o139[END_REF] . Its commensal existence provides protection from grazing by heterotrophic nanoflagellates and also from toxic chemicals, including those used to disinfect drinking water, such as alum and chlorine [START_REF] Hunt | Conservation of the chitin utilization pathway in the vibrionaceae[END_REF] . V. cholerae, like all Vibrio species, produces chitinase(s), with chitin serving as a nutrient source [START_REF] Dobson | Cholera and climate : revisiting the quantitative evidence[END_REF] . Also, Kirschner et al. demonstrated that association with zooplankton is important for V. cholerae non-O1/non-O139 serogroup isolates endemic in Neusiedler See, a large, shallow, moderately saline-alkaline lake in Central Europe [START_REF] Kirschner | Rapid growth of planktonic vibrio cholerae non-o1/non-o139 strains in a large alkaline lake in austria: dependence on temperature and dissolved organic carbon quality[END_REF] . A significant correlation was observed between the seasonal pattern in frequency of occurrence of V. cholerae and increased zooplankton biomass [START_REF] Kirschner | Rapid growth of planktonic vibrio cholerae non-o1/non-o139 strains in a large alkaline lake in austria: dependence on temperature and dissolved organic carbon quality[END_REF] . A deep understanding of the disease dynamics would have a significant impact on the effective prevention and control strategies [START_REF] Dobson | Cholera and climate : revisiting the quantitative evidence[END_REF][START_REF] David | Hyperinfectivity: a critical element in the ability of v. cholerae to cause epidemics?[END_REF] . Mathematical modeling and numerical simulations have the potential, and offer a promising way, to achieve this. Many efforts have been and are still being devoted to the modeling of this disease. For a chronological history of the modeling of cholera, we refer the reader to the work [START_REF] Zhou | Mathematical analysis of a cholera model with vaccination[END_REF] which mentions the first mathematical model developed in [START_REF] Wang | Estimating the basic reproduction number for the 20 08-20 09 cholera outbreaks in zimbabwe[END_REF][START_REF] Zhou | Mathematical analysis of a cholera model with vaccination[END_REF][START_REF] Cazelle | Modeling environmental impacts of plankton reservoirs on cholera population dynamics[END_REF][START_REF] Paveri-Fontana | A model for the 1973 cholera epidemic in the european mediterranean region[END_REF][START_REF] Codeço | Endemic and epidemic dynamics of cholera : the role of the aquatic reservoir[END_REF][START_REF] Bayleyegn | A mathematical analysis of a model of cholera transmission dynamics[END_REF] . Some theoretical studies have been carried out on the mathematical modeling of cholera transmission dynamics [START_REF] Bhunu | Is hiv infection associated with an increased risk for cholera? insights from a mathematical model[END_REF][START_REF] Tchuenche | Mathematical analysis of a cholera model with public health interventions[END_REF][START_REF] Musekwa | Modelling and analysis of the effects of malnutrition in the spread of cholera[END_REF][START_REF] Nyabadza | A metapopulation model for cholera transmission dynamics between communities linked by migration[END_REF] . To our best knowledge, none of these mentioned works on cholera models have considered the change of metabolism of bacteria and the commensal relationships between bacteria and the population of phytoplankton and zooplankton.

In this paper, we explore the impact of environmental factors on the dynamical transmission of cholera within a human community. We formulate a mathematical model for cholera disease, which incorporates some key epidemiological and biological features of the disease such as the waning of recovery-induced immunity of recovered individuals, the virulence of bacteria and the commensal relationships between bacteria and the population of phytoplankton and zooplankton. We present the theoretical analysis of the model. We compute the disease-free equilibrium and derive the basic reproduction number R 0 that depends on the rate of appearance and loss of virulence of bacteria and the carrying capacity of the population of phytoplankton and zooplankton. We do an in-depth analysis of the global asymptotic stability of the disease-free equilibrium and the local asymptotic asymptotical stability of the endemic equilibrium. The sensitivity analysis of the model is carried out to identify the most influential parameters on the model output variables, that is the most robust estimations that are required. Numerical simulations are presented to support the theory and to get insight on the role of the virulence of bacteria and the commensal relationship between bacteria and the population of phytoplankton and zooplankton on the dynamics of the disease. Through numerical simulations, we found that the virulence of bacteria can increases the number of infected individuals and the mechanism of interaction between V. cholerae and environmental reservoirs would be the critical factor in the hatching of these bacteria in the environment.

The rest of the paper is organized as follows. After the formulation of the model in Section 2 , we present its quantitative and qualitative analysis in Section 3 . Numerical simulations are provided in Section 4 . The last Section is devoted to concluding remarks on how our work fits in the literature.

Model formulation

We consider a heterogeneous population formed of humans, vibrio cholera and environmental reservoirs (i.e. the population of phytoplankton and zooplankton). The proposed model classifies the human population according to their disease status, namely: susceptible individuals S , symptomatic infected individuals with cholera I 1 , asymptomatic infected individuals with cholera I 2 and recovered individuals R . Thus, the total human population at time t is given by

N(t ) = S(t ) + I 1 (t) + I 2 (t) + R (t) . (1)
The population of bacteria is divided into four subclasses with different properties: free virulent bacteria F V (i.e. free in the environment and can infect susceptible individuals), free benign bacteria F B (i.e. free in the water but cannot infect susceptible individuals), environmental virulent bacteria E V (i.e. fixed in aquatic resources and can infect susceptible individuals) and environmental benign bacteria E B (i.e. fixed in aquatic resources and cannot infect susceptible individuals). Thus, the total population of bacteria at time t is

B (t) = F V (t) + F B (t) + E V (t) + E B (t) . ( 2 
)
The populations of phytoplankton and zooplankton at time t is denoted by P ( t ).

Susceptible individuals are recruited through birth and immigration at constant rate . The source of infection is through oral ingestion of faecal contaminated water or food. Susceptible individuals may become infected either by contact with infected individuals or by ingestion of V. Cholerae content in the surrounding waters, infected fruits, vegetables and crustacean.

Thus, the infection is regulated by the exposure with free pathogenic vibrios and infected water food at rates β F and β E per unit of time through the logistic dose-response F V / (F V + K F ) and E V / (E V + K E ) where K F and K E are respectively, the concentrations of free virulent and environmental virulent bacteria that yield 50% of chance for a susceptible individual to catch the infection [START_REF] Cazelle | Modeling environmental impacts of plankton reservoirs on cholera population dynamics[END_REF] . Also, infected individual generates secondary infections through direct contact with susceptible individuals at rate β I (I 1 + I 2 ) /N, where β I is the human-to-human per capita contact rate per unit time. Thus, the force of infection is

λ = β F F V F V + K F + β E E V E V + K E + β I I 1 + I 2 N . ( 3 
)
We assume that a proportion p of newly infected individuals becomes symptomatic infected individuals and the complementary part (1p) becomes asymptomatic infected individuals and enters the I 2 class. Once infected, asymptomatic and symptomatic individuals I 1 and I 2 can recover from the disease at constant rates r 1 and r 2 , respectively. As suggested by many studies in the literature, recovered individuals may only have partial immunity [START_REF] Janny | Cholera epidemic in africa: analysis of a multifactorial etiology[END_REF][START_REF] Bayleyegn | A mathematical analysis of a model of cholera transmission dynamics[END_REF][START_REF]Campus de microbiologie medicale[END_REF][START_REF] Garnotel | Cholera[END_REF] . Since the recover from the disease does not confer a total immunity to recovered individuals, recovered individuals loss their protection and return to the susceptible class S at rate δ. However, it is important to point out that there is no yet a vaccine inducing a long-term protection against cholera [START_REF] Garnotel | Cholera[END_REF] . Infected individuals I 1 and I 2 contribute to the concentration of vibrios at constant rates α 1 and α 2 , respectively. Susceptible, infected and recovered individuals have the same natural death rate μ h . Symptomatic infected individuals die because of disease at constant rate d .

For the population of bacteria, when living conditions are unfavorable, pathogenic vibrios, i.e. those in the classes F V and E V become benign and enter the F B and E B classes at constant rates ϕ b and θ b , respectively. Also, when living conditions become favorable, benign bacteria, i.e. those in the F B and E B classes become pathogenic and move to the F V and E V classes at constant rates ϕ v and θ v , respectively. Pathogens are assumed to grow and decay at the same rates g and μ b , respectively. Experimentally, it has been prove that μ b > g [START_REF] Morris | Cholera transmission : the 443 host, pathogen and bacteriophage dynamics[END_REF] . We assume that free virulent and benign bacteria, i.e. those in the F V and F B classes become environmental virulent and benign bacteria (i.e. those in the E V and E B classes) by clinging on the population of phytoplankton and zooplankton at rate ηP/ (Q f + P ) where η is the force of commensalism of environmental virulent and benign bacteria with respect to the population of phytoplankton and zooplankton per unit of time and Q f a positive constant. Without loss of generality, we assume that a proportion ε of environmental bacteria (i.e. those in the E V and E B classes) takes advantage of their association with the populations of phytoplankton and zooplankton to face stress caused by climatic conditions. Thus, the environmental virulent and benign bacteria survive at rate ε ( μ bg ) du to their commensal relationship with the populations of phytoplankton and zooplankton. We assume that the population of phytoplankton and zooplankton experiences a logistic growth with a carrying capacity M p and maximum growth rate r .

The structure of the model is shown in Fig. 1 . The dashed arrow indicates contamination of the environment by infected humans. The dynamics of the disease can be described by the following system of non linear differential equations:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ˙ S = + δR -( λ + μ h ) S, ˙ I 1 = pλS -(μ h + r 1 + d) I 1 , ˙ I 2 = (1 -p) λS -(μ h + r 2 ) I 2 , ˙ R = r 1 I 1 + r 2 I 2 -(δ + μ h ) R, ˙ F V = α 1 I 1 + α 2 I 2 + ϕ v F B -D 1 + ϕ b + η P Q f + P F V , ˙ F B = ϕ b F V -D 1 + ϕ v + η P Q f + P F B , ˙ E V = η P Q f + P F V + θ v E B -( D 2 + θ b ) E V , ˙ E B = η P Q f + P F B + θ b E V -( D 2 + θ v ) E B , ˙ P = rP (1 -P M p ) , ( 4 
)
where λ is defined as in Eq. ( 3) ,

D 1 = μ b -g and D 2 = D 1 .
First of all, let us recall some useful results that we will use in the sequel.

Definition 1. Consider the following systems in

x ∈ R n : ˙ x = f (t, x ) , (5) 
˙ y = g(y ) , [START_REF] Xu | Survival and viability of non-culturable escherichia coli and vibrio cholerae in the estuarine and marine environment[END_REF] where f and g are continuous and locally Lipschitz functions in x so that the solutions exist for all t ≥ 0. System (5) is called asymptotically autonomous with limit system (6

) if f ( t, x ) → g ( y ) as t → ∞ uniformly in x ∈ R n .
Lemma 1 [START_REF] Thieme | Convergence results and a poincaré bendixson trichotomy for asymptotically autonomous differential equations[END_REF] . Let x e be a locally asymptotically stable equilibrium of ( 6) and ω the ω-limit set of a forward bounded solution x ( t ) of [START_REF] Grimes | Viable, but non-culturable vibrio cholerae and related pathogens in the environment: implication forrelease of genetically engineered microorganisms[END_REF] . If ω contains a point y 0 such that the solution y of [START_REF] Xu | Survival and viability of non-culturable escherichia coli and vibrio cholerae in the estuarine and marine environment[END_REF] , with y (0) = y 0 converges to x e as t → ∞ , then ω = { x e } , i.e.

x ( t ) → x e as t → ∞ .

Corollary 1 [START_REF] Thieme | Convergence results and a poincaré bendixson trichotomy for asymptotically autonomous differential equations[END_REF] . If the solutions of system [START_REF] Grimes | Viable, but non-culturable vibrio cholerae and related pathogens in the environment: implication forrelease of genetically engineered microorganisms[END_REF] are bounded and the equilibrium x e of the limit system ( 6) is globally asymptotically stable, then every solution x ( t ) of the system (5) satisfies x ( t ) → x e as t → ∞ . Since P * = M p is a globally asymptotically stable equlibrium of the population dynamics of phytoplankton and zooplankton ˙

P = rP (1 -P M p ) then P ( t ) → M p as t → + ∞ uniformly. Therefore, from Lemma 1 and Corollary 1 , model system (4) is reduced to ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ˙ S = + δR -( λ + μ h ) S, ˙ I 1 = p 1 λS -ω 1 I 1 , ˙ I 2 = p 2 λS -ω 2 I 2 , ˙ R = r 1 I 1 + r 2 I 2 -(δ + μ h ) R, ˙ F V = α 1 I 1 + α 2 I 2 + ϕ v F B -ϕ b + η + D 1 F V , ˙ F B = ϕ b F V -ϕ v + η + D 1 F B , ˙ E V = η F V + θ v E B -( θ b + D 2 ) E V , ˙ E B = η F B + θ b E V -( θ v + D 2 ) E B , (7) 
where

p 1 = p, p 2 = 1 -p, ω 1 = μ h + r 1 + d , ω 2 = μ h + r 2 and η = η M p Q f + M p .
The parameter values used for numerical simulations are given in Table 1 .

Mathematical analysis

Basic properties

Positivity of solutions

We investigate the asymptotic behavior of orbits starting in the nonnegative cone R 8 + . Obviously, model system (7) which is a C ∞ differential system, admits a unique maximal solution for any associated Cauchy problem.

Theorem 1. Let (t 0 = 0 , X 0 = (S(0) , I 1 (0) , I 2 (0) , R (0) , F V (0) , F B (0) , E V (0))) ∈ R × R 8 + and for T ∈ ]0 , + ∞ ] , ([0 , T [ , X = (S(t) , I 1 (t) , I 2 (t) , R (t) , F V (t) , F B (t) , E V (t) , E B (t))
) the maximal solution of the Cauchy problem associated to model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] . Then,

∀ t ∈ [0; T [, X (t) ∈ R 8 + Proof. Let = ˜ t ∈ [0 ; T [ | S(t ) > 0 , I 1 (t) > 0 , I 2 (t) > 0 , R (t) > 0 , F V (t) > 0 , F B (t) > 0 , E V (t) > 0 and E B (t) > 0 ∀ t ∈ ]0 , ˜ t [ . By continuity of function S, I 1 , I 2 , R, F V , F B , E V and E B , one can see that = ∅ . Let ˜ T = sup . Now, we are going to show that ˜ T = T . Suppose ˜ T < T , then one has that S, I 1 , I 2 , R, F V , F B , E V and E B are non negative on [0 ; ˜ T [ . At ˜ T , at least one of the following conditions is satisfied S( ˜ T ) = 0 , I 1 ( ˜ T ) = 0 , I 2 ( ˜ T ) = 0 , R ( ˜ T ) = 0 , F V ( ˜ T ) = 0 , F B ( ˜ T ) = 0 , E V ( ˜ T ) = 0 and E B ( ˜ T ) = 0 .
Suppose S( ˜ T ) = 0 , then from the first equation of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] , one has

d dt Se t 0 ( λ(r)+ μ h ) dr = ( + δR ) e t 0 ( λ(r)+ μ h ) dr . ( 8 
)
Integrating Eq. ( 8) from 0 to ˜ T yields

S( ˜ T ) = e -˜ T 0 ( λ(r)+ μ h ) dr S(0) + T 0 e t 0 ( λ(r)+ μ h ) dr . ( + δR (t )) dt > 0 .
Similarly, one can show that

I 1 ( ˜ T ) > 0 , I 2 ( ˜ T ) > 0 , R ( ˜ T ) > 0 , F V ( ˜ T ) > 0 , F B ( ˜ T ) > 0 , E V ( ˜ T ) > 0 and E B ( ˜ T ) > 0 .
This is a contradiction. Then, ˜ T = T and consequently the maximal solution ( S ( t ),

I 1 ( t ), I 2 ( t ), R ( t ), F V ( t ), F B ( t ), E V ( t ), E B ( t ))
T of the Cauchy problem associated to model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] is positive. This achieves the proof.

Invariant region

We first split model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] into two parts, the human population (i.e. S ( t ), I 1 ( t ), I 2 ( t ) and R ( t )) and the pathogen population (i.e. F V ( t ), F B ( t ), E V ( t ) and E B ( t )). Then, using model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] , the dynamics of the total human population satisfy

˙ N = -μ h N -dI 1 ≤ -μ h N. ( 9 
)
Integrating the above differential inequality yields

0 ≤ N(t ) ≤ μ h + N(0) -μ h e -μ h t , ∀ t ≥ 0 , where N (0) is the initial value of N ( t ). It implies that 0 ≤ N(t ) ≤ μ for all t ≥ 0 if N(0) ≤ μ
. Now, using the fact that

I 1 ( t ) ≤ / μ h and I 2 ( t ) ≤ / μ h , the dynamics of bacteria satisfies ˙ B ≤ α μ h -ξ B, (10) 
where

α = max { α 1 , α 2 } and ξ = min { D 1 , D 2 } . Integrating Eq. (10) gives 0 ≤ B (t) ≤ α ξμ h + B (0) - α ξμ h e -ξ t , ∀ t ≥ 0 ,
where B (0) represents the initial value of B ( t ). It then follows that

B (t) ≤ α ξμ h for all t ≥ 0 if B (0) ≤ α ξμ h
. Thus, the region:

= (S, I 1 , I 2 , R, F V , F B , E V , E B ) ∈ R 8 + , N ≤ μ h and B ≤ α ξμ h , ( 11 
)
is positively invariant and attracting for model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] . Then, it is sufficient to consider the dynamics of the flow generated by model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] in .

Remark 1. Every maximal solution of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] are global.

Disease-free equilibrium and its stability

Model system (7) has a disease-free equilibrium obtained by setting the right-hand side of equations in model system (7) to zero with I 1 = I 2 = 0 . The disease-free equilibrium is Q 0 = ( S 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , [START_REF] Morris | Cholera transmission : the 443 host, pathogen and bacteriophage dynamics[END_REF] where S 0 = μ h .

The linear stability of Q 0 is governed by the basic reproductive number [START_REF] Rota | Ordinary differential equations[END_REF][START_REF] Schmitt | Permanence and the dynamics of biological systems[END_REF] . The stability of this equilibrium will be investigated using the next generation operator [START_REF] Simon | Qualitative theory of compartmental systems[END_REF][START_REF] Watmough | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF] . Using the notations in van den Driessche and Watmough [START_REF] Watmough | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF][START_REF] Plemmons | Nonnegative matrices in the mathematical sciences[END_REF] for model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] , the Jacobian matrices F and V at the DFE for the new infection and remaining transfer terms are, respectively given by

F = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ p 1 β I p 1 β I p 1 S 0 β F K F 0 p 1 S 0 β E K E 0 p 2 β I p 2 β I p 2 S 0 β F K F 0 p 2 S 0 β E K E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ V = ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ ω 1 0 0 0 0 0 0 ω 2 0 0 0 0 -α 1 -α 2 M b -ϕ v 0 0 0 0 -ϕ b M v 0 0 0 0 -η 0 N b -θ v 0 0 0 -η -θ b N v ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ , where M b = ϕ b + η + D 1 , M v = ϕ v + η + D 1 , N v = θ v + D 2 and N b = θ b + D 2 .
Following Van den Driessche and Watmough [START_REF] Watmough | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF] , the basic reproduction number of model system ( 7) is

R 0 = ρ(F V -1 ) = R 01 + R 02 , ( 13 
)
where ρ(F V -1 ) is the spectral radius of the next generation matrix F V -1 , R 01 and R 02 are respectively, the symptomatic infection and asymptomatic infection induced basic reproduction numbers given by

R 0 i = β I p i ω i + β F p i α i S 0 ϕ v + η + D 1 ω i K F η + D 1 η + D 1 + ϕ b + ϕ v (14) + β E p i α i S 0 η ϕ v + η + D 1 ( θ v + D 2 ) + ϕ b θ v ω i K E D 2 ( D 2 + θ b + θ v ) η + D 1 η + D 1 + ϕ b + ϕ v , i ∈ { 1 , 2 } . ( 14 
)
The threshold quantity R 0 measures the average number of new cholera infections generated by a single infective in a completely susceptible population without any intervention.

The relevance of the reproduction number is due to the following result established from Theorem 2 in [START_REF] Watmough | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF] .

Lemma 2. The disease-free equilibrium Q 0 of model system ( 7) is locally asymptotically stable in whenever R 0 ≤ 1 and unstable whenever R 0 > 1 .

The biological implication of Lemma 2 is that a sufficiently small flow of infectious individuals will not generate outbreak of the disease unless R 0 > 1 . For a better control on the disease, the global asymptotic stability (GAS) of the DFE is needed. Actually, enlarging the basin of attraction of Q 0 to be the entire is, for the model under consideration a more challenging task involving relatively new result. We use the result of Kamgang and Sallet [START_REF] Kamgang | Contribution à la stabilité des systèmes mécaniques, contribution à l'étude de la stabilité des modèles épidémiologiques[END_REF][START_REF] Sallet | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF] for the global stability of the diseasefree equilibrium for a class of epidemiological models.

Using the result of Kamgang and Sallet [START_REF] Sallet | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF] , model system ( 7) can be written in the following form:

˙

x s = A 1 (x )(x s -x 0 s ) + A 12 (x ) x i , ˙ x i = A 2 (x ) x i , (15) 
where x s = (S, R ) T represents the class of non infected individuals (i.e. susceptible and recovered individuals),

x i = (I 1 , I 2 , F V , F B , E V , E B )
T represents the class of infected individuals (i.e. symptomatic infected individuals, asymptomatic infected individuals, virulent-free bacteria, benign-free bacteria, virulent-environmental bacteria and benign-environmental bacteria), x = (x s , x i ) T and x 0 s = (S 0 , 0) with S 0 the non zero component of the disease-free equilibrium. Matrice A 1 ( x ), A 12 ( x ) and A 2 ( x ) in Eq. ( 15) are defined by

A 1 (x ) = -(μ h + λ) δ 0 -(δ + μ h ) , A 12 (x ) = -β I S 0 N -β I S 0 N -β F S 0 F V + K F 0 -β F S 0 E V + K E 0 r 1 r 1 0 0 0 0 and A 2 (x ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -ω 1 + p 1 β I S N p 1 β I S N p 1 β F S F V + K F 0 p 1 β E S E V + K E 0 p 2 β I S N -ω 2 + p 2 β I S N p 2 β F S F V + K F 0 p 2 β E S E V + K E 0 α 1 α 2 -ϕ b -η -D 1 ϕ v 0 0 0 0 ϕ b -ϕ v -η -D 1 0 0 0 0 η 0 -θ b -D 2 θ v 0 0 0 η θ b -θ v -D 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
The conditions H 1 -H 5 below must be met to guarantee the global asymptotic stability (GAS) of Q 0 .

H 1 : Model system ( 15) is defined on a positively invariant set D of the nonnegative orthant. Model system ( 15) is dissipative on D. H 2 : The sub-system ˙

x s = A 1 (x s , 0)(x s -x 0
s ) is globally asymptotically stable at the equilibrium x 0 s on the canonical projection of D on R 2

+ . H 3 : The matrix A 2 ( x ) is Metzler (A Metzler matrix is a matrix with off-diagonal entries nonnegative [33,[START_REF] Pascual | In apparent infections and cholera dynamics[END_REF] ) and irreducible for any given x ∈ D.

H 4 : There exists an upper-bound matrix A 2 for M = { A 2 (x ) | x ∈ D } with the property that either:

A 2 / ∈ M or if A 2 ∈ M then for any x ∈ D such that A 2 = A 2 (x ) , x ∈ R 2 + × { 0 } (i.
e. the points where the maximum is realized are contained in the disease-free sub-manifold).

H 5 : ρ( A 2 ) ≤ 0 where ρ( A 2 ) denotes the largest real part of the eigenvalues of A 2 .

The result of Kamgang-Sallet approach [START_REF] Sallet | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF] uses the algebraic structure of model system [START_REF] Huq | Ecological relationships between vibrio cholerae and planktonic crustacean copepods[END_REF] , namely the fact that A 1 ( x ) and A 2 ( x ) are Metzler matrices. Since in the said approach the matrix A 2 ( x ) is required to be irreducible, we further restrict the domain of the system to:

D = { ( x s , x i ) ∈ , x s = 0 } . ( 16 
)
The set D is positively invariant because only the initial point of any trajectory can have x s = 0 (see Theorem 1 ). Indeed, from the first and fourth equations of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] , one has S > 0 and R > 0 whenever S = 0 and R = 0 . Therefore, we restrict the domain of system [START_REF] Huq | Ecological relationships between vibrio cholerae and planktonic crustacean copepods[END_REF] to D where A 2 ( x ) irreducible. Thus, one has that A 2 (x ) is Metzler and irreducible for all x ∈ D. [START_REF] Hunt | Conservation of the chitin utilization pathway in the vibrionaceae[END_REF] The sub-system: ˙

x s = A 1 (x s , 0)(x s -x 0 s ) , is equivalent to ˙ S = + δR -μ h S, ˙ R = -(δ + μ h ) R. ( 18 
)
Resolving the above equations and taking the limit of solutions when t go to infinity yields lim

t→ + ∞ S(t ) = μ and lim t→ + ∞ R (t) = 0 .
Therefore,

x 0 s = (S 0 , 0) is a globally asymptotically stable equilibrium of the reduced system (18) on the sub-domain D.

(

) 19 
Then, the hypothesis H 2 is satisfied. The theorem of Kamgang and Sallet (see [START_REF] Sallet | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF] , Theorem 4.3) gives the GAS of the DFE of a dissipative system of the form (15) which satisfies ( 17) and ( 19) provided there exists a matrix A 2 ( x ) with the following additional properties:

⎧ ⎨ ⎩ A 2 (x ) ≤ Ā 2 , x ∈ D, if A 2 ( x ) = Ā 2 for some x = ( x 1 , x 2 ) T ∈ D then x 2 = 0 , α( Ā 2 ) ≤ 0 . ( 20 
)
The equality A 2 (x ) = A 2 is possible only when S = N = S 0 and F v = E v = 0 which implies that x i = 0 . Therefore, the first and second conditions in [START_REF] Wang | Estimating the basic reproduction number for the 20 08-20 09 cholera outbreaks in zimbabwe[END_REF] hold. Note that Ā 2 is a Metzler matrix which satisfies the stability condition of Kamgang and Sallet [START_REF] Sallet | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF] . Now, using the fact that

S N ≤ 1 , S F V + K F ≤ S 0 K F and S E V + K E ≤ S 0 K E , one has A 2 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -ω 1 + p 1 β I p 1 β I p 1 β F S 0 K F 0 p 1 β E S K E 0 p 2 β I -ω 2 + p 2 β I p 2 β F S 0 K F 0 p 2 β E S 0 K E 0 α 1 α 2 -ϕ b -η -D 1 ϕ v 0 0 0 0 ϕ b -ϕ v -η -D 1 0 0 0 0 η 0 -θ b -D 2 θ v 0 0 0 η θ b -θ v -D 2 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
From the above expression of Ā 2 , one can observe that there is a maximum which is uniquely realized in D at Q 0 and this maximum is then the block of the Jacobian of model system (15) at the disease-free equilibrium Q 0 , corresponding to the matrix A 2 ( x ), and the condition H 4 is satisfied. Now, we check the condition H 5 . Note that the condition ρ( A 2 ) ≤ 0 implies that A 2 is a stable Metzler matrix. We show in Appendix A that the condition ρ( A 2 ) ≤ 0 is equivalent to R 0 ≤ 1 .

We can now apply Theorem 4.3 in Kamgang and Sallet [START_REF] Sallet | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF] and conclude that the disease-free equilibrium (x 0 s , 0) is GAS in D. From Eq. ( 16) , for the points of D where x s = 0 , and the disease-free equilibrium is GAS on .

We have established the following result about the global stability of the disease-free equilibrium Q 0 .

Theorem 2. The disease-free equilibrium point Q 0 of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] is globally asymptotically stable in if R 0 < 1 and unstable if R 0 > 1 .

Endemic equilibrium and its stability

Let Q * = S * , I * 1 , I * 2 , R * , F * V , F * B , E *
V , E * B be any endemic equilibrium (EE) of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] with S * = 0,

I * 1 = 0 , I * 2 = 0 , R * = 0, F * V = 0 , F * B = 0 , E * V =
0 and E * B = 0 satisfying the following system of equations:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ + δR * -( λ * + μ h ) S * = 0 , p 1 λ * S * -ω 1 I * 1 = 0 , p 2 λ * S * -ω 2 I * 2 = 0 , r 1 I * 1 + r 2 I * 2 -(δ + μ h ) R * = 0 , α 1 I * 1 + α 2 I * 2 + ϕ v F * B -ϕ b + η + D 1 F * V = 0 , ϕ b F * V -ϕ v + η + D 1 F * B = 0 , η F * V + θ v E * B -( θ b + D 2 ) E * V = 0 , η F * B + θ b E * V -( θ v + D 2 ) E * B = 0 , ( 21 
)
where

λ * = β F F * V F * V + K F + β E E * V E * V + K E + β I I * 1 + I * 2 S * + R * + I * 1 + I * 2 , ( 22 
)
is the force of infection at the endemic steady state.

Expressing the endemic states S * , 

I * 2 , R * , * V , F * B , E * V and
S * = λ * + μ h + δ r 1 ω 2 p 1 + r 2 ω 1 p 2 ( λ * + μ h ) ( δ + μ h ) I * 1 , I * 2 = ω 1 p 2 ω 2 p 1 I * 1 R * = r 1 ω 2 p 1 + r 2 ω 1 p 2 ( λ * + μ h ) ( δ + μ h ) I * 1 , F * V = ϕ v + η + D 1 ( α 1 ω 2 p 1 + α 2 ω 1 p 2 ) ω 2 p 1 η + D 1 η + D 1 + ϕ b + ϕ v I * 1 , F * B = ϕ b ( α 1 ω 2 p 1 + α 2 ω 1 p 2 ) ω 2 p 1 η + D 1 η + D 1 + ϕ b + ϕ v I * 1 , E * V = η θ v ϕ b + ( θ v + D 2 ) ϕ v + η + D 1 ( α 1 ω 2 p 1 + α 2 ω 1 p 2 ) D 2 ( D 2 + θ b + θ v ) η + D 1 η + D 1 + ϕ b + ϕ v ω 2 p 1 I * 1 and E * B = ϕ b + θ b θ v ϕ b + ( θ v + D 2 ) ϕ v + η + D 1 D 2 ( D 2 + θ b + θ v ) η ( α 1 ω 2 p 1 + α 2 ω 1 p 2 ) ( θ v + D 2 ) ω 2 p 1 η + D 1 η + D 1 + ϕ b + ϕ v I * 1 . ( 23 
)
From the second equation of ( 23) , using the expression of S * defined as in Eq. ( 23) , one has

I * 1 = λ * p 1 ( δ + μ h ) λ * w 1 δ 1 -r 1 p 1 ω 1 -r 2 p 2 ω 2 + μ h + ω 1 μ h ( μ h + δ) > 0 , ( 24 
)
because 1 -

r 1 p 1 ω 1 - r 2 p 2 ω 2
≥ 0 . Now, after plugging Eqs. ( 21) and ( 24) into Eq. ( 22) , one obtains the following fourth order polynomial equation in λ * :

c 4 ( λ * ) 4 + c 3 ( λ * ) 3 + c 2 ( λ * ) 2 + c 1 ( λ * ) + c 0 = 0 , ( 25 
)
where ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ c 0 = ca 10 ( 1 -R 0 ) , c 1 = a 10 c + a 4 a 11 -β I aa 1 a 10 -β I μ h aa 1 a 4 , c 2 = c a 5 a 6 + a 4 a 10 + aa 1 a 11 -β I aa 1 a 9 -β I μ h aa 1 a 5 a 6 , c 3 = a 5 a 6 a 4 + aa 1 a 10 -β I aa 1 a 5 a 6 ,

c 4 = aa 1 a 5 a 6 , with a = p 1 ( δ + μ h ) , b = w 1 δ 1 -r 1 p 1 ω 1 -r 2 p 2 ω 2 + μ h , c = ω 1 μ h ( μ h + δ) , L F = K F ω 2 p 1 η + D 1 η + D 1 + ϕ b + ϕ v ϕ v + η + D 1 ( α 1 ω 2 p 1 + α 2 ω 1 p 2 ) , L E = K E D 2 ( D 2 + θ b + θ v ) η + D 1 η + D 1 + ϕ b + ϕ v ω 2 p 1 η θ v ϕ b + ( θ v + D 2 ) ϕ v + η + D 1 ( α 1 ω 2 p 1 + α 2 ω 1 p 2 ) , a 1 = ω 1 p 2 ω 2 p 1 + 1 , a 2 = r 1 ω 2 p 1 + r 2 ω 1 p 2 (δ + μ h ) (δ + 1) , a 3 = a 2 + a 1 μ h , a 4 = a 3 a + b , a 5 = a + L F b, a 6 = a + L E b, a 7 = a 6 β F + a 5 β E , a 8 = ( β F L E + β E L F ) c, a 9 = ( a 5 L E + a 6 L F ) c and a 10 = L E L F c 2 .
The coefficient c 4 of the polynomial equation ( 25) is always non-negative and c 0 is positive (negative) if R 0 is less than (greater than) the unity, respectively. It is established in Appendix B that when R 0 > 1 , the coefficients c 1 , c 2 and c 3 are negative. Then, using the Descartes Rules of Signs, we have established the following result. Proposition 1. Model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] has exactly one endemic equilibrium whenever R 0 > 1 .

In order to analyze the stability of the endemic equilibrium point of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] , we make use of the Centre Manifold theory [START_REF] Song | Dynamical models of tuberculosis and their applications[END_REF] as described by Theorem 4.1 of Castillo-Chavez and Song [START_REF] Carr | Applications centre manifold theory[END_REF] stated in Appendix C for convenience to establish the local asymptotic stability of the endemic equilibrium Q * of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] .

The following result has been established.

Theorem 3.

The endemic equilibrium Q * of model system ( 7) is locally asymptotically stable in when R 0 > 1 but close to 1.

Numerical studies

In this section, we give numerical simulations that support the theory presented in the previous sections.

Sensitivity analysis of model's parameters

We carry out sensitivity analysis to ascertain the uncertainty of the parameters to the model output. This is vital since it enables us to identify critical input parameters that should be the center of focus if the disease is to be contained. Sensitivity and uncertainty analysis are performed using the Latin hypercube sampling (LHS) scheme, a Monte-Carlo stratified sampling method that allows us to obtain an unbiased estimate of the model output for a given set of input parameter values. The parameter space is simultaneously sampled without replacement and assuming statistical independence between the parameters. The selected sample is used to compute unbiased estimates of output values for state variables. We use a predefined variation of the model parameters at 10% and 50% relative to the referential values. Using algorithm from [START_REF] Ray | A methodology for performing global uncertainty and sensitivity analysis in systems biology[END_REF] , we compute the partial ranking correlation coefficient (PRCC) of parameters against model's variables S, I 1 , I 2 , R, F V , F B , E V , E B . We use a fairly large sample of size N = 10 0 0 to identify relationships between parameters and output variables. A positive (negative) correlation coefficient corresponds to an increasing (decreasing) monotonic trend between the model's variable and the parameter under consideration.

Note that, one parameter in Tables 2 and3 is said "significantly correlate to one state variable" if absolute value of PRCC is more than 0.5 and p -value < 0.001. Table 4 presents the six most influential parameters of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] . According to the result obtained in Table 4 , the parameters μ h , β F , μ b , α 2 , β I and r 2 are the six most influential parameters of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] . This suggests that effective control strategy would be the implementation of intense awareness campaigns of the population on the risks of contact transmission which should be combined with a fast strategies of treatment and of isolation of infectious symptomatic. 

General dynamics

Numerical simulations using a set of reasonable parameter values in Table 1 are carried out for illustrative purpose and to support the analytical results.

The associated bifurcation diagram using the parameter values of Table 1 is depicted in Fig. 2 . From this figure, it clearly appears that model system (7) exhibits a forward bifurcation, that is the disease-free equilibrium is stable if R 0 ≤ 1 , while if R 0 > 1 , the disease-free equilibrium is unstable and there exists a unique endemic equilibrium which is stable. Fig. 3 is an illustration of Theorem 2 , showing the GAS of the disease-free equilibrium of model system (7) using various initial conditions when β I = 0 . 002 , β F = 0 . 002 and β E = 0 . 001 (so that R 0 = 0 . 4552 < 1 ). All other parameter values are as in Table 1 . It illustrates that the disease disappears in the host population when R 0 ≤ 1 . Fig. 4 shows the stability of the endemic equilibrium Q * of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] as demonstrated in Theorem 3 when β I = 0 . 02 , β F = 0 . 02 and β E = 0 . 01 (so that R 0 = 3 . 9034 > 1 ). All other parameter values are as in Table 1 . Although the stability of the endemic equilibrium have been established analytically in a neighborhood of R 0 = 1 , numerical simulations show that the endemic equilibrium is stable over a wide range of values of R 0 > 1 . Now, numerical simulations are carried out to investigate the impact of varying the proportion of symptomatic infected individuals, the effect of the virulence of bacteria and the role of the population of phytoplankton and zooplankton on the dynamical transmission of cholera within a human community. In all simulations, the transmission rates are chosen to be β I = 0 . 02 , β E = 0 . 01 and β F = 0 . 02 (so that R 0 > 1 ). All other parameter values are as in Table 1 . In all simulations, model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] was simulated with the following initial conditions which have been chosen arbitrarily: S(0) = 10 0 0 , I 1 (0) = 10 ,

I 2 (0) = 50 , R (0) = 30 , F V (0) = 50 , 0 0 0 , F B (0) = 10 , 0 0 0 , E V (0) = 50
, 0 0 0 and E B (0) = 10 , 0 0 0 . The "Total of infected human Fig. 2. Bifurcation diagram of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] . The notations DFE and EE stand for disease-free equilibrium and endemic equilibrium, respectively. population" is a cumulative value of I 1 and I 2 . The "Total concentration of bacteria" is also a cumulative value of F V , F B , E B and E V . Results of numerical simulations are depicted in Figs. 5 and6 .

Case 1 : Most people infected with cholera (80%) are asymptomatic and appear healthy although they carry the bacteria for two or three weeks and excrete them in wastewater. Since they carry bacteria for a long time than symptomatic infected without knowing, they can infect people around them. They contributes more to the spread of the disease [START_REF] Janny | Cholera epidemic in africa: analysis of a multifactorial etiology[END_REF][START_REF] Bayleyegn | A mathematical analysis of a model of cholera transmission dynamics[END_REF] . Symptomatic infected can live with the disease for five day maximal.

To study the impact of the proportion of asymptomatic infected individuals on the outbreak of the infection, model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] was simulated for three different values of 1p: 1p = 0 . 9 (so that R 0 = 4 . 1581 ), 1p = 0 . 8 (so that R 0 = 3 . 9034 ) and 1p = 0 . 5 (so that R 0 = 3 . 1392 ). From Fig. 5 (a), it is evident that as p increases (i.e. 1p decreases), the total number of infected individuals decreases. This means that the presence of asymptomatic infected individuals within a human population contributes considerably to the spread of the disease. Since asymptomatic infected individuals are healthy carriers, it's difficult to identify them within a heterogeneous population for a possible treatment or isolation. Hence, it is urgent to educate the public on hygiene rules to avoid the intersection of the food chain with excrement chain. Case 2 : Here, we are interested to the case when the bacteria become more virulent. Without loss of generality, we assume that θ v and ϕ v have the same value, that is θ v = ϕ v . Model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] was simulated for three different values of

θ v = ϕ v : θ v = ϕ v = 0 . 05 (so that R 0 = 4 . 1581 ), θ v = ϕ v = 0 . 3 (so that R 0 = 4 . 4042 ) and θ v = ϕ v = 0 . 6 (
so that R 0 = 4 . 5268 ). From Fig. 5 (b), the effect of virulence bacteria on infected people seems to be limited from θ v = ϕ v = 0 . 3 . This is du to the contacts between infected people and bacteria. Thus, even if bacteria are too virulent contact with human, adequate contacts between human and bacteria are necessary to trigger or favorise an cholera epidemic. Case 3 : According to biological review, the environmental reservoirs of V. cholerae promote the growth of the bacteria in the aquatic environment [START_REF] Bouma | Seasonal and interannual cycles of endemic cholera in bengal 1891-1940 in relation to climate and geography[END_REF][START_REF] Colwell | Global climate and infectious disease : the cholera paradigm[END_REF][START_REF] Huq | Effects of global climate on infectious disease: the cholera model[END_REF][START_REF] Bouma | Cholera and climate: revisiting the quantitative evidence[END_REF] . Fig. 6 (a) shows the effect of varying the carrying capacity of the population of phytoplankton and zooplankton on the dynamics of bacteria. The simulation was performed for three different values of the carrying capacity of the population of phytoplankton and zooplankton M p : M p = 10 7 (so that R 0 = 3 . 7848 ), M p = 10 10 (so that R 0 = 3 . 9034 ) and M p = 10 13 (so that R 0 = 4 . 0183 ). It clearly appears that as M p increases, the concentration of the total bacteria increases. This is why, it is recommended to clean or destroy the potential risk areas where these reservoirs are growing. This will result on the reduction of the value of M p . Case 4 : Simulation results in Fig. 6 (b) illustrate the impact of varying the proportion of environmental bacteria that survives after their association with aquatic reservoirs on the dynamics of bacteria for three different values of η: η = 0 . 01 (so that R 0 = 4 . 1581 ), η = 0 . 3 (so that R 0 = 5 . 1322 ) and η = 0 . 6 (so that R 0 = 6 . 6087 ). As expected by the result obtained in [START_REF] Colwell | Environmental reservoir of vibrio cholerae the causative agent of cholera[END_REF] , it confirms the critical role of the reservoirs on the endemicity of cholera. Thus, the commensal association between bacteria and reservoirs may play an important role in the outbreak of cholera epidemic by favoring persistence of the pathogen during inter-epidemic periods.

Impact of environmental factors

Many studies in the literature supported that the bacteria associated with the zooplankton showed seasonal abundance, with the largest numbers occurring in the early spring and again in the summer, when zooplankton total numbers were correspondingly large [START_REF] Grimes | Viable, but non-culturable vibrio cholerae and related pathogens in the environment: implication forrelease of genetically engineered microorganisms[END_REF][START_REF] Xu | Survival and viability of non-culturable escherichia coli and vibrio cholerae in the estuarine and marine environment[END_REF][START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF][START_REF] De Magny | Role of zooplankton diversity in vibrio cholerae population dynamics and in the incidence of cholera in the bangladesh sundarbans[END_REF][START_REF] Kirschner | Rapid growth of planktonic vibrio cholerae non-o1/non-o139 strains in a large alkaline lake in austria: dependence on temperature and dissolved organic carbon quality[END_REF][START_REF] Huq | Ecological relationships between vibrio cholerae and planktonic crustacean copepods[END_REF][START_REF] Chowdhury | Effect of alum on free-living and copepod-associated vibrio cholerae o1 and o139[END_REF] . Approximately 0.01-40% of the total water column bacteria were associated with zooplankton, with the percentage of the total water column bacteria population associated with zooplankton varying by season. Indeed, the variation of environmental factors may explain the seasonality of the disease either by exerting a direct influence on the bacterial reservoirs capacity ( M p ) or even on their metabolism ( ϕ v , ϕ b , θ v , θ b ) [START_REF] Colwell | Global climate and infectious disease : the cholera paradigm[END_REF] . Thus, the parameters ϕ v , ϕ b , θ v , θ b and M p of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] are assumed to be time-dependent parameters.

The virulent bacteria proportion in term of temperature ( T ) can be modeled as:

ϕ v = 1 + e -( 0 . 61 ×T -17 . 25 ) -1 . ( 26 
)
Also, the parameter θ v can be modeled as follows:

θ v = ϕ v + ( 1 -ϕ v ) 1 -e kε , with k > 0 , ( 27 
)
where ε measures the capacity of environmental bacteria to face unfavorable conditions. If a living bacteria is not virulent it is assumed to be "viable but non-culturable" so that we have

ϕ b = 1 -ϕ v and θ b = 1 -θ v . ( 28 
)
The carrying capacity M p of V. cholerae in the environment is assumed to be the following periodic function:

M p (t) = M mean 1 + ˜ k sin ( 2 π P t ) . ( 29 
)
Note that M p is a periodic function with the period P = 365 days. Without loss of generality, we choose M mean = 10 6 and ˜ k = 0 . 99 . 

Now, we derive some simulations in order to evaluate the both impact of metabolic change and density reservoirs in bacteria and infected population. Model system (7) is simulated with the time-dependent parameters ϕ v , ϕ b , θ v , θ b and M p . Fig. 8 is obtained for three different values of η which represents the commensalism intensity between bacteria et reservoirs. From Fig. 8 (a), it clearly appears that this association play an important role on the persistence of bacteria in environment. Also, from Fig. 8 (b), one can observe that the commensalism force η does not impacts evenly the number of infected people. This implies that cholera epidemic can be limited or avoided even if the associated reservoirs of bacteria are exponentially growing. Fig. 9 presents the result of numerical simulations of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] for three different values of the mean number of bacteria reservoirs M mean . It illustrates the growth of bacteria is also exponential when M mean grow, but that of infected is relatively moderate like previously. 

Conclusion

In this paper, we have proposed and analyzed a deterministic model for the dynamical transmission of cholera within a human community. The considered model takes into account the change of metabolism of bacteria and the commensal relationship of bacteria with the environmental reservoirs on the persistence of the disease. Indeed, in many cholera models in the literature, these biological facts have been neglected through unrealistic assumptions such as V. cholerae are always virulent [START_REF] Chowdhury | Effect of alum on free-living and copepod-associated vibrio cholerae o1 and o139[END_REF] and at birth, V. cholerae are hyperinfectious, lose their virulence after certain time and remains non hyper infection until the end of their live [START_REF] David | Hyperinfectivity: a critical element in the ability of v. cholerae to cause epidemics?[END_REF][START_REF] Wang | Estimating the basic reproduction number for the 20 08-20 09 cholera outbreaks in zimbabwe[END_REF] .

In this work, we have considered a mathematical model for the dynamical transmission of cholera in which the following biological and epidemiological facts are incorporated: (i) the waning of recovery-induced of immunity of recovered individuals (ii) the virulence of bacteria and (iii) the commensal relationship between bacteria and the population of phytoplankton and zooplankton. The objective was to investigate the impact of environmental factors on the dynamical transmission of cholera within a human population. A qualitative analysis of the model has been presented. Our findings on the long term dynamics of the system can be summarized as follows.

1. We computed the disease-free equilibrium and derived the basic reproduction number R 0 that determines the outcome of the disease. 2. We proved that the disease-free equilibrium is globally asymptotically stable whenever R 0 ≤ 1 on a positively invariant region. 3. We showed that the model has a unique endemic equilibrium when R 0 > 1 . We also established the local asymptotic stability of the unique endemic equilibrium when R 0 > 1 but close to 1. 4. The sensitivity analysis of the system has been performed. We found that in an epidemic situation it is urgent to sensibilize population about the risk of transmission through contact and to take on charge rapidly the infected people by isolating them from susceptible 5. Numerical results have been presented to illustrate and validate theoretical results. Though numerical simulation, we found that the aquatic reservoirs are playing a significant role among the factors explaining the causes of endemicity of these disease.

Different im provements and extensions of the model on which we are still working include: introducing of timedependent parameters in order to integrate fluctuation of environmental factors du to periodic variations of climate, control strategies and extension to 2 patches. follows:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ˙ x 1 = + δx 4 -( λ + μ h ) x 1 , ˙ x 2 = p 1 λx 1 -ω 1 x 2 , ˙ x 3 = p 2 λx 1 -ω 2 x 3 , ˙ x 4 = r 1 x 2 + r 2 x 3 -(δ + μ h ) x 4 , ˙ x 5 = α 1 x 2 + α 2 x 3 + ϕ v x 6 -M b F V , ˙ x 6 = ϕ b x 5 -M v x 6 , ˙ x 7 = η x 5 + θ v x 8 -N b x 7 , ˙ x 8 = η x 6 + θ b x 7 -N v x 8 , (33) where λ = β F x 5 x 5 + K f + β E x 7 x 7 + K e + β I x 2 + x 3 x 1 + x 2 + x 3 + x 4
. System (33) has a DFE given by Q 0 = ( S 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) where S 0 = μ h . The Jacobian of system (33) at the DFE Q 0 is

J(Q 0 ) = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ -μ h -β I -β I δ -β F S 0 K F 0 -β E S 0 K E 0 0 -(ω 1 -p 1 β I ) p 1 β I 0 p 1 β F S 0 K F 0 p 1 β E S 0 K E 0 0 p 2 β I -(ω 2 -p 2 β I ) 0 p 2 β F S 0 K F 0 p 2 β E S 0 K E 0 0 r 1 r 2 -(δ + μ h ) 0 0 0 0 0 α 1 α 2 0 -M b ϕ v 0 0 0 0 0 0 ϕ b -M v 0 0 0 0 0 0 η 0 -N b θ v 0 0 0 0 0 η θ b -N v ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ .
The basic reproduction number of the transformed (linearized) model system (33) is the same as that of the original model given by Eq. ( 7) . Therefore, choosing β I as a bifurcation parameter by solving for β I when R 0 = 1 , one obtains

β I = β * I = 1 - β F S 0 ( ϕ v + η + D 1 ) K F ( η + D 1 ) ( η + D 1 + ϕ b + ϕ v ) + β E S 0 η [ ( ϕ v + η + D 1 ) ( θv + D 2 ) + ϕ b θv ] K E D 2 ( D 2 + θ b + θv ) ( η + D 1 ) ( η + D 1 + ϕ b + ϕ v ) 2 i =1 p i α i ω i ω 1 ω 2 p 1 ω 2 + p 2 ω 1 . ( 34 
)
It follows that the Jacobian J( Q 0 ) of system (33) at the DFE Q 0 , with β I = β * I , denoted by J θ * has a simple zero eigenvalue (with all other eigenvalues having negative real parts). Hence, the Centre Manifold theory [START_REF] Carr | Applications centre manifold theory[END_REF] can be used to analyze the dynamics of system (33) . In particular, the theorem in Castillo and Song [START_REF] Schmitt | Permanence and the dynamics of biological systems[END_REF] , reproduced below for convenience, will be used to show that when R 0 > 1 there exists an endemic equilibrium of system (33) which is locally asymptotically stable for R 0 near 1 under certain conditions. Theorem 4 (Castillo-Chavez and Song [START_REF] Song | Dynamical models of tuberculosis and their applications[END_REF] ) . Consider the following general system of ordinary differential equations with a parameter : dz d t = f (x, ) , f : R n × R and f ∈ C 2 (R n , R ) , [START_REF] Pascual | In apparent infections and cholera dynamics[END_REF] where 0 is an equilibrium point of the system (that is, f (0, ) ≡ 0 for all ) and assume 1. A = D z f (0 , 0) = ∂ f i ∂z j (0 , 0) is the linearization matrix of system [START_REF] Pascual | In apparent infections and cholera dynamics[END_REF] around the equilibrium 0 with evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts; 2. Matrix A has a right eigenvector u and a left eigenvector v (each corresponding to the zero eigenvalue). Let f k be the k th component of f and

a = n k,i, j=1 v k u i u j ∂ 2 f k ∂x i ∂x j (0 , 0) and b = n k,i =1 v k u i ∂ 2 f k ∂x i ∂ (0 , 0) ,
then, the local dynamics of the system around the equilibrium point 0 is totally determined by the signs of a and b.

1. a > 0, b > 0 . When < 0 with | | 1, 0 is locally asymptotically stable and there exists a positive unstable equilibrium; when 0 < 1, 0 is unstable and there exists a negative, locally asymptotically stable equilibrium; 2. a < 0, b < 0 . When < 0 with | | 1, 0 is unstable; when 0 < 1, 0, is locally asymptotically stable equilibrium, and there exists a positive unstable equilibrium; 3. a > 0, b < 0 . When < 0 with | | 1, 0 is unstable and there exists a locally asymptotically stable negative equilibrium; when 0 < 1, 0 is stable, and a positive unstable equilibrium appears; 4. a < 0, b > 0 . When changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.

In order to apply the above theorem, the following computations are necessary (it should be noted that we are used β * I as the bifurcation parameter, in place of in Theorem 4 ).

Eigenvectors of J β * I : For the case when R 0 = 1 , it can be shown that the Jacobian of system (33) has a right eigenvector (corresponding to the zero eigenvalue), given by U = (u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 , u 8 ) T , where 

u 1 = -ζ 1 u 2 , u 2 = u 2 > 0 ,
ϕ v + η + D 1 β F S 0 (p 1 + p 2 3 ) + η ϕ v + η + D 1 7 + ϕ v 8 K F η + D 1 η + D 1 + ϕ b + ϕ v 6 = ϕ v β E S 0 (p 1 + p 2 3 ) + η ϕ b + η + D 1 8 + ϕ v 7 K E η + D 1 η + D 1 + ϕ b + ϕ v , 7 = ( θ v + D 2 ) β E S 0 ( p 1 + p 2 3 ) K E D 2 ( D 2 + θ b + θ v )
∂ 2 f 1 ∂ x 2 ∂ β * I = -1 , ∂ 2 f 1 ∂ x 3 ∂ β * I = -1 , ∂ 2 f 2 ∂ x 2 ∂ β * I = p 1 , ∂ 2 f 2 ∂ x 3 ∂ β * I = p 1 , ∂ 2 f 3 ∂ x 2 ∂ β * I = p 2 and ∂ 2 f 3 ∂ x 3 ∂ β I = p 2 . It follows that b = v 2 8 i =1 u i ∂ 2 f 2 ∂ x i ∂ β * I + v 3 8 i =1 u i ∂ 2 f 3 ∂ x i ∂ β * I , = u 2 v 2 1 + p 2 ω 1 p 1 ω 2 ( p 1 + 3 p 2 ) > 0 .
Computation of a : For system (33) , the associated non-zero partial derivatives of f (at the DFE Q 0 ) are given by: Thus, a < 0 and b > 0. So (by Theorem 4 , Item(4)) we have established the result about the local stability of the endemic equilibrium of model system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] . We point out that this result holds for R 0 > 1 but close to 1. This achieves the proof.

∂ 2 f k +1 ∂ x 1 ∂ x 5 = β F K F p k , ∂ 2 f k +1 ∂ x 1 ∂ x 7 = β E K E p k , ∂ 2 f k +1 ∂ 2 x 2 = -2 β * I pk S 0 , ∂ 2 f k +1 ∂ x 2 ∂ x 3 = -2 β * I p k S 0 , ∂ 2 f k +1 ∂ x 2 ∂ x 4 = -β * I p k S 0 ∂ 2 f k +1 ∂ 2 x 3

Fig. 1 .

 1 Fig. 1. Flow chart of the transmission dynamics of the cholera model.

Fig. 3 .

 3 Fig. 3. GAS of the disease-free equilibrium Q 0 ( Theorem 2 ).

Fig. 4 .

 4 Fig. 4. Stability of the endemic equilibrium Q * ( Theorem 3 ).

Fig. 5 .

 5 Fig. 5. Time series of the total number of infected individuals for three different values (a) the proportion of symptomatic infected individual η and (b) the virulence of bacteria θv = ϕ v .

Fig. 6 .

 6 Fig. 6. Time series of the total concentration of bacteria for three different values of (a) the carrying capacity of aquatic reservoirs M p and (b) the proportion of environmental bacteria that survives after their association with aquatic reservoirs η.

Fig. 7 .

 7 Fig. 7. Temperatures in Douala during 2005-2011 (Source: Postdam Institute of Climatology (PIK)).

Fig. 8 .

 8 Fig.8. Simulations of model system[START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] showing the effect of varying of the commensalism force η on (a) bacteria density and (b) infected population.

Fig. 9 .

 9 Fig.9. Simulations of model system[START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] showing the effect of mean reservoirs capacity M mean on (a) bacteria density and (b) infected population.

u 3 = ζ 3 u 2 , u 4 = ζ 4 u 2 , u 5 = ζ 5 u 2 ,u 6 = ζ 6 u 2 , u 7 = ζ 7 u 2 and u 8 = ζ 8 u 2 p 2 ω 1 p 1 ω 2 , ζ 4 = r 1 p 1 ω 2 + r 2 p 2 ω 1 p 1 ω 2 7 .

 32425262728224227 ( δ + μ h ) , ζ 5 = ϕ v + η + D 1 ( α 1 p 1 ω 2 + α 2 p 2 ω 1 ) p 1 ω 2 η + D 1 η + D 1 + ϕ b + ϕ v , ζ 6 = ϕ b ϕ v + η + D 1 ζ 5 , ζ 7 = η (ϕ v + η + D 1 )(θ v + D 2 ) + θ v ϕ b ϕ v + η + D 1 D 2 ( D 2 + θ b + θ v ) ζ 5 and ζ 8 = θ b (ϕ v + η + D 1 ) + (θ b + D 2 ) ϕ b (ϕ v + η + D 1 )(θ v + D 2 ) + θ v ϕ b ζSimilarly, the components of the left eigenvectors of J β * I (corresponding to the zero eigenvalue), denoted byV = (v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 ) T , are given by v 1 = 0 , v 2 = v 2 > 0 , v 3 = 3 v 2 , v 4 = 0 , v 5 = 5 v 2 , v 6 = 6 v 2 , v 7 = 7 v 2 and v 8 = 8 v 2 , where 3 = p 1 β * I α 1 + α 2 ω 1 -p 1 β * I p 2 β * I α 2 + α 1 ω 2 -p 2 β * I , 5 =

and 8 = θ v θ v + D 2 7

 2 Using Eq.[START_REF]Ministère de la santé du cameroun[END_REF] we can easily deduce that ω 1p 1 β * I > 0 and ω 2p 2 β * I > 0 , this ensures the fact that 3 > 0 Computation of b : For the sign of b , it can be shown that the associated non-vanishing partial derivatives of f are

3 8j,i =1 u i u j ∂ 2 f 3 ∂x i ∂x j = -v 2 u 2 2 ζ 1 ζ 5 ( p 1 +

 32151 k ∈ { 1 , 2 } . It then follows that a = v 2 8 j,i =1 u i u j ∂ 2 f 2 ∂x i ∂x j + v p 2 3 ) < 0 .

Table 1

 1 Numerical values for the parameters of model system (4) .

	Definition	Symbols	Estimated	Source
	Recruitment rate		28 day -1	Assumed
	Exposure rate to infected people	β I	0.005 person -1 day -1	Assumed
	Exposure rate to infected waters	β F	0.002 person -1 day -1	Assumed
	Exposure rate to infected water's foods infected	β E	0.001 person -1 day -1	Assumed
	Proportion of symptomatic infected human	p	0.2	[25]
	Waning rate of treatment induced-immunity	δ	0.0 0 092 day -1	[30]
	Natural mortality rate of humans	μ h	0.0104 day -1	[33]
	Cholera induced mortality	d	0.046 day -1	[34]
	Recovery rate of symptomatic infected individuals	r 1	0.045 day -1	[35]
	Recovery rate of asymptomatic infected individuals	r 2	0.0045 day -1	Assumed
	Pathogen shed rate of symptomatic infected individuals	α 1	70 Cells day -1 person -1	[25]
	Pathogen shed rate of asymptomatic infected individuals	α 2	10 Cells day -1 person -1	[25]
	Decay rate of pathogens	μ b	1.06 day -1	[22]
	Growth rate of pathogens	g	0.73 day -1	[22]
	Proportion of environmental bacteria that survives	ε	0.7	Assumed
	Commensalism force of environmental bacteria	η	0.05 day -1 reservoir -1	Assumed
	Carrying capacity of the aquatic environment	M p	10 10	Assumed
	Concentration of free V. Cholerae in water	K F	10 4	Assumed
	Concentration of environmental V. Cholerae in water	K E	10 6	[22]
	Half of number of infected reservoirs	Q f	10 5	Assumed
	Growth rate of reservoirs	r	0.01 day -1	Assumed
	Rate at which benign bacteria becomes virulent bacteria	ϕv	0.05 day -1	Assumed
	Rate at which virulent bacteria becomes benign bacteria	ϕ b	0.008 day -1	Assumed
	Rate at which environmental benign bacteria			
	become environmental virulent bacteria	θ v	0.08 day -1	Assumed
	Rate at which environmental virulent bacteria			
	become environmental benign bacteria	θ b	0.005 day -1	Assumed

  E * B as a function of I

* 1 and λ * gives

Table 2

 2 PRCC of model's parameters (Range variation at 10%).

		PRCCs and significance								
	Parameters	Value	Range	S	I 1	I 2	R	F V	F B	E V	E B
		28	[ 25 . 2 -30 . 8 ]	0.8803 * *	0.6937 * *	0.6631 * *	0.6598 * *	0.5476 * *	0.4183 *	0.5910	0.4431 * *
	β I	0.005	[ 0 . 0045 -0 . 0055 ]	-0.2688	0.6937	0.2365	0.2956 *	0.1745	0.41883	0.3356	0.2653
	β E	0.002	[ 0 . 0018 -0 . 0022 ]	-0.1353	0.1935	-0.0968	-0.1234	0.0971	-0.0903	0.1603	0.1125
	β F	0.001	[ 0 . 0099 -0 . 0011 ]	-0.9889 * *	0.0713 * *	0.9859 * *	0.9832 * *	0.9867 * *	0.9701 * *	0.9859 * *	0.9760 * *
	p	0.2	[ 0 . 18 -0 . 22 ]	0.1192	0.9878	0.0495	-0.5979 * *	0.1641	0.3047	-0.0341	-0.0878
	δ	0.0092	[ 0 . 00828 -0 . 01012 ]	0.0394	0.1327 * *	0.6248 * *	-0.0040	-0.0912	0.0726	0.0117 * *	-0.1857
	μ h	0.0104	[ 0 . 00936 -0 . 01144 ]	-0.8240 * *	0.6041 * *	-0.7880 * *	-0.7796 * *	-0.6503 * *	-0.6748 * *	-0.7778	-0.6439 * *
	d	0.046	[ 0 . 0414 -0 . 0506 ]	0.1243	-0.7035	-0.2977 *	0.0329	-0.1527	0.0397	0.0571	-0.0370
	r 1	0.045	[ 0 . 0405 -0 . 0495 ]	0.0269	-0.2694	-0.3407 *	-0.0470	-0.0618	0.0492	-0.1669	-0.1778
	r 2	0.0045	[ 0 . 00405 -0 . 00495 ]	0.2967	0.0020	-0.0690	0.4106 *	-0.0501	0.10 0 0	-0.2711	0.0060
	α 1	70	[ 63 -77 ]	-0.0515	0.1223	0.0095	0.1375	-0.0299	-0.1155	0.0521	-0.1372
	α 2	10	[ 9 -11 ]	-0.2413	0.1057	0.4115 *	0.1063	0.4178 *	-0.5242 * *	0.6710 * *	0.5103 * *
	μ b	1.06	[ 1 . 166 -0 . 954 ]	0.2856	-0.3243 *	-0.2310	0.3129 *	-0.5023 * *	-0.6204 * *	-0.5981 * *	-0.3899 * *
		0.7	[ 0 . 63 -0 . 77 ]	-0.0265	-0.0561	-0.1823	0.0694	0.0058	-0.0542	-0.3708 * *	-0.3042 * *
	η	0.05	[ 0 . 045 -0 . 055 ]	-0.4620	0.0142	-0.0608	-0.2353	-0.1945	-0.1064	0.4895 * *	0.1999 * *
	M p	10 10	9 . 10 9 -11 . 10 9	0.2193	-0.0834	-0.0948	-0.0831	-0.1258	-0.1146	-0.1313	-0.1571
	K f	10 4	9 . 10 3 -11 . 10 3	0.5150 * *	-0.01886	-0.3617	-0.2497	-0.27561	-0.2324	-0.2212	-0.3234
	K e	10 6	9 . 10 5 -11 . 10 5	-0.0408	-0.0114	0.0406	-0.0105	0.0291	-0.0820	-0.1877	0.1115 *
	Q f	10 5	9 . 10 4 -11 . 10 4	-0.0445	-0.1472	0.1098	0.1938	-0.1765	0.0907	-0.1261	0.0209
	ϕv	0.05	[ 0 . 045 -0 . 055 ]	0.1264	0.0806	0.0179	-0.0497	0.0146	-0.1073	0.0760	0.1398
	ϕ b	0.008	[ 0 . 0072 -0 . 0088 ]	-0.0018	0.0605	0.0110	0.0056	-0.1079	0.4828 * *	0.0326	0.0272
	θv	0.08	[ 0 . 072 -0 . 088 ]	-0.0449	0.1800	-0.0066	0.1137	0.2243	-0.0831	0.0493	-0.3147
	θ b	0.005	[ 0 . 0045 -0 . 0055 ]	-0.0769	0.1243	-0.1240	0.0298	-0.0396	0.0758	-0.0606	0.1721
	g	0.73	[ 0 . 657 -0 . 803 ]	0.0371	0.0190	-0.0167	-0.0931	-0.1565	-0.0368	0.1056	-0.1801
											

* : p -value < 0.01, * * : p -value < 0.001

Table 3

 3 PRCC of model's parameters (Range variation at 50%).

		PRCCs and significance								
	Parameters	Value	Range	S	I 1	I 2	R	F V	F B	E V	E B
		28	[ 14 -29 . 4 ]	0.9215 * *	0.4233 * *	0.3548 *	0.3681 * *	0.3173 *	0.3525 *	0.3863 * *	0.2517
	β I	0.005	[ 0 . 0025 -0 . 0075 ]	0.0826	0.9406 * *	0.8887 * *	0.9558 * *	0.8697 * *	0.8725 * *	0.8765 * *	0.9105 * *
	β E	0.002	[ 0 . 001 -0 . 003 ]	-0.0804	0.3207 *	0.2544	0.0424	0.0738	0.1712	0.1446	-0.1088
	β F	0.001	[ 0 . 0 0 05 -0 . 0015 ]	0.0028	0.4938 * *	0.5930 * *	0.6196 * *	0.2462	0.6131 * *	0.2672	0.4966 * *
	p	0.2	[ 0 . 1 -0 . 3 ]	-0.0897	-0.2107	-0.2580	-0.8732 * *	-0.2193	-0.0640	-0.0468	-0.0159
	δ	0.0092	[ 0 . 0046 -0 . 0138 ]	-0.0141	0.7355 * *	0.0774	-0.1115	-0.0920	-0.1193	0.0419	0.1303
	μ h	0.0104	[ 0 . 0052 -0 . 0152 ]	-0.9628 * *	0.9801 * *	-0.9808 * *	-0.9910 * *	-0.9662 * *	-0.9670 * *	-0.9742 * *	-0.9747 * *
	d	0.046	[ 0 . 0023 -0 . 069 ]	0.0932	0.2739	-0.1921	-0.1270	-0.0995	-0.2957 * *	-0.2107	0.0233
	r 1	0.045	[ 0 . 0225 -0 . 999 ]	-0.0832	-0.5946 * *	0.0146	-0.0976	-0.1121	-0.0317	-0.0375	-0.0538
	r 2	0.0045	[ 0 . 0023 -0 . 0068 ]	0.2169	-0.8859 * *	-0.8761 * *	-0.7932 * *	-0.8601 * *	-0.8006 * *	-0.8183 * *	-0.8432 * *
	α 1	70	[ 35 -105 ]	0.0282	-0.0556	-0.0249	0.1119	0.0395	0.1792	-0.1018	-0.1228
	α 2	10	[ 5 -15 ]	-0.0958	0.4179 * *	0.4652 * *	0.5015 * *	0.7972 * *	0.7828 * *	0.8085 * *	0.8189 * *
	μ b	1.06	[ 0 . 53 -1 . 59 ]	0.0122	-0.1853	-0.3066 *	-0.4817 * *	-0.6259 * *	-0.8264 * *	-0.7240 * *	-0.6708 * *
		0.70	[ 0 . 35 -1 . 05 ]	-0.1372	-0.3436 *	-0.3108 *	-0.3438	-0.0661	-0.0782	-0.7714 * *	-0.8614 * *
	η	0.05	[ 0 . 025 -0 . 075 ]	0.0991	-0.2597	-0.0425	-0.2707 *	-0.4009 * *	-0.6689 * *	0.5781 * *	0.3653 *
	M p	10 10	5 . 10 9 -15 . 10 9	0.0871	0.1311	-0.0075	-0.1945	0.0501	-0.0033	0.1670	0.2016
	K f	10 4	5 . 10 3 -15 . 10 3	0.1003	-0.6834 * *	-0.4120 * *	-0.4736	-0.3451 *	-0.5114 * *	-0.4302 * *	-0.4844 * *
	K e	10 6	5 . 10 5 -15 . 10 5	0.0217	-0.0623	0.0643	-0.2704 * *	-0.1310	-0.1799	-0.0786	0.0622
	Q f	10 5	5 . 10 4 -15 . 10 4	0.0304	0.2013	0.0466	0.1384	-0.0885	0.6970	0.0422	0.0178
	ϕv	0.05	[ 0 . 025 -0 . 075 ]	-0.0353	0.2926 *	0.0323	-0.1808	0.0889	-0.0491	-0.0606	0.1984
	ϕ b	0.008	[ 0 . 004 -0 . 012 ]	0.1397	0.1711	-0.0136	-0.0275	0.0514	0.107 * * 1	0.1886	0.3448 *
	θv	0.08	[ 0 . 04 -0 . 12 ]	0.1623	-0.0232	-0.0076	0.2911	0.0886	-0.0290	0.0304	-0.3943 * *
	θ b	0.005	[ 0 . 0025 -0 . 0075 ]	0.1112	-0.2210	-0.0086	0.0344	0.0936	-0.0995	-0.0044	0.6996 * *
	g	0.73	[ 0 . 365 -1 . 095 ]	0.1778	0.0299	-0.0296	0.2503	-0.0364	-0.2758	-0.0337	0.2175
											

* : p -value < 0.01, * * : p -value < 0.001

Table 4

 4 The six most influential parameters of model system[START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] .

	Number of state variables significantly correlate
	Parameters	Range 10%	Range 50%	Total
	μ h	7	8	15
	β F	7	5	12
	μ b	4	4	8
	α 2	3	5	8
	β I	1	7	8
	r 2	0	7	7
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Appendix A. Proof of ρ(

Herein, we show that the condition ρ( A 2 ) ≤ 0 is equivalent to R 0 ≤ 1 .

To check condition ( H 5 ) of theorem from Kamgang and Sallet [START_REF] Sallet | Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE)[END_REF] , we will use the following lemma: The matrix Ā 2 can be expressed in the form of the matrix M with

The matrix A is Metzler stable if and only if

for i ∈ {1, 2}. Then, it is easy to verify that the matrices A and A -BD -1 C are Metzler stable if and only if R 0 ≤ 1 .

Appendix B. Proof of the non positivity of coefficients of the polynomial equation (25) when R 0 > 1

Herein, we show that the coefficients c 1 , c 2 and c 3 of the polynomial (25) are all negative whenever R 0 > 1 . Let

With the above notations, the coefficients c 0 , c 1 , c 2 , c 3 and c 4 of the polynomial equation ( 25) become

Then, it clearly appears that c i > 0, i ∈ {1, 2, 3, 4} when R 0 ≤ 1 . Therefore, when R 0 > 1 , the coefficients c i , i ∈ {1, 2, 3, 4} are all negative. Consequently, the polynomial equation [START_REF] Bayleyegn | A mathematical analysis of a model of cholera transmission dynamics[END_REF] has exactly one real positive solution when R 0 > 1 .

Appendix C. Proof of Theorem 3

In this Appendix, we give the proof of Theorem 3 on the local stability of the endemic equilibrium point of system [START_REF] Roszak | Survival strategies of bacteria in the natural environment[END_REF] . To do so, the following simplification and change of variables are made first to all. Let x 1 = S, x 2 = I 1 , x 3 = I 2 , x 4 = R, x 5 = F V , x 6 = F B , x 7 = E V and x 8 = P so that N = x 1 + x 2 + x 3 + x 4 . Further, by using the vector notation x = (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7 , x 8 ) T , model system (7) can be written in the form ˙