N

HAL

open science

Towards Universal Logic: Gaggle Logics

Guillaume Aucher

» To cite this version:

Guillaume Aucher. Towards Universal Logic: Gaggle Logics. Melvin Fitting. Selected Topics from
Contemporary Logics, College Publications, pp.5 - 73, 2021, Landscapes in Logic, 978-1848903500.

hal-03498949

HAL Id: hal-03498949
https://hal.science/hal-03498949

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License


https://hal.science/hal-03498949
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

TOWARDS UNIVERSAL LOGIC: GAGGLE LOGICS

GUILLAUME AUCHER
Univ Rennes, CNRS, IRISA
263, Avenue du Général Leclerc
35042 Rennes Cedex, France
guillaume.aucher@irisa.fr

ABSTRACT. A class of non—classical logics called gaggle logics is introduced,
based on a Kripke—style relational semantics and inspired by Dunn’s gaggle theory.
These logics deal with connectives of arbitrary arity and we show that they capture
a wide range of non—classical logics. In particular, we list the 96 binary connectives
and 16 unary connectives of basic gaggle logic and relate their truth conditions to the
non-classical logics of the literature. We establish connections between gaggle the-
ory and group theory. We show that Dunn’s abstract law of residuation corresponds
to an action of transpositions of the symmetric group on the set of connectives of
gaggle logics and that Dunn’s families of connectives are orbits of the same action.
Other operations on connectives, such as dual and Boolean negation, are also refor-
mulated in terms of actions of groups and their combination is defined by means
of free groups and free products. We show how notions of groups arise naturally
from our gaggle logics and how gaggle logics can be canonically defined from given
groups. Our other main contribution deals with the proof theory of gaggle logics.
We show how sound and complete calculi can be systematically computed from any
basic gaggle logic with or without Boolean connectives. These calculi are display
calculi and we prove that the cut rule can be systematically eliminated from proofs.
This allows us to prove that basic gaggle logics are decidable.

Keywords: substructural logics, residuation, gaggle theory, display calcu-
lus, group theory, action of group, free group and free product.

AMS classification (2010): 03, 03B, 03C, 03F.

1 Introduction

A wide variety of non—classical logics have been introduced over the past decades, such
as relevant logics, linear logics and Lambek calculi, to name just a few. On the one hand,
this diversity is an asset since each logic has an interest for a specific purpose, and one can
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select, and resort to, some of them for reasoning about a given applicative issue [38]. In
fact, many of these non—classical logics have been developed for solving concrete prob-
lems in computer science: for example, dynamic logics [24], Hoare and separation logics
[25, 43] for reasoning about computer programs, and description logics [3] for formaliz-
ing ontologies of the semantic web. Acknowledging and dealing with this plurality and
diversity of logics is in a sense at the origin of the development of a philosophical stance
in logic called “logical pluralism” [5]. On the other hand, and from a theoretical point
of view, this plurality can be felt as problematic because it threatens the unity and the
unifying power of logic. Indeed, all logics already have in common the same terminol-
ogy and notions, such as truth, validity, conservativity and interpolation, and this is also
an asset. Nevertheless, one can argue that non—classical logics are still disorganized and
scattered and somehow miss a common formal ground. As Gabbay summarised the state
of play (vis-a-vis non-monotonic logics) in the early 1980s, “we have had a multitude of
systems generally accepted as ‘logics’ without a unifying underlying theory and many
had semantics without proof theory. Many had proof theory without semantics, though
almost all of them were based on some sound intuitions of one form or another. Clearly
there was the need for a general unifying framework.” [15, p. 184].

In response to that situation, a number of efforts have been made by some logicians
to provide a genuine unity to logic as witnessed for example by the development of ab-
stract model theory and “institutions” [4, 33, 19], the introduction of “labelled deductive
systems” by Gabbay [17] or the “basic logic” of Sambin & al. [45] (see [16] for de-
tails and more examples). This led to the rise of a research thread sometimes referred
to (nowadays) as “Universal Logic”. Many kinds of semantics, such as algebraic, cate-
gorial, topological, phase or relational semantics, have been introduced and developed,
sometimes for the express purpose of tackling this issue [46]. Within that line of research,
Dunn’s gaggle theory [10, 11, 7] is one of the most well-known frameworks based on
the relational Kripke-style semantics which itself deals with the aforementioned problem.
Dunn’s gaggle theory is an attempt to understand the Kripke semantics of non-classical
logics in a disciplined, systematic way.'

We share the ideal and the objective of “Universal Logic”, but, in our view, gaggle
theory is only a first step. Indeed, this theory does not really introduce an actual logic
or logical framework that can serve as a foundation for non—classical logics, in the same
way as the Lambek calculus is sometimes presented as the foundational logic of the
varied substructural logics [42]. However, as we will show, gaggle theory provides formal
methods to define a generic logic. In fact, it allows us to define a class of logics that can
handle connectives of arbitrary arity. Building on (partial) gaggle theory, we will define a

"Dunn “owe[s] the name “gaggle” to [his] colleague Paul Eisenberg (a historian of philosophy, not a
logician), who supplied it at [his] request for a name like a “group”, but which suggested a certain amount
of complexity and disorder.” [10, p. 31]



ToOwWARDS UNIVERSAL LOGIC: GAGGLE LOGICS

class of non-classical logics that we call gaggle logics and which generalize the Lambek
calculus and other substructural logics in many directions.

In doing so, we will establish connections between gaggle theory and group theory.
We will show that Dunn’s abstract law of residuation corresponds to an action of trans-
positions of the symmetric group (the group of permutations) on the set of connectives of
gaggle logics and that Dunn’s families of connectives are orbits of the same action. Other
operations on connectives, such as dual and Boolean negation, will also be reformulated
in terms of actions of groups, and their combination will be defined by means of free
groups and free products. We will also show how notions of groups arise naturally from
our gaggle logics and how gaggle logics can be canonically defined from given groups.

Our other main contribution will deal with the proof theory of gaggle logics. We
will show how sound and complete calculi can be systematically computed and defined
for any basic gaggle logic given by its set of connectives. This generic result is in line
with our ‘universal’ approach explained above and constitutes the main technical ad-
vance of the article. We will use a specific Henkin construction method to prove the
strong completeness of our calculi. Our main objective is to obtain sound and complete
proof calculi for basic gaggle logics without the Boolean connectives. However, we will
need to add them anyway and proceed in two steps. Firstly, we will consider a language
with the Boolean connectives and prove completeness with them (Section 7). Secondly,
after proving the cut elimination (via the proof of conditions (C1) — (C8)), we will ob-
tain sound and complete calculi for basic gaggle logics without the Boolean connectives
thanks to a proof-theoretical analysis of the calculi obtained (Sections 8 and 9, proof of
Theorem 53). The cut elimination will also entail that basic gaggle logics are conserva-
tive extensions of each other and are decidable.

Organization of the article. In Section 2, we recall the basic results of (partial) gaggle
theory. In Section 3, we recall the basics of group theory including the symmetric group
(the group of permutations), free groups, free products and actions of groups. In Section
4, we introduce our gaggle logics and define our actions of groups on the gaggle con-
nectives, in particular the residuation and the Boolean negation. In Section 5, we prove
that Dunn’s abstract laws of residuation are actions of transpositions of the symmetric
group on the set of connectives and that Dunn’s families of connectives are orbits of the
action of the symmetric group. In Section 6, we relate our gaggle logics with the liter-
ature by listing the 96 binary connectives and the 16 unary connectives of basic gaggle
logic while mentioning which connectives have already been introduced in a publication.
We also mention two logics which cannot be embedded in gaggle logics. In Section 7,
we introduce our display calculi. In Section 8 we prove that our calculi satisfy the dis-
play property and that the cut rule can be eliminated from any proof. Then, in Section
9, thanks to cut—elimination, we provide sound and strongly complete display calculi for
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gaggle logics without Boolean connectives. We also prove that basic gaggle logics are
decidable. In Section 10, we show how notions of groups arise naturally from our gaggle
logics and how gaggle logics can be canonically defined from given groups. We conclude
in Section 11. Long proofs are in the Appendix.

2 The core of gaggle theory

We present the core ideas of (partial) gaggle theory [10, 11]. Partial gaggle first appeared
in Dunn [11] as a generalization of a gaggle that has just an underlying poset, not
necessarily a distributive lattice as required for a gaggle in Dunn [10]. For our purpose,
the presentation of (partial) gaggle theory is slightly different from the usual presentation
of this theory. The definitions are the same (although they are sometimes instantiated)
but the results of this theory are differently presented. Our results can nevertheless easily
be obtained from the original presentation [11].

In this section, we consider given an integer n € N and a non-empty set W. P (W)
is the set of subsets of W and if S is a set, S™ is the Cartesian product S x ... x S, n
times. A n—ary function f on P (W) is a function f : P (W)" — P (W) and a n—-ary
relation R over W is a subset of W". We write Rw; . .. w,, for (w1, ...,w,) € R. Forall
m,n € N, the expression [m;n] denotes the set {m,...,n} if m < n, and the empty set
@ otherwise. In the sequel, we will resort to polarity groups, in particular to the negation
group P, _y and later to the anti-group P, .).

Definition 1 (Polarity groups). Let (x,y) be an ordered pair. The polarity group asso-
ciated to (z,y) is P,,) = ({7, y},-) where the operation - : P, ) x Py, = Pz ) 18
definedby z-y=y-x=yandx-x =y -y ==z Forall +,+" € {x,y}, we write ++’ for
+- 2/, O

Note that x is the neutral element of a polarity group (and that every polarity group
is isomorphic to the group Z/27Z).

Definition 2 (Trace, contrapositive trace). A (n—ary)traceisatuplet = (£1,...,+p,+) €
{+,-}"*1, often denoted t = (#1,...,4,) ~ +. If j € [1;n], then the contrapositive
trace of t with respect to its 7" argument is the trace t/ = (£1,...,—%,...,%,) = —%.

]

Note that the contrapositive operation on traces is symmetric: (tj )J =t.

Example 3. The 2-ary traces (—,—) — — and (-, +) — + are contrapositive with respect
to (w.r.t.) their first argument.
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Definition 4 (Relation negation and permutation). Let R be an arbitrary n+1-ary relation
over W. Then, for all j € {1,...,n}, we define the n + 1-ary relation — R as follows: for
all wy,...,w,,weW,

—Rw1 ... wpw iff (wq, ..., wy,w) ¢ R

S,+1 denotes the set of permutations of the set [1;7n + 1] (see Section 3 for details).
If 0 € G,,41 is a permutation then its inverse permutation is denoted o~. We define the
n + 1-ary relation R’ as follows: for all wy,...,w,+1 € W,

Rawl T | iff Rwo—(l) .. ’lUJ—(n+1)
We also define +R = R and if + € {+, -} then R*? denotes +R°. O

Definition 5 (Logical functions associated to a trace and a relation). Let ¢ =
(£1,...,%pn) > =+ be a n—ary trace and let R be a n + 1-ary relation on W. The n—
ary function f on P (W) associated to t and R, denoted [k, is defined as follows:

° Ifn:O,fRéR;
e If n.> 0, then for all Wy, ... W, e P(W),
FaWr, .o W) 2 {w e W | CR (WA,..., Wy, w)}

where C, (W1, ..., Wy, w) is called the truth condition of the function f% and is defined
as follows:
e if + = +: “for all wy,...,w, € W, we have wy 4 Wy or... or w, h W, or

Rw; ... wyw™;

e if £+ = —: “there are wq,...,w, € W such that wy } Wi and ... and w,, 4 W,, and
Rwy ... w,w”;

wj e W, if £+ = +;

where, for all j € [1;n], w; 4 W; £ { O

wy ¢ Wj if:l:j:i: = —.

Example 6. Let R be a 3—ary relation on W and let o be the permutation (2, 3, 1) on the
set [[1;3] (see Section 3 for details). Then, we have that R7uvw if, and only if, Rwuv.

« If t = (-,—) » — then the function f : P(W) x P (W) — P (W), whose
truth condition is Cf% (W1, Wo,w) = Juv (u € Wi Av e Wa A Ruvw), defines the
semantics of a connective, that we denote o, as follows: for all w e W,

we [poyiffwe fr([e]. [¢])
iff Juv (u e Jo] Av e [¢] A Ruvw)
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o If t = (=, +) ~ + then the function f*,, : P (W) x P (W) - P (W), whose truth
condition is C! po (W1, Wo,w) = You (v e Wy v u e Wy v —Rvuw), defines the
semantics of a connective that we denote \, as follows: for all w € W,

we [P\ iff w e g0 (], [¥])
iff You (v ¢ ] v u e [¢] v —R7uvw)
iff You ((Rwuv Au e Jp]) = ve[y]).

Definition 7 (Isotonic and antitonic functions). Let f be a n—ary function on P (W'). We
say that f is isotonic (resp. antitonic) with respect to the 3t argument, written tn(f,j) =
+ (resp. tn(f,j) = -), when for all Wy,... , W;_1,Wjiq,...,W,, X, Y e P(W),

if XcYy
then f(Wl,. . .,Wj-l,X, Wj+1, .. ,Wn) c f(Wl,. . .,Wj-l,Y, Wj+1,. . ,Wn)

(I‘CSp. f(W1,...,Wj_1,Y, Wj+1,...,Wn) c f(Wl,...,Wj_l,X, Wj+1,...,Wn)).
0

Example 8. If [¢] c [¢'] then [¢"\¢] < [»\¢] because tn( ffch,, 1)=—,and o] c
[¢" o 9] because tn( fh, 1) = +.

Definition 9 (Relation transformations). Let R be an arbitrary n + 1-ary relation over
W. Then, for all j € {1,...,n}, we define the n + 1-ary relation R’ as follows: for all
Wiy ewny, Wy, we W,

Rw; ... wpwiff Rwy ... w... wyw,

Ift = (£1,...,4,) = xand t’ = (£],...,%],) = £’ are two n—ary traces which are
contrapositive w.r.t. their 5" argument, we define the n + 1-ary relation (¢',¢)(R) over
W as follows:

J if + =4/
(tﬁt)(R)é{R = 0

—RJ  otherwise.

Theorem 10. Let R be a n + 1-ary relation over W. Lett = (£1,...,+,) — * and
t' = (&1,...,£") = ' be two contrapositive n—ary traces w.r.t. their j'* argument. Let
f (resp. f') be the n—ary function on P (W) associated to t and R (resp. associated to
t"and (t',t)(R)). Then, if n > 0:

1. forall j € [L;n], tn(f,j) = =+ (and thus tn(f', j) = £+ too);

10
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2. f and f' satisfy the abstract law of residuation w.r.t. their j** argument: for all
Wi,...,Wp, X e P(W),

S/ W, Wy W, X)) iff SO WL X W, W),

f(Wla"an)gX if;l::_

where S(f,W1,..., Wy, X) = .
Xcf(Wi,...,Wp) ift=+.

Example 11. Let us define ¢ |- 1 by for all w € W, w € [¢] implies that w € []. Then,
the following holds:

o if ¥ |- ¢’ then ¢ o ¢ | ¢ o ¢’ because tn(fh,2) = +, and if ¢ |- ¢’ then
"\ |- ¢\ because tn( ff'Rg, 1) = —. In other words, f}, is isotonic w.r.t. its
second argument and ff’Rg 1s antitonic w.r.t. its first argument.

ot |- x iff ¢ |-\ x, because ¢ and ' are contrapositive w.r.t. their first argument.
3 Group theory
We first recall some basics of group theory (see for instance [44] for more details).

Permutations and cycles. If X is a non-empty set, a permutation is a bijection o :
X — X. We denote the set of all permutations of X by Gx. In the important special

case when X = {1,... n}, we write &, instead of &x. Note that |&,,| = n!, where |Y|
denotes the number of elements in a set Y. A permutation o on the set {1,...,n} such
that o(1) = z1,0(2) = x9,...,0(n) = x, is denoted (x1,x2,...,z,). For example,

(1,3,2) is the permutation o such that (1) = 1,0(2) =3 and ¢(3) = 2.

If z € X and 0 € G, then o fixes x if o(z) = x and o moves x if o(x) # x. Let
Ji,---,Jr be distincts integers between 1 and n. If 0 € &,, fixes the remaining n — r
integers and if 0(j1) = j2,0(j2) = j3,---,0(Jr-1) = jr,o(jr) = j1 then o is an r—cycle;
one also says that o is a cycle of length r. Denote o by (j1 jo ... jr). A 2—cycle which
merely interchanges a pair of elements is called a transposition.

Two permutations 0,7 € Gx are disjoint if every x moved by one is fixed by the
other. A family of permutations o1, 09, ..., 0, is disjoint if each pair of them is disjoint.
Every permutation o € G,, is either a cycle or a product of disjoint cycles. Moreover, this
factorization is unique except for the order in which the factors occur.

Groups. A group (G, o) is a non—empty set GG equipped with an associative operation
o: G x G - (G and containing an element denoted 1 called the neutral element such
that:

11
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e lgoa=a=aoclgforallaceG;
* for every a € G, there is an element b € GG such that aob = 15 = boa.

This element b is unique and called the inverse of a, denoted a~!. The set &,, with the
composition operation is a group called the symmetric group on n letters.

A non—empty subset S of a group G is a subgroup of G if s € S implies s~ € S and
s,t € S imply sot € S. In that case, S is also a group in its own right.

If X is a subset of a group G, then the smallest subgroup of G contain-
ing X, denoted by (X), is called the subgroup generated by X. For example,
G, = ((12),(23),...,(Gi+1),...,(n-1n)) = {(n1),(n2),...,(nn-1)) =
((n-=1n),(12 ... n)). &, is also generated by (1 2) and 3—cycles. For n > 3, the
alternating group 2., is the subgroup of G,, generated by the n—cycles of G&,,.

In fact, if X is non—empty, then (X) is the set of all the words on X, that is, elements
of G of the form z7'z3?... 25" where z1,..., 2, € X and #1,. .., +, are either -1 or
empty.

Free groups and free products. If X is a subset of a group F', then F'is a free group
with basis X if, for every group GG and every function f : X — G, there exists a unique
homomorphism ¢ : F' - G extending f. One can prove that a free group with basis X
always exists and that X generates F'. We therefore use the notation F' = (X) also for
free groups.

If G and H are groups, the free product of G and H is a group P and homomorphisms
ja and jpr such that, for every group () and all homomorphisms fg : G - Q and fy7 :
H — (@, there exists a unique homomorphism ¢ : P - ) with pjg = fq and ©jg = fr.
Such a group always exists and it is unique modulo isomorphism, we denote it G * H.
This definition can be generalized canonically to the case of a finite number of groups
G1,...,G,, yielding the free product Gy * ... * G,,.

Group actions. If X is a set and GG a group, an action of G on X is a function « :
G x X — X given by (g, x) ~ gz such that:

e lx =xforall x € X;
* (g192)x = g1(gox) forall x € X and all g1, g2 € G.

An action of G on X is transitive if for every x,y € X, there exists g € GG such that
y = gx; it is faithful if for gz = x for all x € X implies that g = 1.

If z € X and « an action of a group G on X, then the orbit of z under «v is O, (z) =
{a(g,z) | g € G}. The orbits form a partition of X . The stabilizer of x, denoted by G, is

the subgroup G, = {g € G | gz = x} of G. If G is finite, then we have that |0, (x)| = %

12
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Moreover, if X and G are finite then the number N of orbits of X is NV = ﬁ Yreq F(7)

where, for 7 € G, F'(7) is the number of x € X fixed by 7 (Burnside’s lemma). Finally,
if X’ ¢ X then O, (X") denotes U O, (x').
r'eX’

Fact 12. If o is an action of G on a set X and H is a subgroup of G, then the restriction
of ato H, denoted o, is also an action of H on the set X.

Definition 13. Let G and H be two groups. If a and [ are actions of G and H on
a set X, then the free action o » [ is the mapping a * 8 : G * H x X — X given
by a * /B(Q,IE) = a(glaﬁ(hla et 7a(gn76(h’nax))))’ Where g = glhl . gnhn iS the

factorization of g in the free group G' * H. 0
This definition can be generalized canonically to the case of a finite number of actions

aq, ..., 0n, yielding the mapping o * ... * .

Proposition 14. If oy, ..., «a, are actions of G1,...,G,, on a set X respectively, then

the mapping o * ... * oy, is an action of the (free) group G * ... * G, on X.

4 From gaggle theory to gaggle logics

The introduction of the formal concepts of gaggle theory are motivated by some heuristic
and logical reasons (see for example [41] for informal explanations). We are going to
reformulate these formal concepts of gaggle theory because we want to make more clear
the connection between traces and the relational Kripke—style semantics that they induce.
Thereby, we replace the notion of trace by our notion of ‘signature’ which highlights and
distinguishes in a more immediate way the different semantic ingredients that compose
gaggle theory. More specifically, the output of a trace (+ or —) is replaced by a quantifi-
cation signature (V or 3). Doing so, our reformulation will capture and represent more
directly and faithfully the tonicity of the connective defined by a given trace/signature
and the formulation of its truth condition (even if, as we said, the notion of trace output
was introduced for different heuristic reasons [41]).

In this section, we show how gaggle theory, and in particular Definition 5, leads to
the definition of finite families of connectives of arbitrary arities which are related to each
other by the abstract law of residuation of Theorem 10.

4.1 From traces to gaggle connectives

Informally, V is associated with + and 3 is associated with —. We formalize this associa-
tion with the function + : {V,3} - {+, -} defined by +(V) = +, £(3) = — and the inverse
function £ : {+,-} - {V, 3} defined by £(+) =V, E(-) = 3. Also, we define the func-
tion +: {V,3} - {V,3} by +(V) = V and +(3) = I and the function —: {V,3} - {V, 3}

13
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by —=(V) = Fand —(3) £ (V). For better readability, we write +V,+3, -V, -3 instead of
—(V),—F(H),—(V),—(H).

Definition 15 (Signatures versus traces). A (n—ary) signature s is a tuple s =
(B, (1, %)) € {V, 3} x {+,-}". If s = (&, (%1,...,£,)) IS a n—ary signature
and t = (+1,...,+n, ) a n-ary trace, then

* The trace T'(s) equivalent to s is the trace (+],...,+),) — + where + £ (&) and

+5 = ++; forall j € [1;n].

* The signature S(t) equivalent to t is the signature (£, (£],...,+,)) where £ =
A(+) and £} = ++; for all j € [1;n]. O

Note that the derived notion of tonicity ¢tn(f,j) determined in Theorem 10 is now
taken as primitive with our notion of signature. Then, we can easily prove the following:

s = S(T(s)) t=T(S(t))

We also reformulate the definition of contrapositive trace in terms of signature as
follows. If s = (&, (+1,...,%y)) is a n—ary signature and r; = (n + 1 j) a transposition
with j € [1;n], then we define

Tjsé(—:l:jzzE,(—:l:j:tl,...,:tj,...,—:l:jzl:n)). (1)

Then, we can easily prove the following: for all n—ary traces ¢ and n—ary signatures

S,
ris=S(T(s)?) /=T (r;S(t))
Moreover, for every cycle c fixing n + 1, we define
cs = (}E, (:I:C(l), £o(2)5 - - s :I:C(n))). (2)
This definition is coherent with Expression (1). Indeed, the transpositions (n +
11),(n+12),...,(n+1n) generate S, and every cycle fixing n + 1 can be factor-

ized into a sequence of transpositions of the form (n + 1 j) so that, applying iteratively
Expression (1), we obtain Expression (2).

Definition 16 (Gaggle connectives). The set of atoms P and connectives C are:

P&y x {+,-} x{V,3} C2PuU | Gps1 x {+,—} x {{V, 3} x {+,-}"}.

neN*

Both atoms and connectives can be represented by triples p = (1,+, &) (for atoms)
and ® = (o,=, (&, (£1,...,£,))) (for connectives) where 0 € &,41, = € {+,—-}

14
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| Permutations of G3 || 2—ary signatures |

; ) o1 =(1,2,3 s1=(3,(+,+
| Permutations of G- || 1—ary signatures | oy = 53’2’ 1% 5y = EV,((+,—))))
71 =(1,2) t1=(3,+) o3 =(3,1,2) sg=(V,(-,+))
7‘22(2,1) tQZ(V,+) 042(2,1,3) S4=(V,(+,+))
ts=(V,-) o5 =(2,3,1) s5=(3,(+,-))
ty=(3,-) o6 =(1,3,2) s¢ =(3,(—,+))
87 = (37(_7_))
88 = (V7 (_7_ )

Figure 1: Permutations of G2 and &3 and ‘families’ of 1—-ary and 2—ary signatures

and (&, (+1,...,+,)) € {V,3} x {+,-}". The arity of an atom is 0, the arity of
a connective ® = (o,+, (&, (£1,...,%,))) € C, denoted a(®), is n, its signature
is (&, (£1,...,+n)), its quantification signature is A& and its tonicity signature is
(£1,...,%p). Forall j € [1;n], tn(®, j) denotes +;. Atoms are denoted p, p1, p2, etc.
and connectives are denoted ®, ®1, ®2, efc. The set of n—ary connectives, for n > 0, is

denoted C,,. L]
Fact 17. The number of n—ary gaggle connectives is (n + 1)! - 272,
Proof: 1t follows from the very definition of connectives. O

4.2 Actions of groups on gaggle connectives

In this section, we introduce actions on the set of gaggle connectives. In the next sections,
we will show that they generalize standard notions of residuations, duals and Boolean
negation.

Definition 18 (Action of the symmetric group). Let n € N*. We define the func-
tion a,, : Spy1 x C, - Cp,(7,8®) — 7@ inductively as follows. Let @ =
(o,+,(E,(£1,...,%5))) €Cyand let c € S,p41.

* If c is the transposition 7; = (j n + 1), then r;® = (1 0 0, — £ +,7;5), L.e.:

ri@=((jn+l)oo,—xj+,(—x; B, (=51, .., %j,...,— % %5)).
The connective r; is called the residual of ® w.r.t. its §* argument.
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e If cis the cycle (j1 j2 ... jx n+ 1), then c¢® = rj, (rj,...(r;,®)), where r; =
(7 n+1) forall j.

* If cis acycle fixing n + 1, then ¢® = (co 0, +,¢s), i.e.:
c® = (C o0, +, (/E, (ic(l)a £e(2)s 0o ic(n)))) .

Finally, if 7 is an arbitrary permutation of G,,;1, it can be factorized into a product of
disjoint cycles 7 = cjca . . . ¢x and this factorization is unique (modulo its order) [44]. So,
we define 7@ = ¢1 (2. .. (cx®)). O

The mapping «, is well-defined because one can easily prove that any other ordering
of the disjoint cycles cy, ..., ci of 7 yields the same outcome for 7®. Our definition is
based on cycles and not on transpositions because the decomposition of any permutation
into disjoint cycles is unique (modulo its order), unlike its decomposition into transposi-
tions.

Proposition 19. For all n € N*, the mapping o, : S,,41 x C,, - C,, is a group action of
G,110n C,,. Foralln € N*, the group actions o, (and all their restrictions to subgroups
G) are not transitive, the cardinality of each orbit is |S,,+1| (resp. |G|) and the number of
orbits is 4 - 2" (resp. %).

Proof: (sketch) The condition (71 0 72)® = 71(72®) of the definition of group actions is
proved by induction on 7. The other results follow from group theory because for all
xeC,, G, ={1}. O

Definition 20 (Actions of the negation group and the anti-group). Let n € N*. We define
the functions 3, : P,y x C;, > Cp, (£, ®) = £® and 7, : P, ) x C, = Cpp, (2,8) &
+® as follows: if ® = (o, +, (&, (£1,...,%,))) € C,, then

* +®=®

~@ = (0,—+, (&, (£1,...,%n)))
o —-®=2(0,-+,(-&,(—%1,...,—%n))).

—® and ~ @ are called the Boolean negation and the symmetry of ® respectively.
Moreover, if @ is an atom p = (1, +, £), then we also define —-p = (1,-+,-&). O

As we will see in Proposition 29, our definition of Boolean negation does correspond
to the intended (Boolean) negation.
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Proposition 21. For all n € N*, the functions [3,, and ~,, are non—transitive actions. For

[Cnl

both actions, the cardinality of each orbit is 2 and the number of orbits is =

Proof: It follows from the application of Burnside Lemma. Only + fixes connectives of
C,, and it fixes all of them. — and ~ do not fix any element of C,,. O

4.3 Gaggle logics

Our introduction of ‘gaggle logics’, like many semantic-based logics, is made in three
parts: first, we define their language (Definition 22), then their class of models (Definition
24) and finally their satisfaction relation (Definition 25).

Definition 22 ((Boolean) gaggle language). The gaggle language LV is the smallest set
that contains the propositional letters and that is closed under the gaggle connectives.
That is,

e Pc LY

« for all ® € C of arity n > 0 and for all 1,..., ¢, € LY, we have ®(p1,...,p,) €
Lo

The Boolean gaggle language L is the smallest set that contains the propositional
letters and that is closed under the gaggle connectives as well as the Boolean connectives
A,V and —.

Elements of L are called formulas and are denoted ¢, v, «x, ... Forall 1, ..., ¢, € L,
V1A . . Apn and p1V. . .V, stand for ((p1 A p2) A...App)and ((1Ve2) V...V )
respectively.

If C < Cu{A,v, -} is such that CnP # &, then an element of L¢ is an element of £
that contains only connectives and atoms of C. In the sequel, we assume that all the sets
of atoms and connectives C< CuU {A, v, -} are such that CnP # @. O

Remark 23. We could consider a countable number of copies of the atoms and connec-
tives: P’ = {@Z |@eP},C' = U {®; | ® € C}. Indeed, in general we need a countable
ieN

number of atoms or, like in some modal logics, we need multiple modalities of the same
(similarity) type. All the results that follow would still hold in this extended language.

Definition 24 (C—models and C—frames). Let C ¢ C. A C-model is a tuple M = (W, R)
where W is a non-empty set and R is a set of relations over W. Each n—ary connective
® € C is associated to a n + 1—ary relation Rg such that for all connectives &1, &2 € G,
we have that Rg, = Rg, iff O4,,.4, (®1) = Oa,«5, (®2).

We abusively write w € M for w € W. A pointed C—-model (M,w) is a C—model
M together with a state w € M. The class of all pointed C—models is denoted M and
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simply M when C = C. A C—frame is a C\IP-model. The class of all pointed C—frames
is denoted F¢ and simply F when C = C. O

Definition 25 (Gaggle logics). Let C ¢ C and let M = (W, R) be a C—model. We define
the interpretation function of L¢ in M, denoted []M : Lo — P (W), inductively as
follows: for all p e Cn P and all ® € C of arity n > 0 and signature denoted (o, +, s), for
all p, v, 01,...,0n € Lc,

[[p]]M = xRy
[-e]™ = W =[]V
[(e )™ = [e]™ n[g]™
[(ove)]™ = [el™ u[y]M
[®(o1,.. o)™ = fo(lea]™, ..., [ea]™)

where the function fg = f&., with ¢ = T'(s) defined in Section 4.1 and f%., in Definition
® (3]

5. That is, fg is defined as follows: for all Wy,..., W,, € P (W), fe(W1,..., W,) =
{weW |C®(Wy,...,Wy,w)} where C® (W1,...,W,,w) is called the truth condition
of ® and is:

s if E=V: “Vuy,...,wp, e W(wi § Wi v...vw, h W, v RFw; ... wyw)”;
e if E=3: “Juy,...,wp e W(wr b Win...Aw, b Wy ARG w1 ... wpw)™s

where, for all j € [I;n], w; 4 W; 2 w; e Wjif £; = + and w; d W 2 w; ¢ W; if
+; = —and Rg7w ... w41 iff +Rews-(1) .. Wo-(n41) (We recall that +Rg = Re and
~Rg = W™ - Rg).

We extend the definition of the interpretation function [-]*! to C—frames as follows:
for all ¢ € L and all C—frames F,

[elF =N {[[go]](F "P) | P a set of n—ary relations over Wsuch that (F, P) is a C—model}

If & is a class of pointed C—-models or C—frames, the satisfaction relation |- ¢
Ec x L is defined as follows: for all ¢ € L¢ and all (M, w) € &, ((M,w), ) € |-
iff w e [o]™. We usually write (M, w) |- ¢ instead of ((M,w),¢) € |- . The triple
(Lc, &, |) is a logic called the gaggle logic associated to Ec and C. The logics of
the form (L, Mg, |- ) are called basic gaggle logics. We call them Boolean (basic)
gaggle logics when their language includes the Boolean connectives A, Vv, —. O

The truth conditions of the above definitions have been introduced in a different for-
mal approach by Bimbd & Dunn [7] and for some particular cases by Dunn [10] and
Dunn & Hardegree [13]. However, it is the first time that they are spelled out systemati-
cally and in a comprehensive manner.
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Example 26 (Lambek calculus, modal logic). The Lambek calculus (Lg, Mg, |- )
where C = {p,o,\,/} defined in Section 2 is an example of basic gaggle logic. Here
o,\,/ are the connectives (o1, +, s1), (05, —, $3), (03, —, $2). Another example of gaggle
logic is modal logic (Lg, &g, |- ) where C = {p, T, 1, A, Vv, <, 0} is such that

* T, 1 are the connectives (1,+,3) and (1, -, V) respectively;

* A,V,$,0 are the connectives (o1,+,81), (01,—,84), (72,+, $1), (72, —, 82) re-
spectively;

¢ the C-models M = (W, R) € &g are such that R, = R, = {(w,w,w) | we W},
RQ:RD,RT:RJ_:W.

Indeed, one can easily show that, with these conditions on the C—models of £z, we have
that for all (M, w) € &, (M,w) |- (o1, +,51)(p, ) iff (M, w) |- ¢ and (M, w) |-,
and (M, w) | (o1, —,54)(@,v) iff (M,w) |l or (M, w) | . Note that the Boolean
conjunction and disjunction A and Vv are defined using the connectives of C by means
of special relations R, and R,. They could obviously be defined directly. Many more
examples will be given in Section 6.

5 Residual, Boolean negation, dual and switch

The action of specific permutations on the set of connectives corresponds to well-known
operations used in proof theory. For example, the action of a transposition (j n + 1)
corresponds to the abstract law of residuation for the j** argument. This operation of
residuation turns out to be central since every permutation can be decomposed into a
composition of transpositions. Yet, we argue that the actions of cycles is more central
because every permutation can be decomposed uniquely into disjoint cycles. Moreover,
the symmetric group S,,,1 is also generated by the cycles (1 ... n+1) and (n n + 1)
and the alternation group is generated by the n + 1-cycles of &,,;1. This confirms an
observation already made in [2] which highlighted the role of 3-cycles for substructural
and update logics in the formal connections that exist between connectives.

Proposition 27. Let t be a n-ary trace, R a n + 1-ary relation over W and 0 € G,,41.
Then, fh.c = fo where ® = (0,+,5(t)) = (0,+, (&, (1,...,%))). Moreover, if
j € [1;n], then the n-ary function associated to t and (t?,t)(R) of Definition 5 is fri®
where 1;®, the residual of ® w.r.t. its gt argument, was defined in Definition 18:

ri®@=((jn+l)oo,—+j+, (- &, (—+j 1, .., %5,...,— %5 %5)).
Therefore, we have the following property: for all p1,...,90j,...,pn, @ €L,

S[@,@l,...,g@j,...,@n,@] lﬁc S[Tj®7§017'"7@7"'7§0ﬂ7§0j:| (3)
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®(901>790n)“_80 lfAE:H
ol (1, ipn) ifE=VY

Proof: 1t follows straightforwardly from our definitions. Expression (3) follows from
Theorem 10 (item 2). O

where S [®,¢1,...,¢n, @] i{

Hence, r;® does correspond to the residual connective of ® w.r.t. its 4% argument as
it is usually defined in Dunn’s theory.

Definition 28 (Dual and switch operations). Let ® = (o, +, (&£, (£1,...,+,))) € Cbe a
n—ary connective and let j € [1;n].

o The switch of ® w.rt. its 7" argument is the n-ary connective

$;® = (0,%, (&, (£1,...,—%j,...,%n))).

e The dual of ® w.r:t. its j** argument is the n—ary connective

d;® 2 (0,—+, (=&, (%1, .., £j,-- ., —%n))).

* The dual of ® is the n-ary connective

de® = (0, -+, (&, (£1,...,%n))). O

The following proposition shows that our terminology for “Boolean negation” and
“dual” is appropriate and does correspond to the standard intuitive meaning (see Black-
burn & Al. [8, Def 1.13] for example).

Proposition 29. Let ® € C be a n—ary connective and let p1, ..., p, € L. Then, for all
(appropriate) pointed models (M, w),

(M, w) | -®(o1,...,0n) iff (M,w)|F ® (v1,...,9n) does not hold
(Mw) =58 (p1,..0n)  if (Myw) |- @ (o1, 205, on)
(Mw)|=dj@ (1, on)  iff  (Mw) |- -1, ~9j,- -, 9n)
(Mw)|=d e (p1,-...0n)  iff (Mw) |- —@(=p1,...,~¢n)

The following proposition shows that the switch as well as the dual operations are
definable in terms of residuations and Boolean negation.

Proposition 30. If ® € C,, is a n—ary connective, then for all j € [1;n],

*5®=1;-71;®
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(01,+,51)
(Ul 7/_7 38) (067 ) 83)
/
/
/
/ - - - residuation 7o
(06, —,58) (06, +,85)
/ —— Boolean negation —
/
/
/
/
(06, +, 51) (01,+,85)
(017_783)

Figure 2: The 8 connectives of the orbit Oq,, ((01, +,51))

. dj@ITj—Tj—®
i d@251...8n—®.

Proof: See the Appendix, Section A. O

Proposition 31. Dunn’s (complete) families of n—ary connectives are orbits O, (®) of
the group action o,,. These families/orbits form a partition of the set of n—ary connec-
tives.

Proof: 1t follows easily from Dunn’s and our definitions. O

Dunn’s families of n—ary connectives are called “complete families™ of operations by
Bimb6 & Dunn [7]. Likewise, two n—ary connectives ®, ® € C,, are “colligated” in the
sense of Bimb6 & Dunn [7] when they belong to the same orbit O, (®).

Proposition 32. Let n € N*, j € [1;n] and let us define G = (r;) * P, _y. Since G is
a subgroup of &1 * P, ), let us denote by ag; the action of G; on C,, induced by the
free action o, * B,. Then, for all connectives ® of arity n,

1. C’)an (®) is isomorphic to a cyclic group of order 8.

2. {Oan*b’n (®),04, 8, (~ @)} forms a partition of the set C,, of connectives of
arity n. Moreover, the mapping - : Oq,48,(®) = O4,48,(~ ®), & =~ T is
involutive.
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(01,+,81) ~==--- (02,—,52)
/ ' |
, \
, \
\
/
\
/ . .
/ \ - - - residuation ro
\
(06,—,$3) (03, —,52)
\ ’ . .
\ A residuation 7
\\\ //
\ /
\ /
\ /
\ /
\ /
\\ //
(057_733)_ - '(047+751)

Figure 3: The 6 connectives of the orbit O, ((o1,+,51))

3. Foralln € N*, the free action o, * By, * Yy, on the set of connectives C,, is transitive.

Proof: See the Appendix, Section A. O

So, for every pair of connectives (®,®"), there exists a sequence of residuation(s),
negation(s) and symmetry which transforms & into ®’. In other words, every gaggle
connective ® € C,, can be obtained from another connective ®" ¢ C,, with a suitable
choice of element in the free groups G,,11 * Py _y * P4 .y: for all @, ®' € C,, there is
g €61 % Py _y*» Py .y such that ® = v, * B * 1 (9, ®).

Example 33. In Figure 2, we represent the orbit Oq, ((01,+,51)). Itis isomorphic to
a group of order 8 according to the first item of Proposition 32. In Figure 4, we represent
the orbit Op,48, ((01,+, s1)) where the 48 binary connectives are related to each other
by means of residuation, switch or Boolean negation. The other 48 binary connectives of
the orbit O, .3, (~ (01, +, s1)) are obtained symmetrically by switching everywhere —
to + and + to —. These two orbits form a partition of C, according to the second item of
Proposition 32. The orbits O, (®) of the binary connectives & of Cy are given in Figures
7,8,9, 10, 11 and 12. Every orbit O,,(®) is of cardinality 6 = |S3|. In order to follow
common notations, binary connectives are denoted ¢ ® v instead of ®(¢, ). Finally,
the orbit of O,, ((01,+, s1)) is represented graphically in Figure 3, it corresponds to the
outermost left vertical line of Figure 4.

6 Gaggle logics in the literature

In this section, we provide formal connections between our gaggle logics and substruc-
tural and non-classical logics. The last columns of our tables indicate the relevant publi-
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switch sy
- - switch sg
--- residual r

negation —

residual ro

Figure 4: The 48 connectives of the orbit Oy,.s, ((01,+,51)) related to each other by

residual, negation and switch operations.
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cation where the gaggle logic connective was introduced for the first time. A logic close
to our approach with connectives of arbitrary arity is the Generalized Lambek Calculus
of Kolowska-Gawiejnovicz [26]. It is in fact the basic gaggle logic (Lg, Mg, | ) where
C= U {&n,7®, |,i=1,...,n} with &, the n-ary connnective (1,+, (3, (+,...,+))).

neN*

(®,, and r;®,, are denoted f and f/i in [26].)

6.1 Binary and unary connectives of basic gaggle logic

The truth conditions of the 16 unary gaggle connectives of gaggle logic are given in
Figure 6 and those of the 96 binary gaggle connectives of gaggle logic in Figures 7, 8, 9,
10, 11 and 12. Many of these unary and binary connectives have already been introduced
in the literature [30, 23, 28, 29, 40, 31, 22, 42, 2]. For example, the binary connectives
(01,+,81), (05,53,—) and (o3, s2, —) are the fusion o, implication \ and co-implication
/ connectives of the Lambek calculus [30] used to illustrate our examples in Section 2.
They are also denoted ®;, o, and ¢, in update logic [2].2 In the third column of the tables,
we provide the bibliographical references where the connectives were first introduced.
Note that each binary connective ® has a commutative version " which belongs to the
same orbit/family so that for all formulas ¢, 1) we have that o ® = 1 &' . So, instead of
6 different connectives for each 2—ary orbit, we genuinely have 3 different connectives.
This is in line with a result about colligated operations of Bimbd & Dunn [7]. For each
orbit, one goes from one connective to the next by alternating residuations w.r.t. the first
or the second argument, like in Figure 3. For example, (o1,+,s1) =11 (02,—,82) =
ri1ro (03, -, 82) =Tr1irori (04, +, 81) =T1rorire (0'5, -, 83) =T1roriromri (0'6, - 83) .

To each family/orbit of connectives corresponds a series of laws of residuation. These
laws are all instances of the same abstract law of residuation of Definition 10 and cor-
respond to the action of transpositions of the form (j n + 1) on the set of connectives.
They are of different types depending on the family/orbit to which they belong. These
types were denoted in the literature: residuation connection, dual residuation connection,
Galois connection and dual Galois connection (denoted rp, drp, gc and dgc by Goré
[22]). These different ‘types’ of instance of the same abstract law of residuation for bi-
nary and unary connectives are given in Figure 5. In particular, note that the notion of
dual residuation is the same as our definition of dual w.r.t. the j** argument (Definition
28 and Proposition 29).

There is a number of important typographical mistakes about dual update logic in [2]. In particular,
in Definition 20 (dual update logic) of [2], y and z should be swapped in the truth conditions of <; and >.
There are also some errors in the case study of Section 8 about bi-intuitionistic logic. A fully corrected
version of [2] is available at https://hal.inria.fr/hal-01476234v2/document.
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‘Type’ of the abstract law | Binary connectives | Unary connectives |
P& Ylx
el-v 2 x Oy ol
Residuation VI xcop ? el-ov  elFovy
X ”_ o &Y
- x|
Dual residuation X <k @ ”_ (0
@i “_ X
ol x| Py
Galois Vx| Yl
4
Y=o b x Ul
Dual Galois <P”_ Y e X <P||_0¢

Figure 5: Instances of the abstract law of residuation
(i,7,k) €{(3,1,2),(2,3,1),(1,2,3)}

6.2 Non gaggle logics

Some connectives of non—classical logics are not connectives of gaggle logics. We men-
tion two of them here. First, the standard modal connective interpreted over a neighbor-
hood semantics [34, 35, 47]. It cannot be expressed by a combination of gaggle logic
connectives, because its reformulation with a ternary relation contains an alternation of
quantifiers that cannot occur in any function of Definition 5:

w € [O¢] iff JuVv (Rwuv < v e [¢]).

Second, the disjunction of connexive logics interpreted over the ternary semantics of
relevant logics [37]. It cannot be expressed in basic gaggle logic either, because its formu-
lation contains a pattern of Boolean connectives absent from the functions of Definition
S:

w € [ v ] iff Juv (Rwuv A (ue o] voe[y])).
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Gaggle Truth condition Substructural
connective connective
The existentially positive orbit: residuations
(11,+,t1) ¢ | Fv(v e [p] A Row) ST [40] ©) [10]
(12,—,t2) ¢ | Yu(ve[p] v-Rwv) | Op [28]
The universally positive orbit: residuations
(11,+,t2) ¢ | Yo(ve[g] v Row) | +,¢[10][13, p. 401]
(12,—,t1) ¢ | Fv (v €[] A-Ruwv) | [10]
The existentially negative orbit: Galois connections
(11,+,t4) ¢ | Fv(v ¢ [p] A Row) 7 [10][13, p. 402] 21¢ [10][7, Def. 10.7.7]
(12, +,t4) ¢ | Fv(v ¢ [p] A Rwv) 710 [10][14] [13, p. 402] 22¢ [7, Def. 10.7.7]
The universally negative orbit: dual Galois connections
(11,+,t3) ¢ | Yo (v ¢ [¢] v Row) ot [10, 12] ©° [22] ©1¢ [7, Def. 10.7.2]
(12, +,t3) @ | Yo (v ¢ [e] v Rwv) | ~[20] tp [10, 12] °p [22]
Sap [7, Def. 10.7.2]
The symmetrical existentially positive orbit: residuations
(7-17 B tl) ¥ v (’U € [[90]] A _va) [10]
(12,+,t2) ¢ | Yu(ve[p] v Rwov) +p [10] [13, p. 402] ¢ [7, Def. 7.1.19]
The symmetrical universally positive orbit: residuations
(11,—,t2) ¢ | Yu(ve[p]v-Row) | O ¢ [40] O [10]
(12,+,t1) ¢ | Jv(ve[p] A Ruwv) | Op[28]
The symmetrical existentially negative orbit: Galois connections
(11,—,t4) ¢ | v (v ¢ [¢] A—Row) | 2¢ [10][7, Ex. 1.4.5] ©! [22]
(12, t1) ¢ | 3v(v¢ [¢] A—Ruwv) | 7,0 [10][7, Ex. 1.4.5] ' [22]
The symmetrical universally negative orbit: dual Galois connections
(11,=:13) ¢ | Yu (v ¢ ] v -Row) | [10]
(12,—t3) ¢ | Yo (v ¢ [] v-Rwov) | =pp [29,42] Lp [14]

Figure 6: The 1-ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective
The conjunction orbit O, ( (01,+, s1) ): residuations

@ (o1, +,81) % | Juv(uep]rve Y] A Ruvw) | @oyp[30], ¢ @ ¢ [2]
o (02,—,82) ¢ Vuv (u € o] vo ¢ [¢] v-Rwou)
o (03,—,82) ¢ Vuv (u € o] vo ¢ [¥] v-Rowu) | /[30], ¢ c, ¥ [2]
o (04,+,81) ¢ Juv (u € ] Av € [¥] A Rouw)
= (01,+,51) ¢
o (05,—,83) ¢ Vuv (u ¢ [p] v e [¢] v-Rwuv) | \[30], ¢ 2, ¢ [2]
=1 (02,-,82) ¢
o (06,—,83) ¢ Vuv (u ¢ [o] v e [¢] v -Ruwv)
=1 (03,—,52) ¢

The not-but orbit Oy, ( (01, +, s¢) ): residuations
o (o1,+,86) ¥ Juw (u ¢ [o] Av e [Y] A Ruvw) 0 >3 [2]
o (09,+,86) ¥ Fuw (u ¢ [o] Av e [Y] A Rwou)
v (03,—,84) ¢ Yuv (u € o] voe[v] v-Rowu) | ¢ @&, [2]
o (04,+,85) ¢ Juv (u € [p] Av ¢ [¢] A Rouw)
= (01,+,56) ¢
o (05,+,85) ¢ Juv (u € [p] Av ¢ [¢] A Rwuv) 0 <, Y [2]
= ¢ (027 +, 86) ¥
o (06,—,84) VY Vuv (u € o] v v e Y] v —Ruwv)
= ¢ (037 K 54) ¥

The but-not orbit O, ( (o1, +, s5) ): residuations
o (01,+,85) ¢ Fuwv (u € [o] Av ¢ [Y] A Ruvw) 0 <31 [2]
© (02,—,84) ¢ Vuv (u € o] vo e ] v-Rwou)
o (o3,+,86) ¥ Fuw (u ¢ [o] Av e [Y] A Rowu) 0> [2]
o (04,+,86) ¥ Juw (u ¢ [o] Av e [Y] A Rouw) v Q1 [23, 36]
=1 (01,+,85) ¢
o (05,—,84) Vuv (u € o] v e Y] v—Rwuv) | ¢ @1 [23,36] ¢ B, ¢ [2]
= ¢ (027 ) 34) ¥
o (06, +,85) ¥ Juv (u € ] Av ¢ [¥] A Ruwwv) @1 [23, 36]
= ¢ (037 +, 56) ¥

Figure 7: The 2—ary gaggle connectives
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Gaggle
connective

Truth condition

Substructural
connective

The symmetrical conjunction orbit O, ( (01, -, s1) ): residuations

2 (017_781) (&
2 (027+732) (&
¥ (037+752) (&
2 (047_781) (&
=1 (01,-,81) ¢
2 (05a+783) (&
=1 (02,+,52) ¢
2 (06a+783) (&
=1 (03,+,52) ¢

Juw (u € @] Av e Y] A —Ruvw)
Vuv (u € o] vo ¢ [¢] v Rwou)
Vuv (u € o] vu ¢ [¢] v Rvwu)
Juv (u € [p] Av e Y] A —Rouw)

Vuv (u ¢ o] vu e [v] v Rwuv)

Vuv (u ¢ o] vv e [v] v Ruwv)

@ o1 [7, Def. 5.2.3]

@ — 1 [7, Def. 5.2.3]

The symmetrical not-but orbit O, ( (01, -, s¢) ): residuations

¥ (Jla_736) (0
2 (02a_736) (0
2 (037+734) (0
2 (047—785) (0
=1 (017_736) ¥
2 (057_785) ¢
=1 (UQa_736) ¥
¥ (067+784) (&
=1 (U3a+734) ¥

Juv (u ¢ o] Av e 1] A —Ruvw)
Juv (u ¢ o] Av e 1] A —Rwou)
Vuv (u € o] vue[¢] v Rvwu)

Fuv (u € o] Av ¢ [¢] A —Rouw)

Fuv (u € o] Av ¢ [¢] A —Rwuv)

Vuv (u € o] vo e [v] v Ruwv)

The symmetrical but-not orbit O, ( (o1, —,S5)

): residuations

¥ (017_735) 1/)
2 (027+784) (0
¥ (037_’36) (0
¥ (047_’86) (0
=1 (01,-,85) ¢
¥ (0'5,+,S4) (0
= (027+>34) ¥
¥ (Jﬁa_735) (0
=1 (037_736) ¥

Juv (u € [] Av ¢ [¥] A —Ruvw)
Vuv (u € o] vu e [v] v Rwou)

FJuv (u ¢ [p] Av e 1] A —Rowu)
Juv (u ¢ [p] Av e 1] A —Rouw)

Vuv (u € [¢] vo e [v] v Rwuv)

Juv (u € [o] Av ¢ [¥] A —Ruwwv)

Figure 8: The 2—ary gaggle connectives
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Gaggle
connective

Truth condition

Substructural
connective

The disjunction orbit O, ( (01, —, s4) ): dual residuations

¢ (01,=,80) ¥ | Yuv(ue o] voe[¢] v-Ruvw) | ¢ @5 [2]
¢ (09,+,85) ¥ Fuv (u € o] Av ¢ [¥] A Rwou)
o (03,+,85) ¥ Fuv (u € o] Av ¢ 1] A Rowu) 0 <> P [2]
o (04,—,84) Vuv (u € [p] vo e [¢] v -Rouw)
=9 (01,—,54) ¢
v (05,+,86) ¥ Fuv (u ¢ o] Av e 1] A Rwuv) 0> P [2]
=9 (02,+,85) ¢
o (06, +,86) V¥ Juv (u ¢ [p] Av e Y] A Ruwv)
=9 (03,+,85) ¢
The implication orbit O, ( (01, -, s3) ): dual residuations

¢ (01,—,83) ¥ Vuv (u ¢ [p] vvey] v-Ruvw) | ¢ 251 [2]
¢ (02,—,83) ¥ Vuv (u ¢ o] vvey] v—Rwou)
o (o3,+,51) ¥ Fuv (u € o] Av e 1] A Rvwu) © ®, 1 [2]
o (04,—,82) ¥ Vuv (u € [p] vo ¢ [¢] v -Rouw)
= 'Qb (017+733) 4
¢ (05,—,82) ¥ Vuv (u e [p] vo ¢ [¢] v -Rwuv) | ¢ c, 9 [2]
= ¢ (027_733) '4
o (06, +,81) Y Juv (u € [p] Av e Y] A Ruwv)
= ¢ (037+731) ‘4

The coimplication orbit O, ( (o1, —,s2) ): dual residuations
o (01,—,82) ¥ Vuv (u e o] vo ¢ [¢] v —Ruvw) | ¢ c; ¢ [2]
¢ (02,+,81) ¥ Juv (u € [o] Av e [¥] A Rwou)
¢ (03,—,83) ¥ Vuv (u ¢ [p] voe o] v-Rowu) | ¢ 2,9 [2]
¢ (03,-,53) Y | Yuv(ug @] voe[y] v -Rouw)
=1 (01,—,82) ¢
¢ (o5,+,581) ¥ Juv (u € [p] Av e [Y] A Rwuv) ©®, Y [2]
= 77[} (U27+781) 14
¢ (06,—,82) ¥ Vuv (u € o] vo ¢ 4] v—Ruwv)
= d} (037_783) ¥

Figure 9: The 2—-ary gaggle connectives
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Gaggle
connective

Truth condition

Substructural
connective

The symmetrical disjunction orbit O, ( (01, +,s4) ): dual residuations

¥ (017+784) (0
¢ (02,-,85) ¥
2 (037_785) ¢
2 (047+784) (0
=1 (01,+,84) ¢
¥ (057_786) (0
=1 (02,-,85) ¢
2 (067_786) (0
=y (U3a_735) 2

Vuv (u € [p] vo e [¢] v Ruvw)
Fuv (u € o] Av ¢ [¢] A —Rwou)
Fuv (u € o] Av ¢ [¢] A —Rowu)
Vuv (u € o] vu e [¢] v Rvuw)

Juv (u ¢ [p] Av e Y] A —Rwuv)

Juv (u ¢ [p] Av e Y] A —Ruwv)

© @ [22]
© < [22]

o> [22]

The symmetrical implication orbit O, ( (o1, +, s3) ): dual residuations

¢ (01,+,83) ¥ Vuv (u ¢ [¢] Vv e Y] v Ruvw)
¢ (o2,+,53) ¥ Vuv (u ¢ [¢] Vv e [v] v Rwou)
¢ (03,—,51) ¥ Fuv (u € [p] Av e Y] A —Rowu)
o (04,+,82) Vuv (u € o] vo ¢ [¢] v Rouw)
= ¢ (017+783) ¥

¢ (05,+,82) ¥ Vuv (u € [p] vo ¢ [¢] v Rwuv)
= lﬁ (027+783) '4

o (06,—,51) ¥ Juv (u € @] Av e [Y] A —Ruwv)
= lb (037_781) 2

The symmetrical coimplication orbit O, ( (o1, +, s2) ): dual residuations
o (o1,+,82) ¥ Vuv (u € [¢] vu ¢ [v] v Ruvw)
¢ (02,—,81) ¥ Juv (u € [] Av €[] A —Rwou)
¢ (o3,+,83) ¥ Vuv (u ¢ [¢] vve Y] v Rvwu)
¢ (o4,+,83) ¥ Vuv (u ¢ [¢] vve Y] v Rvuw)
= 77D (0-17+352) @

¢ (05,—,81) ¢ | Juv(ue[p] Ave Y] A -Ruwuw)
= 77ZJ (027_751) 2

¢ (06, +,52) 1 Vuv (u € o] vo ¢ [¢] v Ruwv)
= 'QZJ (U37+783) 2

Figure 10: The 2—ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective

The stroke orbit O, ( (01,+, s7) ): Galois connections

o (o1,+,87) ¢ Fuw (u ¢ [o] Av ¢ [Y] A Ruvw) ¢l ¥ [1,22]
¢ (o9,+,87) 9 Juwv (u ¢ [o] Av ¢ [¢] A Rwou)
¢ (o3,+,87) Fuwv (u ¢ [o] Av ¢ [Y] A Rowu)
o (04,+,87) ¢ Fuwv (u ¢ [o] Av ¢ [Y] A Rouw)

:¢ (017+a87) ‘4
o (o5,+,87) Juv (u ¢ [¢] Av ¢ [Y] A Rwuv) el ¥ [1,22]
:¢ (02’+757) ¥
o (06, +,87) Y Fuv (u ¢ [o] Av ¢ [¢] A Ruwv) el ¥ [1,22]
= ¢ (03’+787) ¥

The dagger orbit O, ( (01, -, sg) ): Galois connections

¢ (01,=58) Y | Yuo (ué [p] vo¢ [¢] v -Ruvw) | ¢ s ¥ [1,22]
¢ (02,—,88) Y Vuv (u ¢ o] vo ¢ [v] v —Rwou)
¢ (03,—,58) Y Vuv (u ¢ [o] vo ¢ [v] v —Rowu)
¢ (04,—,58) Y Vuv (u ¢ [o] vo ¢ [v] v —Rouw)

=y (017_758) ¥
¢ (05,—,88) Y | Vuv (ué ] voé [Y]v-Rwuww) | ¢ | ¢ [1,22]
= (027_758) ¥
¢ (06, 88) 1 | Vuv(ué[e]vo ¢ [¢]v-Ruwv) | ¢ |, ¢[1,22]
=1 (03,—,58) ¢

Figure 11: The 2—ary gaggle connectives

7 Calculi for Boolean gaggle logics
After some general definitions in Section 7.1 and definitions of structures and conse-

cutions for gaggle logics in Definition 40, we introduce in Section 7.3 our calculus for
Boolean basic gaggle logics. The calculus is a display calculus.

7.1 Preliminary definitions

These definitions are very general and apply to any kind of formalism.
Definition 34 (Logic). A logicis atriple L = (£, E, =) where
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Gaggle Truth condition Substructural
connective connective

The symmetrical stroke orbit O, ( (o1, —,s7) ): dual Galois connections

o (o1,—,87) ¥ Juv (u ¢ [¢] Av ¢ [¥] A —Ruvw)
o (02,—,87) ¥ Juv (u ¢ [¢] Av ¢ [¥] A —Rwou)
o (03,—,87) ¥ Juv (u ¢ [¢] Av ¢ [¥] A —Rovwu)
o (04,—,87) ¥ Juv (u ¢ [¢] Av ¢ [¥] A —Rouw)

= 'QZ) (O-la_a37) ¥
o (05,—,87) ¥ Juv (u ¢ [¢] Av ¢ [¥] A —Rwuw)
= "nb (027_737) ¥
o (06,—,87) ¥ Fuv (u ¢ o] Av ¢ [¢] A —Ruwv)
= '¢ (037—,87) 4

The symmetrical dagger orbit O, ( (o1, +,sg) ): dual Galois connections

@ (o1,+,88) ¢ VYuv (u ¢ [¢] vo ¢ [¢] v Ruvw)
@ (02,+,58) ¢ Vuv (u ¢ o] vo ¢ [v] v Rwow)
@ (03,+,58) ¢ Vuv (u ¢ o] vo ¢ [v] v Rvwu)
¢ (04,+,58) ¢ Vuv (u ¢ o] vo ¢ [v] v Rouw)

= (01,+,58) ¢
¢ (05,+,88) ¥ VYuv (u ¢ [¢] vo ¢ [¢] v Rwuv)
= 77[) (0'2,+,88) @Y
¢ (o6, +,88) ¥ Vuv (u ¢ [¢] Vo ¢ [v] v Ruwv)
=1 (03,+,88) ¢

Figure 12: The 2—ary gaggle connectives

* L is a language defined as a set of well-formed expressions built from a set of
connectives G and a set of atoms P;

» FEis a class of pointed models or frames;

* = is a satisfaction relation which relates in a compositional manner elements of
L to models of E/ by means of so-called truth conditions.

A L—consecution is an expression of the form ¢ -1, |- or ¢ |-, where p,p € L. O
Our definition of a calculus and of an inference rule is taken from [32].

Definition 35 (Conservativity). LetL = (£, E, =) and L' = (£, E’, =) be two logics
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such that £ ¢ L. We say that L is a conservative extension of L when {p € L | = Lp} =
Lo{e el | E¢'}. O
Definition 36 (Calculus and sequent calculus ). LetL = (£, E, |=) be alogic. A calculus
P for L is a set of elements of L called axioms and a set of inference rules. Most often, one
can effectively decide whether a given element of £ is an axiom. To be more precise, an
inference rule R for L is a relation among elements of £ such that there is a unique [ € N*
such that, for all p, ¢1,...,p; € L, one can effectively decide whether (1, ..., 01, ¢) €
R. The elements 1, ..., ¢; are called the premises and ¢ is called the conclusion and we
say that o is a direct consequence of ¢1,...,p; by virtue of R. Let I' € £ and let p € L.
We say that ¢ is provable (from I') in P or a theorem of P, denoted +p ¢ (resp. I' +p ),
when there is a proof of ¢ (from I') in P, that is, a finite sequence of formulas ending in
 such that each of these formulas is:

1. either an instance of an axiom of P (or a formula of I');

2. or the direct consequence of preceding formulas by virtue of an inference rule R.

If S is a set of L—consecutions, this set S can be viewed as a language. In that case,
we call sequent calculus for S a calculus for S.

Axioms and inference rules are often represented by means of axiom schemas and
inference rule schemas, that is, expressions of the following form, depending on whether
we deal with formulas of £ or £L—consecutions:

Axiom schemas:

o A B

Inference rule schemas:

ar ... Qg AFEB ... AFB,
a AL B

where o, ..., ay, « are built up from variables often denoted ¢, 1), ... and the connec-

tives of C and, likewise, A1,...,A,, B1,..., By, A, B are built up from variables often
denoted X, Y, ... and the connectives of C. In this representation, inference rules and
axioms schemas are closed by uniform substitution: each variable can be replaced uni-
formly by any well-formed expression of L.

An inference rule R’ is derivable from an inference rule R in P when there is a
finite sequence of rules Ry, ..., R, of P, with at least one of them equal to R, such that
R =Rio...0oR,. O

Definition 37 (Truth, validity, logical consequence). Let L = (£, E, =) be a logic. Let
M € E, ¢ € L, R be an inference rule for £ and S, S’ be either inference rules for £ or
formulas of £. If T is a set of formulas or inference rules, we write M =T when for all
¢ € T, we have M = . Then, we say that
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s o is true (satisfied) at M or M is a model of ¢ when M = ;
s @ is valid, denoted k= |, when for all models M € E, we have M = ¢;

* R is true (satisfied) at M or M is a model of R, denoted M |= R, when for all
(p1,--01,0) € R, if M= ; forallie {1,...,1}, then M = ¢.

An inference rule R is equivalent to another inference rule R’ iff for all M € E, M = R
iff M =R/ 0

Definition 38 (Soundness and completeness). Let L = (£, F, =) be a logic. Let P be a
calculus for £. Then,

s P is sound for the logic L when for all o € L, if -p ¢, then = .

o P is (strongly) complete for the logic L when for all € £ (and all T’ € L), if = ¢,
then +p ¢ (resp. if I’ |= Ly, then I' -p ). L]

7.2 Structures and consecutions

In order to provide a sound and complete calculus for a gaggle logic based on a set of
connectives C ¢ C, we will need to resort to the connectives of C which are in the orbits
of the free action a,, * 3, (for appropriate ns). We introduce these extra connectives in
the language as structural connectives: they will appear in the proof derivations but not
in the formulas proved by the calculus.

Definition 39 (Structural connectives). (Gaggle) structural connectives, denoted [C], are
a copy of the connectives: for all C c C,

[C]={[e]|®<C}.

Structural connectives are denoted [p], [p1],[p2],... and [®],[®1],[®2],... For all
® = (0, £, s) € C, the arity, signature, tonicity signature, quantification signature of [®|
are the same as ®.

We also introduce the (Boolean) structural connective , . ]

Definition 40 (Structural gaggle language and consecutions). The structural gaggle lan-
guage [L] is the smallest set that contains the gaggle language L, the structures *¢ for
all ¢ € £ as well as [IP] and that is closed under the structural connectives of [C]u{, }.

A L—consecution (resp. [L]-consecution) is an expression of the form ¢ [ (resp.
X |— Y), where o, € L (resp. X,Y € [L]). The set of all (Boolean) L—consecutions
(resp. [L£]-consecutions) is denoted S (resp. [S]) and the set of all £L'—consecutions is
denoted S°. If C c C then an element of [£] (resp. S3, Sc, [S]¢) is an element of [£]
(resp. SY, S, [S]) which contains only connectives of [C].
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Elements of £ (resp. [£] and [S]) are called formulas (resp. structures and consecu-
tions); they are denoted , 1, v, ... (resp. X,Y, A, B,...and X Y, A B,...). ]

Definition 41 (Boolean negation). Let X € [£] be a structure. The Boolean negation of
X, denoted * X, is defined inductively as follows:

8] (X1,...,X,) ifX=[e](X,...,Xn)

X . (*Xl 5 *XQ) le = (X1 s X2)
* =
% if X =xp
*(p ifX=pel
where —® was defined in Definition 20. U

Note that from that definition, for all structures X € [ L], it follows that * * X = X

Definition 42 (Formula associated to a structure). We define inductively the function
70 and 71 from structures of [£] to formulas of £ as follows: for all i € {0,1}, all
®=(0,+, (&, (£1,---,%1))),

Ti(p) =

Ti(x@) = -
(X, Y) = (70(X)A7(Y))
n(X,Y) = (n(X)vn(Y))

Ti([®] (Xl,,Xn)) ®(Ti1(X1)7---;7'in(Xn))

T Z(X j) if + j = +
m1-i(X;) if s =—

Then, we define the function 7 from [£]-consecutions of [S] to L—consecutions of
S as follows:

where for all j € [1;n], 7, (X;) = {

T(XFY) =2 n(X)Fn(®) O

Instead of a single structural connective , , we could introduce two Boolean structural
connectives [A], [V] as a copy of the Boolean connectives A, v, like for the other gaggle
connectives ®. This would not be usual but in line with our approach. This would
greatly simplify the definition of the function 7 since the interpretation of the structural
connectives would then not be context-dependent as here. In particular one would not
need two functions 79 and 7;. We proceed as follows on the one hand in order to stay
in line with current practice and on the other hand because it simplifies the subsequent
calculus GGL¢ of Figure 13: we use one structural connective ( , ) instead of two ([A]
and [Vv]). This said, it would be easily possible to adapt and rewrite the calculus GGL¢
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with these two structural connectives [A] and [Vv]: the structural connective , would
need to be replaced by [A] in the premise of (dre) and in (B+),(Cl+),(Kr),(AF)
and by [V] in the conclusion of (dre) and in (- B) , (- Cl), (- K), (- V) (see below).

Definition 43 (Interpretation of gaggle structures and consecutions). Let C ¢ C and let
M = (W,R) be a C—model. We extend the interpretation function [-J* of L¢ in M
to Lg—consecutions of Sg as follows: for all p,9 € L and all w € W, we have that
w e [ ]™ iff if w e [o]™ then w € [1p]M, we have that w € [ |- ] iff w € [y ]
and we have that w € [} ] iff w ¢ [p]*. We then extend in a natural way the
interpretation function [ of L¢ in M to [£]s—consecutions of [S] as follows: for
all X € Lg, all X |-Y € [S]; and all w € W, we have that w € [X |- Y] if, and
only if, w € [7(X | Y)]*. If & is a class of C-models, then the satisfaction relation
|- < & x [S]g is defined like for formulas of L. O

7.3 Our display calculus

We introduce a calculus for Boolean basic gaggle logics. Our calculus is defined rela-
tively to an orbit/family of connectives. This means that if we have a basic gaggle logic
defined on the basis of some connectives C and if we want to obtain a sound and complete
calculus for that logic, we need to consider in the proof system the following associated
set of connectives:

O(C) = U {Ouy s, (®) | a(®) =n} 4)

®cC

This set of connectives O(C) is stable under the free action oy, * 3,,: forall ® € O(C),
we have that O, .3, (®) ¢ O(C). This is because in the completeness proof, we need
to apply the abstract law of residuation for any arguments j (associated to the residuation
operator of Definition 18) and consider the Boolean negation for each connective. This
entails that we must consider the orbits of the connectives of C under the free action

ap * By,

Definition 44. Let C ¢ C. We denote by GGL the calculus of Figure 13 where the
introduction rules (- ®) and (@ +) are defined for the connectives ® of C, where the
rule (dry) is defined for the elements 7 of an arbitrary set of generators of &,,,1 (for each
n ranging over the arities of the connectives of C) and where the structural connectives

[®] range over [O(C)]. O

Theorem 45 (Soundness and strong completeness). Let C € C be such that O(C) = C.
The calculus GGL¢ is sound and strongly complete for the Boolean basic gaggle logic

(807 MC? ”_ )

36



ToOwWARDS UNIVERSAL LOGIC: GAGGLE LOGICS

Structural rules:

(X, V)FU

XU

(Y,X)l—U(Ch_) W(KF)
or oo otV
Display rules:

B STCINNNE-=e ey
Introduction rules:

R )

0 ,FYS; kl(/;@fm =) W (rr)
S([®]U,3(|:,‘./.l.,Xn,®(?;|1_,.‘./7.l,<pn)) (-®) SS(Ez], gzls;:”,g) (®F)

Inrules (- ®) and (@ +), forall ® = (o, +, (&, (£1,...,%,))) € C:

Xjloj if £+ (E) =-

ngl—Xj if:l:j:l:(lZE):-i-

such that, in rule (- ®), for all j X is not empty and if ¢; is empty for some j
then ® (1, ..., ¢y ) is also empty.

e forall je[1;n], wesetU; |- V; =

*(X1,..., Xp) X ifE=3

forall x e {®,[®]}, S(®, X1,..., X, X) =
’ te.[el}. (e, X ) {Xl—*(Xl,...,Xn) ifAE =V

If X is empty then * X is empty and (X , Y) and (Y, X) are equal to Y.

Figure 13: Calculus GGL¢
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Proof: See the Appendix, Section B. O
Some comments about the rules of the calculus GGL¢ are needed.

e The axioms and inference rules for atoms p are special instances of the rules (- ®)
and (& +) of Figure 13. With @ = p, we have that n = 0 and, replacing ® with pin (- ®),
we obtain the inference rules below. Note that (- p) is in fact an axiom.

S ([p], X)
s (Fp - (pr
S([p],p)( ) S (p, X) ()
o X ifE=3
Xbo ifE=V
Hence, for all p = (1,+, &), if £ = 3 then (+ p) and (p +) rewrite as follows:

(- p) [p] =X

where, if @ is p or [p], then S(®, X) £

[p] Fp SEx @) )
and if £ =V then (- p) and (p +) rewrite as follows:
i oo ©

Note that in both cases, the standard axiom p |- p is derivable by applying (p +)
once again to [p] b p or p|~ [p]. If [p] is replaced by I and p by T in the first pair
and if [p] is replaced by I and p by 1 in the second pair then we obtain respectively
the operational rules ( - T), (T} ), (L) and ( |- 1) of Kracht [27] and Belnap
[6]. This is meaningful since truth constants can be seen as special atoms, those that are
always true or always false. Then, one needs, like in the calculus DLM of Kracht [27], to
impose some conditions on these atoms by means of particular structural inference rules
so that these special atoms T and 1 do behave as truth constants, as intended. Note that
the reading of I, either as T or as 1, is clearly separated here by means of two structural
constants, whereas in the literature it is disambiguated depending on the context, whether
it is in antecedent part or consequent part of a consecution. Alternatively, one can easily
prove (by extending the proof of Section B) that adding the following axioms to our
calculus GGL¢ is enough to capture the standard truth constants T and 1:

— (L+) — (FT)

1 T

e The Boolean operator * transforms the structures on which it is applied. It does
not function as an operator applied externally on structures, it modifies them internally.
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Hence, for example, for any structure [®] (X1,...,X,), *[®] (X1,...,X,) is equal
to [-®] (X1,...,X,). In that sense, it is formally different from the usual structural
connective * used in display logics, even if its semantic meaning is the same (it behaves
as a Boolean negation). Moreover, because by Definition 41 * * X = X, the following
rule is a reformulation of the display rule (dry) (premise and conclusion are turned upside
down):

X, 2)
(X, *2)FY

e Because of our convention that if X is empty then (X , Y) and (Y , X)) are equal
to Y, the following rules are specific instances of the display rule (drs):

EeR0lS ez
X xY Y |- Z

Likewise, if ® = (o, +, (£, (+1,...,%,))) is such that, for example, £ = Jand +; =
+, then the following rule is an instance of the rule (- ®), because of our conventions
about empty structures in the rule (- ®):

UF-vi ... XjF ... UWa
[@](Xl,...,Xj,...,Xn)l—

e The introduction rule (- ®) of our calculus is a direct translation in gaggle logics
of the tonicity relations of Theorem 10. Likewise, the structural rule (dr;) is a translation
and a generalization of the abstract law of residuation of Theorem 10 (see Proposition
27).

(7)

e As shown in Example 26, A and v can be formalized by the gaggle connectives
(01,+,81) and (o1, —,84) if these are interpreted on identity ternary relations (which
can be obtained by imposing the validity of the classic structural rules involving these
connectives). Hence, unsurprisingly, rules (- V) and (A +) are instances of the (gaggle)
rule (® +) and rules (- A) and (Vv +) are also instances of the (gaggle) rule (- ®).

This said, one could equivalently replace (- A) and (Vv +) by their extensional/addi-
tive version (- A)" and (v )" of Proposition 46 and still obtain the completeness of the
resulting calculus. In fact, completeness still holds if one also removes the contraction
rule (WI+) because a contraction is hidden in the extensional/additive version of the
conjunction and disjunction rule. Yet, one needs the contraction rule (WI +) explicitly
to prove cut elimination, in particular for condition (C8) with the conjunction case (see
Theorem 49). So, we prefer to take in our calculus the intensional/multiplicative version
(F A) and (Vv +) of the conjunction and disjunction rules because they are instances of
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the general rules (@ +) and (- ®) for gaggle connectives.

e Our calculus has the subformula property, but not the substructure property: every
formula appearing in a cut—free proof of a consecution is a subformula of a formula of
the final consecution.

e In the calculus GGLg, we do not need to consider all permutations 7 of
the symmetric group S,.;. In fact, it suffices to consider only a set of gener-
ators of &, because rules for any permutations are derivable from these rules
for generators as the following proposition shows. One could naturally consider
transpositions because they generate the symmetric group and correspond to resid-
uation operations. One could consider as well other generators of the symmetric
group S,,,1, such as the pair {(n n+1),(1 2 ... n+ 1)} or the set of generators
{(12),(23),...,(ii+1),....,(n n+1)} or (1 2) together with the 3—cycles (see
Section 3). Hence, one can reduce the number of inference rules (dr;) from (n + 1)! to
2: it suffices to define the calculus GGL¢ only with the rules (dr;) where 7= (n n + 1)
and 7 = (1 2 ... n+1) for example. Indeed, the rules (dr;) with 7 € S,,,; different
from (nn+1)and (12 ... n+ 1) are all derivable from these two rules since these two
cycles generate G, 1.

Proposition 46. Let C < C and let ® € C be a n-ary connective. The following rules are
all derivable in GGL¢.

Xl—Y S([@],Xl,...,Xj,.--,XnaX) i
*YI_ * X (dljz) S([Sj®]7X17"'7*Xj7"'7Xn’X) (SW])
>(-X|—Y , Xl_*Y "
+Y |- X () Yl——*X(d/Q)
Ul X Uk (X, X)
rEx. vy R “opx W
U (X,Y)
UV, X) (=)
(X,Y),2)FU UF((X,Y), Z)
(X,(Y,Z))I—U(BF) Ul (X, (Y, 2)) -5
ke Uk ekU kU
Uk (A1) (pv) U

40



ToOwWARDS UNIVERSAL LOGIC: GAGGLE LOGICS

The rule (dl’2) is called the Boolean negation rule and the rule (SWj ) for j e [1;n], is

called the switch rule w.r.t. the 5" argument. The rule (dr,) is also derivable in GGL,
forall 7 € &,,41.

Proof: See the Appendix, Section A. O

Note that because associativity (B +), (+ B) is derivable from GGL¢, the brackets
around structures of the form (X , Y) could be removed in the proofs and the calculus.

8 Cut elimination and displayability

In this section, we prove that the cut rule can be eliminated from any proof of GGL¢.
This result relies on the fact that our gaggle calculi are in fact display calculi and enjoy the
display property: every substructure of a consecution provable in GGL¢ can be displayed
as the sole antecedent or consequent of a provably equivalent consecution. In display
calculi [6], the antecedent or consequent position depends on the kind of position in
which the given substructure appears in the consecution: either in “antecedent part” or in
“consequent part”. In standard display logics, these two related notions are defined on the
basis of the parity of the number of structural connectives * that occur in front of the given
substructure (odd or even). Since our framework is more abstract, we reformulate these
two notions in a more abstract form based on the tonicity of the connectives that occur in
front of the substructure. This leads us to define the following notions of ‘protoantecedant
part’ and ‘protoconsequent part’. A similar notion was defined by Goré [21] without
Boolean structural connectives.

Definition 47 (Protoantecedent and protoconsequent part). Let X, Y, Z € [L] be struc-
tures. If Z is a substructure of X, then tn(X, Z) is defined inductively as follows:

o if X = Zthentn(X,7) =+,
o if X =*Y and Z appears in Y then tn(X, Z) = -tn(Y, Z);
« if X = (X, X2)and Z appears in X then tn(X, Z) 2 tn(X;, 2);

«if X = [®](Xy,...,X,,) and Z appears in X, then tn(X,Z) =
tn(®,j)tn(X;, 2).

If X |- Y is a [£]—consecution, then X is called the antecedent and Y is called the
consequent of X |-Y. If Z is a substructure of X or Y, Z is called a protoantecedent
part (resp. protoconsequent part) of X =Y when tn(X,Z) = + or tn(Y, Z) = — (resp.
tn(X,Z)=-ortn(Y,Z) =+). O
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Proposition 48 (Display property). Let C ¢ C. For all [L]-consecutions X Y prov-
able in GGL¢ and for all substructure Z of X |- Y,

e if Z is protoantecedent part of X =Y then there exists a structure W € [L] such
that Z |- W is provably equivalent to X Y in GGL¢;

e if Z is protoconsequent part of X =Y then there exists a structure W € [L] such
that W | Z is provably equivalent to X Y in GGL¢.

Hence, GGL¢ is a display calculus.

Proof: 1Tt follows from an inductive application of the display rules (dr;) and (dry) on
each substructure of X (or Y') containing Z, from the outermost one to the innermost
one (Z itself). We use (dry) if we have to ‘unfold’ a structural gaggle connective [®]
and (dry) (or one of its derived rules) if we have to ‘unfold’ the structural Boolean
connective , . O

Theorem 49 (Cut—elimination). Let C ¢ C. The calculus GGL¢ is cut—eliminable: it is
possible to eliminate all occurrences of the cut rule from a given proof in order to obtain
a cut-free proof of the same consecution.

Proof: See the Appendix, Section C. O

As usual in proof theory and ever since Gentzen [18], the fact that the cut rule can be
eliminated from any proof is of practical and theoretical importance and we easily obtain
a number of significant results about our logics. This also holds in our setting.

Theorem 50 (Conservativity). If Cc C' c C then the logic (SC/, Mg, |- ) is a conser-
vative extension of the logic (SC, M, |- )

Proof: It is standard because our calculi have the subformula property. See for example
[39] for details. O

Theorem 51 (Soundness and strong completeness). Let C ¢ C. The calculus GGL¢ is
sound and strongly complete for the Boolean basic gaggle logic (S¢, M¢, |F).

Proof: Since any proof of a consecution ¢ |1/ € Sg can be cut—free and our calculus has
the subformula property, it contains only the introduction rules (- ®) for the connectives
of C. (The introduction rules for the other connectives of O(C) — C were needed in the
initial completeness proof before the cut elimination theorem for Lemma 68.) O
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The difference between the above theorem and Theorem 45 is that the set of con-
nectives C considered is not assumed to be such that C = O(C) (we recall that O(C)
is defined by Expression (4)). Thanks to cut—elimination, the completeness result also
holds if we do not have equality. This said, all connectives of O(C) do appear in the
calculus, but only as structural connectives.

9 Calculi for gaggle logics

Until now, our calculi are sound and complete for logics including the Boolean connec-
tives. However, we would like to obtain calculi for plain gaggle logics, without Boolean
connectives. Indeed, we consider the latter to be more primitive than Boolean gaggle log-
ics because even the Boolean connectives can be seen as particular gaggle connectives,
interpreted over special relations (identity relations, see Example 26). These special re-
lations are obtained at the proof-theroretical level by imposing the validity of Gentzen’s
structural rules. So, in this section, we are going to define sound and complete calculi for
(plain) gaggle logics, without Boolean connectives.

Definition 52. Let C ¢ C. We denote by GGL% the calculus of Figure 14 where the
introduction rules (- ®) and (@ +) are defined for the connectives ® of C, where the
rule (dry) is defined for the elements 7 of an arbitrary set of generators of &,,,; (for each
n ranging over the arities of the connectives of C) and where the structural connectives

[®] range over [O(C)]. O

Note that (drl2) (introduced in Proposition 46) is in GGL instantiated with gaggle
connectives. More precisely, in GG LOC, an application of (dré) is of the following form:

(@] (X1, Xo) | [®] (X1, X0)  ®(pn,- - om) | @ (1, ¢)
[_®,] (X{’?X;z)l_ [_®] (Xl""axm) * @' (90,17"'790;”_ *@9(9017"'790”0

An equivalent axiomatization of GG LOC 1s obtained if we replace rule (d r;) by the switch
rule (Swj ) of Proposition 46, for each j € [1;n]:

S([®]7X17'--7Xj7---7Xn7X) (SWJ)
S([Sj@],Xl,...,*Xj,...,Xn,X) .

This is due to the fact that the switch rule is derivable in GGL and, vice versa, (drg) is
derivable from the switch rule and (dr;) thanks to Proposition 30.

The main difference between GGLg and GGLE lies in the fact that the introduction
rules for the Boolean connectives have been removed as well as the structural rules.
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Display rules:
S(®], X1,..., Xpn, Xps1) (@) XY (1))
S([r®], Xr(1)s- > Xr(n)s Xr(ne1)) £V |+ X
Introduction rules:
U1|—V1 UnI—Vn (- ) S([®],e1,--yon,U) (®+)

S([@],Xl,...,Xn,(@(C,Ol,...,cpn)) S(@,Qﬁl,...,tpn,U)

Inrules (- ®) and (® +), forall ® = (o, +, (£, (£1,...,%,))) €C:

Xjl g ifx;(B)=-

QOjl—Xj if:l:j + (/E) =+

such that, in rule (- ®), for all j X is not empty and with the convention that
if ¢; is empty for some j then & (1, ..., ¥y ) is also empty.

(X1, X)X ifE=3
XE «(Xy,...,X,) ifE=V.

e forall j e [1;n], weset U; |- V; =

o forall x e {®,[®]}, S(*, X1,..., Xpn, X) ﬁ{

Figure 14: Calculus GGL

Theorem 53 (Soundness and strong completeness). Let C ¢ C. The calculus GGLOC Ls
sound and strongly complete for the basic gaggle logic (80 , Mec, ||— ).

Proof: See the Appendix, Section C. O

Goré [21] introduces a calculus §OP which is basically our calculus GGL% without
the rule (dré). Restall [41] establishes connections between gaggle theory and display
logics and sketches a similar calculus (without proving condition (C8)). This difference
between our and their calculi is due to the fact that they do not deal with Boolean nega-
tion and do not consider it in their approach and framework. As one can notice, this
complicates the proofs tremendously even if the addition in the calculi is minimal. This
said, Goré [21] recognizes the dual character, in a proof—theoretical sense, of pairs of
traces which are obtained from each other by multiplying every argument of the trace
by —. This leads him to introduce the function/connective f2 of trace —t associated to a
function f of trace t. However, he does not make the connection between this function/-
connective f2 and the Boolean negation of f as we do (see Definition 20 and Proposition
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29). Therefore, he proves the soundness and completeness of his calculus but with re-
spect to two distinct yet dual semantics based on Dunn’s tonoids. As such, he does not
connect his algebraic semantics with the Kripke—style relational semantics (elicited by
Dunn) explicitly as we do. A similar observation regarding the role of Boolean negation
in his and our work was already made in [2].

Theorem 54 (Decidability). Let C ¢ C and let @, € L%. The problem of determining
whether @ or o - are valid in the logics (L%, Mg, |F) and (8%, M¢, |- ) (respec-
tively) is decidable.

Proof: 1t suffices to observe that the set of consecutions that can lead to a cut-free proof
of o -1 in GG L% is finite. The problem of finding a proof of o |- thus boils down
to a graph reachability problem in a finite graph whose edges are labeled by the rules.
This problem is decidable. We then obtain the result by the completeness of GG LOC for
(LE, Mg, |-) and (82, Mc, |- ) of Theorem 53. O

10 Logics defining groups and groups defining logics

In this section, we are going to show how notions of groups arise naturally from our
gaggle logics and how gaggle logics can be canonically defined from groups thanks to
our connections with group theory.

10.1 Groups defined from logics

One problem solved in this article is the following: given an arbitrary basic gaggle logic
(Boolean or not) defined by a set C of (gaggle) connectives, how do we compute and
define uniformly a sound and complete calculus for that logic ? Theorems 51 and 53 of
the previous sections have solved it. However, we needed in our calculi to introduce all
connectives of O(C) (defined by Expression (4)) either as logical connectives in Theo-
rem 45 or as structural connectives in Theorems 51 and 53. In this section, we are going
to show that we can in fact limit further the connectives considered and not take the full
orbits O(C) of C under the action «, * [3,,. For that, we need to explore a bit more
the proof—theoretical aspects of our gaggle logics in light of our connections with group
theory.

We have introduced actions on the set of gaggle connectives. Even if we know how
a permutation, the Boolean negation and their combinations act on connectives, we still
do not know how their combination and iteration operate at the proof—theoretical level.
Indeed, we have a rule (dry) for permutations 7, ..., 7, and a rule (dr'z) for Boolean
negation —, yet we do not have a rule combining both, for elements 79 — 71 ... — 7,
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S([@] ,Xl, e. ,Xn,Xn+1)

(drs)
S ([T®] ) ilXF(1)> 2 Xy, in+1XF(n+1))
where 7 € G,,41 * P(+7_) and
ifr=19-71...— Ty, withm >1then7 = 797y ... 7, and for all j € [1;n + 1],

; i P ) ; * if j=77i01...Tm(n+1
+ 247 3] 4], with, forall i e [1;m], £] = J = TiTi m( );
empty otherwise

ifr=19-71...— Tm-1— withm > 1 then replace 7 with 79 — 71 ... = ;-1 — 1;
ifr7=-1...—T;m-1— T With m > 1 then replace 7 with 1 — 71 ... — Tp1 — Ton;
if 7€ S,y1then7 2 7and +4, ..., ™! are empty;

if T=—then7=1and +',...,+" are empty and +"*! = —

Figure 15: Rule (dr3)

of the free group G, * P(+’_). Such a rule is defined in Figure 15. One can easily
prove that rule (dr3) is valid and derives from (dr;) and (dr5) in GGLZ. Conversely,
with 7 € &,,,1, we recover rule (dry) and with 7 = — we recover rule (dr'z). (The term
“empty” could be replaced by *x.)

Now, let us be given a set of connectives C ¢ C and assume without loss of generality
that all connectives of C belong to the same orbit O(C) = Oy, +3, (®) (for some ® € C).
What we would want in (dry) is to be able to ‘go’ from one connective ® of C to an
arbitrary other connective & of C. By transitivity of the action «, * 3, this is possible
in O(C): given any two connectives ®,®' € C, there is an element of the group g €
Spi1 * Py _y such that @' = oy, * 8,(g,®). This leads us to define a special subset G
of &,41 * P, _y such that for all ®, ®" € C there is g € G such that ®' = o, * 8,(g, ®).
We want this set G to be a group. Indeed, informally, its composition operation should
be associative, because of the definition of an action group, and every element g of G
should have an inverse: if ® = a;, * (3,(g,®) then there should be a g~' such that
® = oy, * Bn(g~t, ®"). This leads us to the following definition:

Definition 55 (Group associated to a set of connectives). Let C ¢ C. A group associated
to Cis a group G such that for all n € N*, all ®, ®" € Cn C,, there is g € G such that
® = ay * Bn(g,®). O

Implicitly, note that G ¢ U {6n+1 * P_yla(®)=n,®¢ C}. A group
neN
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associated to a set of connectives always exists because the free group

( U {g €Gpi1+ Py |® =g forsome ®, @& €Cn (Cn}> satisfies the required
neN*
condition. It is not in general unique because the action «,, * 3, is not faithful: we

proved in Proposition 32 (item 1) that —r; —r; —7; -1, = ®.

Definition 56. Let C ¢ C and let G be a group associated to C. We denote by GL%G
(resp. GLg () the calculus of Figure 14 (resp. Figure 13) where the introduction rules
(- ®) and (® ) are defined for the connectives ® of C and where rules (dry) and (drj)
(resp. only (dry)) are replaced by rule (drs) which is defined for elements 7 belonging
to a set of generators of the group G. 0

Theorem 57 (Soundness and strong completeness). Let C € C and let G be a group
associated to C. The calculus GLOQG (GLc ) is sound and strongly complete for the

(Boolean) basic gaggle logic (S%, Mc, |) (resp. (Sc, M, |F)).

Proof: See the Appendix, Section C. O

Example 58. The symmetric group G3 is a group associated to the connectives of the
Lambek calculus [30] and update logic [2]. However, there is a simpler and smaller
group associated. Indeed, the alternating group 23, generated by the 3—cycle (123) (or
(132) = (123) o (123), see Section 3) is another group associated to the connectives of
the Lambek calculus and update logic. This confirms an observation already made in [2]
about the central role played by ternary cycles in update logic and substructural logics
in general. The free group 2l3 + P, _y is a group associated to the connectives of dual
update logic [2], because the dual connectives of dual update logic are definable from the
connectives of update logic thanks to Boolean negation (see [2, Proposition 16]).

10.2 Logics defined from groups

According to Cayley’s theorem, every finite group of cardinal n + 1 is isomorphic to a
subgroup of the symmetric group &,,;1. Now, the restriction of the action «,, to any
subgroup G of &,,;1 is also an action of G on C,,. Therefore, every finite group G of
cardinal n + 1 induces a canonical group action a of G on C,, defined for all g € GG
and ® € C,, by a(g,®) = a,(¢(g),®), where ¢ is an isomorphism between G and the
subgroup of G,,11. Every finite group therefore defines a set of connectives obtained by
considering the orbit of an arbitrary connective @ € C by this canonical group action a.
In other words, every finite group defines a class of logics. These logics provide a certain
perspective on the whole set of gaggle connectives.
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11 Conclusion

In this article we have introduced a uniform method to automatically compute sound and
strongly complete calculi for a wide class of non—classical logics, basic gaggle logics.
These calculi are display calculi and enjoy the cut elimination. This allowed us to prove
in particular that basic gaggle logics are decidable. We further restrained the structural
connectives needed in our calculi by introducing the notion of group associated to a
set of connectives. We also established connections between gaggle theory and group
theory. We showed that Dunn’s abstract law of residuation corresponds to an action of
transpositions of the symmetric group on the set of gaggle connectives and that Dunn’s
families of connectives are orbits of the same action of the symmetric group. Other
operations on connectives, such as dual and Boolean negation, were also reformulated in
terms of actions of groups and their combination was defined by means of free groups
and free products.

Based on our connection with group theory, we argued that there are more ‘basic’
operations on connectives than Dunn’s abstract law of residuation, based on cycles of
the symmetric group rather than transpositions (which are cycles anyway), because every
permutation factorizes uniquely into disjoint cycles. Residuation is still central because
it corresponds to the action of transpositions of the symmetric group and transpositions
generate it as well. Yet, there are many other generators and ways to present and represent
the symmetric groups and its subgroups. What really matters from a proof-theoretical
perspective is the set of generators of the groups that we consider and how groups can
be presented. That is why the results in group theory regarding the presentation and
classification of finite groups have now become quite relevant for the study of various

(gaggle) logics.

Our connections with the theory of groups enable to study the structure of gaggle
connectives in a very modular and systematic way, using bridges from algebra such as
Cayley’s theorem. Thanks to this bridge, each finite group can be seen as a set of oper-
ations acting on the set of connectives. Hence, each group generates and defines gaggle
logics. Thus, the structure of the gaggle connectives can be studied under a variety of dif-
ferent viewpoints by means of different logics that correspond to the wide range of finite
groups that can act on the connectives. This is similar to what happens in mathemat-
ics where the structure of (vectorial, Euclidean, efc.) spaces can be studied by different
geometries corresponding to different groups of transformation acting on it: Euclidean
geometry with the isometric group, hyperbolic geometry with the Lorentz group, affine
geometry with the affine group, etc.
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A Proofs of propositions 30, 32 and 46

Proposition 30. If ® € C,, is a n—ary connective, then for all j € [1;n],
*5®=1;-7;®
*di®=1;-1; - &
* d®=51...5,—®.

Proof: Let® = (o, +, (&, (+1,.-.,%n))) € Cy,. Then,

ri®=(0,—+j+, (- B, (—+j £1,...,%5,...,— £ £p)))
—r;® =(0, +%, (£, (£j£1,...,~%j,...,%j%p)))
(e Tj@ Z(O',:l:, (/E, (il, ceey TEj, . .,:i:n)))
Moreover,
-® =(0, -+, (=&, (-%1,...,—%5)))
ri-®=((jn+1)oo,—+;+,(—+; £, (—%j£1,...,—%j,...,—+j £5)))
-1 —®=((jn+1)oo, (%, (£&, (£j+1,...,£j,..., £j*n))))

ri—1i—®=(0,—%, (&, (=%1,...,%j,...,—%5)))

Proposition 32. Let n € N*, j € [1;n] and let us define G = (r;) * P, _y. Since G is
a subgroup of &1 * P ), let us denote by ag; the action of G; on C,, induced by the
free action o, * [3,,. Then, for all connectives ® of arity n,

1. Oan (®) is isomorphic to a cyclic group of order 8.

2. {Oan*ﬁn (®),04, 8, (~ @)} forms a partition of the set C,, of connectives of
arity n. Moreover, the mapping - : Og, 48, (®) = Oq, 8, (~ ®), T >~ T is
involutive.

3. Foralln € N*, the free action o, * By, * Yy, on the set of connectives C,, is transitive.

Proof: For the first item, it suffices to prove that for all connectives ® of arity n and all
jellsn], -rj—rj—r;—1;® = ®. Let ® = (0, £, (&, (£1,...,+y))) and let ; be the
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transposition (j n + 1). (See also Figure 2 for an example.)

®=(0,+, (&£, (£1,...,%j,...,%n)))

ri®=(rjoo,—+j+, (- B, (- +1,...,%5,...,— £ £p)))
—ri® = (rjoo, i+, (&, (£j%1,...,—%j,...,%j%p)))
rj—ri®= (0, (&, (£1,...,~%j,...,%n)))
—r;—1;® = (0,—%, (=&, (=%1,.. ., £j,...,—%5)))
ri—1;—1;®=(rjo0, +i%, (£;E, (£j£1,...,%5,...,+j%y)))
—rj—rj—1;®@=(rjoo,— %+, (—+; B, (- +j£1,...,~%j,...,— £ +p)))
ri—1;—1;—1;®=(0,—%, (&, (%1, ..., ~%j,...,—%p)))
—rj—rj—r;=1;® = (0,%, (&, (£1,...,%j,...,%5))) = ®.

For the second item, one should first observe that O+, (®) N Oq, .43, (~ ®) = &
(+). Indeed, for all ® = (o', &', (&', (£],...,%))) € Oq,43, (®), we have that
+' £ (£'") = + + (£) but at the same time, for all ® = (o', ', (£, (£],...,4,))) €
Ou, s, (~ ®), we also have that +' + (£') = — + +(£). Now, we prove that for
all @ = (o, &', (&', (£],...,%,))), if £’ £ (£") = £+ (£) then & € Oq,.5,(®),
and & € O,,.p,(~ ®) otherwise. First, assume that +' + (£') = + + (£). Then,
we define ®” = oo~ ®'. So, ®" = (o,+", (B",(£/,...,%"))) and we still have
that +"" + (E") = '+ (E') = + + (£). If £ = £, then it only suffices to switch
the tonicity of the arguments ji,...,jx of ®" such that +7 # +;. This can be done
by applying the switch operation for the arguments jq,...,j; to ®”. We then ob-
tain that s;,5;,...5;,®" = ®. Thus, s;,5),...5,00 & = ®. Second, assume that
+'+ (£') = - + +(&£). Then, we define ®" =~ & = (o', ', (£", (£],...,£;,))) and we
have that +" + (E") = +'(- £ (£")) = + + (&£). So, we proceed like in the first case. We
then obtain that there are i1, ...,7; € [1;n] such that s;,s;, . .. silaa" ~® =®. So, we
have proved that for all ® = (o', ', (&', (£],...,%,,))), it holds that & € O,,, .3, (®)
iff +'+ (&) = ++ (&). This entails that |O,, .5, (®)| = |Oa, s, (~ ®)| = (n+1)1-27*1 =
[Cal

== Therefore, Oy, 5, (®) U Oq,,+5,(~ ®) = C,, and together with (*), we have that

{Oa 55, (®), O, 45, (~ ®) } forms a partition of C,,.

The third item follows easily from the second item. O

Proposition 46. Let C < C and let ® € C be a n-ary connective. The following rules are
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all derivable in GGL¢.

(X,Y),2Z2)FU
(X, (Y, 2)U
Ul Uk (o A
Ul (pAt)

(Br)

S([ ] X1> X XnaX) ;
S([5;8], X1, % Xs0- s Xy X) (sw)
XI_*Y 144
Yl— * X ( IJ)

Uk (X, X)

UI—X (- WI)
UF((X,Y), 2)

UE(x, v, zy P
eFU wl—U(W),

(pvy)U

The rule (dIJQ) is called the Boolean negation rule and the rule (SWj), for j e [1;n], is

called the switch rule w.r.t. the %

forall 7 € G,41.

argument. The rule (dry) is also derivable in GGL¢,

Proof:
(drh) (drf) (dry’)
XY sX Y X|— Y
(X, *Y)l_ (ar2) (X *Y)I— (dr) Y)l— (dr)
o OY fatmE O GE O
YR sx S0 YFX ? YE=x O
(sw’) (FK):
S(®,X1,..., X, Xn, X) Uvk-x
(dry) . )
55 e e 0 o Mo e o
S(rj—ri® X1,...,*Xj, ..., X, X) ;rl)t Ul % (X, #Y) Re;rite
S(s;® X1,...,#X;, ..., Xp, X) oVHE Ul (X,Y)
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(- Cly: (= WD):

U-(X,Y)
(U, +(X, ¥)) |- ((lj{I:v)v%ite
(U, (*X, *Y))l_ (C' ,_)
((*X, *Y)7 U)l_ (dr )
(*X,*Y)I—*U C|2
(*Y,*X)I—*U( )

d
(+Y, +X), U) |- Ecrfi) TR X))
(U (Y X)) (X, XOF U
(dr2) (WI+)
Ul_ + (xY |, *X) Rewrit *Xl_ * U (dr/)
UE . X) ewrite UL x 2
(- A): (Vi)'
Ube Ubv PV VRV,
CHOTCID IS (v ) E WL U)oy
U (pAd) (evy)|-U
(B+):
(x.Y), 2)U
dry), (~ Cl
Z-(+(X,Y), U) ( r§+)<£) (czn)
Y, 2)F(x(x,Y).U) (K’P) (Cl+)
(OGN D) o
- ClY, (dra), (Cl )
((X, Y), (X, (Y7 Z)))l_U (drz) (,_ C|)
(X, V)X (VL 2), U)oy ey (v G

YEG(X, (x(X, (Y, 2),U))
Y, 2)F (X, (X, (Y, 2),U)
(X, (Y, Z))I—(*(X, (Y, Z2)),0U)
(X, (Y, 2), (X, (Y, 2)FU

(X, (Y, 2)FU

(Kr)
(FCl),(dry), (Cl +)
(+ Cl), (dry)

(WIr)
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(FB):

UH(X,Y), 2) :
(X, Y), Z)l_ U ((ljirjv)vrite
(X, V) D) U (M
(X, (+Y, *Z))l_ U ( I”)
Ul_ F (X, <V, Z)) Rev?/rite
UH(X, (Y, 2))

The last rewriting part in the proof of ( Swj) is due to Proposition 30. O

B Proof of theorem 45

Theorem 45 (Soundness and strong completeness). Let C ¢ C be such that O(C) = C.
The calculus GGL¢ is sound and strongly complete for the Boolean basic gaggle logic

(807 Me, ”_ )

In this section, C ¢ C is such that O(C) = C. We provide the soundness and com-
pleteness proofs of Theorem 45. We adapt the proof methods introduced in [2], based on
a Henkin construction, to our more abstract and general setting. We start by the sound-
ness proof.

Lemma 59. The calculus GGLc is sound for the Boolean basic gaggle logic
(SC7MC7 ”_ )

Proof: ~ We only need to prove the soundness for the rules (dry) and (- @), the
soundness of the other rules being standard. The soundness of the inference rule (- ®)
follows directly from item 1 of Theorem 10, the soundness of rule (dr; ) follows from an
iterative application of item 2 of Theorem 10 (or Proposition 27) by the decomposition
of permutations into cycles or transpositions. O

The completeness proof uses a canonical model built up from maximal GGLc—
consistent sets. First, we define the notions of GGLc—consistent set and maximal GGLg—
consistent set. In the sequel, by abuse of notation and to ease the presentation, when we
write ¢ |- 1) we mean that o |- 1 is provable in the calculus GGL¢.

Definition 60 (Maximal) GGL—consistent set).
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* A GGLc—consistent set is a subset I' of L¢ such that there are no ¢1,...,p, € T’
such that 1 , ... , @, . If p € Lg, we also say that ¢ is GGLc—consistent
when the set {} is GGLg—consistent.

* A maximal GGL c—consistent set is a GGLg—consistent set I' of L such that there
isno ¢ € L¢ satisfying both ¢ ¢ I' and I' U {p} is GGLc—consistent. O

Lemma 61 (Cut lemma). Let I" be a maximal GGL c—consistent set. For all o1, ..., ¢, €
Tandall pe L, if 1, ... , pnl @ thenpel.

Proof: First, we show that T'u{¢} is GGLg—consistent. Assume towards a contradiction
that it is not the case. Then, there are v1,...,¢,, € I'such that ¢y , ... |, ¥, , ® |— .
Then, by the rules (dry) and (Cl+), we have that ¢ |- * (v , ... , ¥p). Now,
by assumption, ¢1 , ... , @, [ . Therefore, by the cut rule, we have that
©1, - ¢nb * (b1, ..., ¥p). Then, by the rules (dry) and (B +), we have that
Oly vee sy Oy W1y e, wml—. However, ¢1,...,0n,%1,...,%y € I'. This entails
that T is not GGLg—consistent, which is impossible. Thus, I' U { ¢} is GGLg—consistent.
Now, since I is a maximal GGLg—consistent set, this implies that p € T, O

Lemma 62 (Lindenbaum lemma). Any GGLc—consistent set can be extended into a
maximal GGLc—consistent set.

Proof: Let ©1,02,...,%n,... be an enumeration of L (it exists because C is count-
able). We define the sets I';, inductively as follows:

T2l
L {Fn u{en} ifTyu{p,}is GGLg—consistent

n+l = .
r, otherwise.

Then, we define the subset I'" of £ as follows: I'* = U T,,.
neN

We show that I'* is a maximal GGLg—consistent set. Clearly, for all n € N, T';, is
GGLc—consistent by definition of T',,. So, if I'* was not GGLg—consistent, there would
be a ng € N such that I';,, is not GGLg—consistent, which is impossible. Now, assume
towards a contradiction that I'* is not a maximal GGLg—consistent set. Then, there is
@ € L such that p ¢ ' and T' U {¢} is GGLg—consistent. But there is ng € N such
that ¢ = ,,,. Because ¢ ¢ I'", we also have that v, ¢ I';y11. So, I'ny U {¢n,} is not
GGLc—consistent by definition of I'*. Therefore, I'* U {¢} is not GGLg—consistent
either, which is impossible. O
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Lemma 63. The following consecutions are provable in GGL: for all v, € L, all
®=(0,%+,(3,(£1,---,%j,..-,%n))),

oo (8)
((eve)Alev-¢)) o 9)
e ((er—¢")v(ene)) (10)

if £; = + then
®(S01,---780jV@;,---,@n)l_(®(§017o--,90j,---,g0n)V®(8017---,809,---,(Pn)) (11)

if £; = — then
@(QOl,---,QOj/\SO;',-H,QOn)I_(®(§01,--.,90j,.--,§0n)V@(@l,.-.,@;,..-,@n)) (12)

(o, ) iffel-v (13)

Proof: The proof of Expression (8) is by induction on . The proof of Expression (9) is:

% (dra) , (dr»)
AR ~¢ | !
el (o, *¢") 7 ' (e, %)
(sovﬁgo’)ll—(sol, * ') (dry)
((pv-¢'), &) o (Gl o)
o K (¢, (pv-¢ )¢ (dry)
el (o, *(pv=¢)) o' (¢, *(pv-¢)) (v iy
(eve) (o, *(ev-¢)) (dr
/ / 2)
((eve), (ev-¢)) e
- p (AH)
(v ) n(ev=¢)) e

and the proof of Expression (10) is:
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P (4, (dn)
(o ' =~
(¢, oo (Kr) (¢, *o") -y’ ESIA:2’(K )
ol (Ko (¢, ") = (pr-¢) (dry)
(o, x(er=¢")) ¢ (o, *(pr=¢")) ¢’ (Ko
(0, *(pr-¢")) - (pry) (dry)
e ((er=¢"), (pry')) (- v)

e ((er=¢)v(eny))

Proof of Expression (11). Assume that +; = +. Then,

[®] (¢1,---0n) - ® (015, 0n)

(- K)

[®] (9017"'79071)'_(®(Q017---a90j7"'ﬁ0n)’ ®(9017-"’90;')"'7Q0n)) (}_ V)
[®](41017---7()071)'_(®(901a-~-,90j7--~790n)v®(901a"'?9097"'a¢n)) (dl’ )
1

pit [7®] (01, (®(01, - 050 PR) V(P15 s 0n))s s )

Likewise, we prove that:

@i = [1@] (01, 8(P1, - @js - ) VO(@1, - D)o Pn)s -5 n).-

So, by (v i)', we obtain that:

gojv%l— [7;®] (901,...,@(gpl,...,gpj,...,gpn)v@(901,...,gp},...,gpn),...,gon).
Thus, by (dry) and (@ +), we obtain that:

@(gol,...,gojvwg,...,cpn)l— @(gpl,...,gaj,...,gon)v@(gol,...,go;-,...,gpn).

Proof of Expression (12). Assume that +; = —. Then,

[®] (p1,--- 0n) - ® (01, .., 0n)

; (F K)
[®] ((101?"'790771)'_(®(9017"‘790j7"'790n)7 ®(9017---790j7---790n)) ('_ V)
[@] (@1, 0n) (01,5045 00) V(P Py 00)) (dr)
1

[75@] (1, (@01, @y 0n) VO(PL, o )y Pn) 0
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Likewise, we prove that:

[7i®] (e, (®(P1, - @) VO(P1, o, Do P0))s s ) | 6

So, by (- A)’, we obtain that:

[7;®] (gpl,...,(®(901,...,goj,...,gon)v@(cpl,...,gp},...,gpn)),...,gpn)|—<pj/\gpg-.
Thus, by (drq) and (& +), we obtain that:

®(9017"'7§0jA@;a"'awn)|_(®((1017"'7§0j7"'a§0n)\/@(9017"'79097"'7@71))'

Proof of Expression (13):

‘P|_¢ (dr’) *5||__1D¢ Eir,i))
ke O oL gy Y
e D A
DI o ") ww(*)

’ (Cl+) = -

Lemma 64. Let ®(p1,...,0n) € LWwith® = (0,+, (3, (21,...,%n)))- If®(p1,...,0n)

is GGLg—consistent then +1¢1,...,+50y are GGLc—consistent, where +jp; =
wj =+
—pj it =—

Proof: 'We prove it by contraposition. If +;¢; is GGLc—inconsistent then +;¢; |— .
If +; = + then p; . If +; = — then -yp; I and therefore | @; by the cut rule
because ——¢; - ; is provable. So, in both cases, applying Rule (- ®), we obtain that
®(p1,...,0n) - and thus ®(¢1, ..., ¢,) is GGLg—inconsistent. O

Definition 65 (Canonical model). The canonical model is the tuple (W¢, R¢) where W ¢
is the set of all maximal GGLc—consistent sets of L¢ and R¢ is a set of relations Rg over
W€, associated to the connectives ® € C and defined by:
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* if ®=pthenT € R iff pe " (where p = (1, +, £));

e if ® = (0,%,(3,(%1,...,%5))) then (I'1,...,T'y11) € R iff forall o1,...,p, €
Lc,if o1 41 and ... and @, 4 Ty, then ®(1,...,05) € Tnit;

e if ® =(0,%,(V,(£1,...,%,))) then (I'y,...,['y1) ¢ Ry iff forall q,..., ¢, €
Lo, if ®(p1,...,0n) €Tpirthenpy hTyor... or , b T

pjely if+;=+
;T ifxj=-

11>

where for all j € [1;n], ¢; 4 T'; O

Lemma 66 (Truth lemma). For all p € L, for all maximal GGLc—consistent sets T', we
have that M¢,T |- p iff p € T.

Proof: By induction on . The base case ¢ = p € P holds trivially by definition of M €.
e Case —p.

Assume that - € I' and assume towards a contradiction that it is not the case that
M¢,T'|F —¢. Then, M€, T |- ¢. So, by Induction Hypothesis, ¢ € I'. Now, ¢ , ~¢ | and
- € I' by assumption. Thus, I" is not GGLc—consistent, which is impossible. Therefore,
Me, T ”_ —p.

Conversely, assume that M€ T | —p. Then, it is not the case that M¢ T | ¢,
so, by Induction Hypothesis, ¢ ¢ I". Since I' is a maximal GGL¢g—consistent set, this
implies that I' U {(} is not GGLc—consistent. So, there are ¢1,...,p, € I' such that

Ol ooy Pn, . Thus, @1, ..., oo *pandalsoby (- =), 01, ..., @, -
Therefore, ~p € I' by the cut lemma.

e Case (p V).

We prove the following fact. It will prove the induction step because M€, T' |- v ¢
iff M T |- or M T |- iff o € T or ¢ € T by induction hypothesis.

Fact 67. For all maximal GGLg—consistent sets T, (pv ) eLiffpel oriy el

Without loss of generality, assume that ¢ € T'. Then, ¢ |- ¢ implies ¢ - ¢ v 9
by K and (- V). So, by the cut lemma, (¢ v ) € I' since ¢ € I'. Conversely,
we prove that (¢ v 1) € ' implies that ¢ € I" or ¢ € I'. Assume that (o v ) € T
and assume towards a contradiction that ¢ ¢ I' and ¢» ¢ I'. Then, because I' is

a maximal GGLg—consistent set, there are ¢1,...,¢,, € I' and 1,...,¢, € T
such that w1 , ... , ©m , @ and¢1 , ... , ¥, , ¥ | . Thus, by (Kr),
(Br) and (Cl+), we have that 1 , ... , ©m , ¥1 , ... , ¥n , @ |- and
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Ol s «or s Pm > V1, .., Yn , ¥ . Then, by rule (dry), we have that
Sﬁl_*(801;---a¢m;¢1a---;¢n)and¢|_*(@17---790m7¢1,---7¢n)-
So, by rule (v+), (pve) b * (o1, .., ©m , Y1, ... , ¥,) and by rule
(drg) and (Br), (v ¥) » @1, oo s ¥m , %1, ... , ¥n |- . However,

(eVY), 01, s O@m, W1, ..., € T'. Therefore, ' is not GGLg—consistent, which is
impossible. Thus, p e 'or ¢ e I'.

e Case (p A 1).

We prove that p A € T'iff ¢ € I" and ¢ € I". This will prove this induction step
because M€, T'|- ¢ A1 iff M€, T'|F- ¢ and M€, T' |-« iff ¢ € T and ¢ € I by induction
hypothesis. Assume that ¢ € I and v € . Then, since ¢ , ¥ |- ¢ A ) is provable, we
have by the cut lemma that ¢ A ¢ € I'. Conversely, assume that ¢ A 1) € I" and assume
towards a contradiction that ¢ ¢ I'. Since I' is a maximal GGLg—consistent set, there
is ©1,...,¢n € Dsuch that 1 , ... , @, , ¢ |—. Now, by rule (K+), we have that
©1y -+ s Yn s @, Y. Therefore, by rule By, 01, ... , ¥, (¢, %) . Then, by
rules (Cl +) (dry), we have that (¢ , ) = * (01, ... , @n). So, by rule (A +), we
have that (o A®) |- * (1, ... , pn). Then, again by rules (Cl ) and (dr3), we obtain
©1, - 0n, (0, Y. Since (pArh) e Tand 1, ..., ¢, €T, this entails that T is not
GGLc—consistent, which is impossible. Therefore, € I". Likewise, we prove that 1) € T".

e Case ®(p1,...,pn) With® = (0, +, (&£, (£1,...,%5))).
First, we deal with the subcase &£ = 3.

Assume that ®(1,...,0,) € I'. We have to show that M, T | & (¢1,...,0n),
i.e., there are I'y,...,I";, € M€ such that RZ°I'y...I',I" and 'y } [e1] and ... and
I & [en]. We build these maximal GGLg—consistent sets I'y,...,I", thanks to
(pseudo) Algorithm 1 (because it does not terminate). This algorithm is such that if
® (X £ q,...,X, £, T)) € T then for all p1,...,p, € L, there are (],...,4;,) €
{+,-}" such that ® ((X1 £1 T'7") x1 (£107") ..., (M £, TT) x, (£,007)) € T'. This
is due to Expressions (9), (10) and Expressions (11), (12) of Lemma 63. What
happens is that each X; +; I'; is decomposed into disjunctions ((X; +;I';) A pp) Vv
((M; £; ') A =pp) and conjunctions (X, +; ') v op) A((M; +; T') v =py,) depend-
ing on whether +; = + or +; = —. Then, each decomposition of X; +; I',, is replaced in
Expression @ (Xy +1 I'1,..., X, +, [';). This is possible thanks to rule (- ®) and this
yields a new expression (*). This new expression (*) belongs to I' because I is a maxi-
mal GGLc—consistent set, by the cut lemma. Then, we decompose again (*) iteratively
by applying Expressions (11) or (12). For each decomposition, at least one disjunct be-
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Algorithm 1

Require: (¢1,...,¢,) € L3 and a maximal GGLg—consistent set I' such that
®(p1,...,0n) eI with® = (0,+, (3, (£1,...,%5))).

Ensure: A n-tuple of maximal GGLg—consistent sets (I'y,...,I";) such that
Rg"l“l R FnF and +11 € Fl,. R S Fn

Let (¢9,...,0%), ..., (o7, ...,¢™),... be an enumeration of L7;

Y= {101 }5 .5 T = {£n0n )3

5:
for all m > 0 do
forall (£],...,+)) e{+,—-}"do
if ® (M1 21 T7) x1 (£107") -y (M, £, T7Y) x, (25,007)) €T then
PPl = TP U (156} ):
10: :
T = T U { ()0 )
end if
end for
end for
15:

N=Ult...;0h = UL,

m>0 m>0

if + =+ A if4s =+
L ;forall j € [1;n], x; é{ B and
v

where for all p € £, +p = { ”
1 :l:j = -

- if+=-
/\{gp|goeF§n} if £;=+
V{-p|oell} ifa;=-

Nj:l:j]?}né{

longs to I' because ¢ Vv 1) € I' implies that either ¢ € I" or ¢ € I' by Fact 67. Finally, after
having decomposed each argument of ®, we obtain that there is (£],...,+,) € {+,-}"
such that ® (M £1 T'7") x1 (£107") -y (M, £, T1Y) %, (£,007)) € T

Now, let m > 0 be fixed and assume that F}n is GGLg—consistent.  Then,

® (M £1 T7) x1 (£107") ooy (K, £, TT) x5, (£1,007)) is GGLg—consistent because
it belongs to the GGLc—consistent set F;n. Thus, by Lemma 64, for all j € [1;n], if
+; = + then /\1“;.” A j:;go;n is GGLc—consistent and if +; = — then /\F}” A (—i})gp}” is

GGLc—consistent. That is, in both cases, F;’”l is GGLg—consistent. We have proved
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by induction that for all m > 0, I'}" is GGLc—consistent. Thus, I'y, ..., I';, are GGLc~
consistent. Moreover, for all j € [1;n], I'; are maximally GGLc—consistent because by
construction for all ¢ € £ either p € I'j or —p € I';.

Finally, we prove that Rg°I'y ... ', I, that is, we prove that for all ¢y, ...,1, € £
if ¢y 4 Ty and ... and ¥, 4 T, then ®(¢1,...,9,) € I, that is, since I'y,..., T,
are maximally GGLc—consistent sets, if +197 € 'y and ... and +,%, € I, then
®(¢1,...,1%,) € I'. Assume that 197 € I'; and ... and +,1,, € I',,, we are going
to prove that ®(¢1,...,¢¥,) € I'. Now (¢1,...,¢y) € L", so there is my > 0 such
that (o7,...,0™0) = (¢1,...,9,). Since T7°*! ¢ Ty and ... and T70*! ¢ T,
we have that the tuple (+7,...,+,) satisfying the condition of line 8 of Algorithm 1
is (+,...,4+), because of the way FTOH,. e FZ“)” are defined. So, the condition of
line 8, which is fulfilled, is ® (01 =1 ") xq o]", ..., (M, £, [70) x,, pm0) € T
Then, for all j € [1;n], if +; = + then (N +; I ) xj |—gp 0 and if +; = -
then " i 0 - (Mj +; I f ) x; @l j . Therefore, applying rule (- ®), we obtain that

® ((Nl +1 FTO) X1 010, (M £, THO) 90210) - ® (gpgno, . .,gpnmo) is provable.
Since we have proved that @ ((Nl +1 FTO) X1 ooy (M £, TT0) %, gonmo) e, we
obtain by the cut lemma that ® (@71”0, e ,90210) e I as well, that is @ (¢1,...,%,) €T

Conversely, assume that M T |- & (¢1,...,p,), we are going to show that
®(¢1,...,pn) € I'. By definition, we have that there are I'1,...,T",, € M€ such that
RTy...IT'y'and I'y 4 [¢1] and ... and Iy, 4 [ ]. By Induction Hypothesis, we have
that o1 4 I'1 and ... and ¢,, 4 I';,. Then, by definition of Ry’ in Definition 65, we have
that ®(p1,...,0n) €.

Second, we deal with the subcase &£ = V.

Assume that ®(1,...,0,) € I'. We have to show that M, T | & (¢1,...,0n),
e forall I'y,...,I'y, e M€, (I'y,....,T,T) e RgZ or 'y 4 1] or ... or T'y, 4 [pon]-
Assume that (I'y,...,I,,T") ¢ Rg”. Then, since ®(¢1,...,¢,) € I', we have by
Definition 65 that o1 4 I'y or ... or ¢, 4 I's. So, by Induction Hypothesis, we have that

Iy b [er] or... or Ty 4 [on]-

Conversely, we reason by contraposition and we assume that ®(¢1,...,9,) ¢ ['. We
are going to show that M€, T |~ - ®(¢1,...,®,) (we recall that - is a connective of
C), which will prove that it is not the case that M, T |~ & (i1, ..., ¢,) by Proposition
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29. First, we prove that = ® (¢1,...,¢n) | = ®(1,...,pn) as follows:

e1Fe1 .. enlon
[-&] (@1, on) |- —@(p1,...,0n) Rewrite
*[®] (§01a~--7§0n)|_ _®(901>"'?90n) (dl’")
L (T Nl O [CIRRTE I
*_®(§01w--7§0n)|_ ®(901a--~790n) (dl‘")
@ (01, n) = —®(01,- -, n) (ﬁi)
—.@(gpl,...,gpn)l——@(gol,...,gon)

(-®)

Then, by Fact 67 and because |~ (¢ v -¢) is provable, we have that
-® (¢1,---,0n) € or ®(p1,...,0,) € L. So, by assumption, = & (¢1,...,0,) € L.
Therefore, by the cut lemma, since = ® (¢1,...,0,) = — ®(¢1,...,0n) we have
that — @ (p1,...,0,) € I'. Hence, this case boils down to the case £ = 3 because
-® = (0,-%,(3,(=%1,...,—%5))). This case has been proved in the previous item and
we thus have that M€ T | - ®(¢1,...,©n). O

We finally prove that the canonical model is indeed a C—model. For that, we need to
prove the following lemma:

Lemma 68. Let ® € C be a connective of arity n € N. Then, for all ®" € Oy, .3, (®), we
have that Rg = Rg.

Proof: 'We prove this lemma using the following two facts: for all ® € C, all transposi-
tions 7; = (j n + 1),

if®=(0,%,(3,(£1,...,%5))) then ® (¢1,..., 71 @ (P1,.--,n)s---,0n) - @; (14)
if@Z(O’,:I:,(V,(:I:l,...,:l:n)))thel’lgojl— @(901:---77-j®(§017---7‘Pn)a---7§0n) (15)

Expressions (14) and (15) are proved by a direct application of (dr;) with 7; and then
(® +) to the provable consecution [7;8] (@1, ..., ¥n) - T;®(p1, ..., pn) if £(7;®) =3
and T; ® (901, .. .,gpn) l— [Tj@] ((,01, .. .,(pn) iffE(Tj@) =V.

First, we prove that for all ® ¢ O, (®), we have that Rg = Rg. For that, it
suffices to prove that for all transpositions 7; = (j n + 1), we have that R;.¢ = Re
because the transpositions generate the symmetric group. Proving Rg S R e or
R;.¢ € Rg forall 7; = (j n+1) is enough, because by double inclusion we then have
that Rg € Rr,e € Rrjrje = Re and thus Rg = Rr .

o Case ® = (O’,:I:,(3,(:1:1,...,:bj_1,+,:l:j+1,...,:l:n))). Then, Ti® =
(Tjo-a_iﬂ(V?(_ila"'7_ij—17+7_ij+17"'7_in)))'
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Assume that (I'y,...,['41) € Rg’. We are going to show that (I'y,...,I'y41) €
R, ie. (U1, Tp) ¢ RS, i (T, Tyt Dot T, -, T, Ty) € R
Let ¢1,...,¢, € L and assume that 7; ® (¢1,...,¢,) € I'j and @1 4 I'y and ... and

©Y; € FZ if +;, =+
©n & 'y where ; L T'; £ _ . We want to prove that ¢; € I';;1.
pi ¢y if+;=-
Since (I',..., 'y, I'he1) € Rg” and o1 4 'y and ... and 75 & (¢1,...¢,) € I'j and
. and ¢, 4 I'y, we have that M€ T, | ® (o157 (P15- -y n),---,¥n). So,
by the truth lemma, &(¢1,...,7; ® (p1,...,¢n), .-, ¢n) € I'ni1. Now, by Expression

(14), ®(p1, ..., 75®(P1, -, Pn), - - -, n) |- ;. Therefore, ; € 11 by the cut lemma.

eCase ® = (0,+,(3,(-,...,—))). Then, 7;® = (750, %+, (3,(-,...,-))).

Assume that (I'y,...,I'y41) € Ry, ie. forall p1,...,¢, € Lo, if 1 ¢ ' and ...
and @, ¢ I';, then ®(p1,...,¢n) € i1 (1). We are going to show that (T'y,...,T'y41) €
R, ie. (T, ., Ten, ... Do, Ty) € Ry2, e forall @1, ..., ¢n € Lo, if @1 ¢ T'y and

.and p; ¢I',1and ... and ¢, ¢ I' then 7; ® (P15---,0n) € I';. Assume that ¢ ¢ I'
and... and p; ¢ ';;1 and ... and ¢, ¢ I';,. We want to prove that Tj@)(gol, ey Pn) € r;.

Since ¢; ¢ I'y4+1, we have that ® (1, ..., 7 ® (©1,...,9n),.-.,¢n) ¢ I'ni1 because
of the cut lemma since ®(p1,...,7j ® (¢1,---,%n),---,%n) - ¢; by Expression (14).
Then, either 1 €'y orpa ey 0r... or 73 ® (¢1,...,¢n) €jor pji ey or... or
¢n € 'y, because of (1). However, @1 ¢ I'1,..., ¢j-1 ¢ I'jo1, @je1 € Djut, ooos on € D
Therefore, 7; ® (¢1,...,¢n) €L.

o Case ® = (0, (V,(£1,...%j-1,+,%j41,---,%n))). Then, 7,0 =
(tjo, ==+, (3, (=1, .-y =%j-1,+, —£ju4l, - -, —£n))).

Assume that (I'y,....T,,Tha1) ¢ Ry We are going to show
that (T1,....0pnTpy1) ¢ Rﬂ;;’@,_i ie. (Piooo T Toat) € R e
(T1,- o Cnst, Djsy o, Dy Ty) € RS e for all i, 00 € Lo, if 1 4 T4

and ... and p; € ['yp1 and @41 b ['je1 and ... and ¢, 4 Ty, then 75 ® (@1,...,¢p) €T}
piel'y if —%; =+

where p; 4 I'; £ ) . Assume that o1 4 I'y and ... and ¢, € I';,,1 and
i ¢ 1y if —% = —

©wj+1 b j+1 and ... and ¢, 4 I';,. We want to show that 7; & (1,...,¢p) €L';.

Since ¢; € Tpy1 and 0; | @ (¢1,-..,7 ® (©1,---,Pn),---,Pn) by Expression
(15), we have by the cut lemma that ®(¢1,...,7; ® (¥1,.--,¢n),.--¢n) € Ipit.
So, M€ Tpi1 |- ® (p1,...,75 ® (¢1,---,%n),---,¢n) by the truth lemma. That
is, for all T',..., T} € M€, either (I'},...,I;,['hy1) € Rg” ornot o1 4 I'y or ...
or 7; ® (p1,...,n) € Ijor ... ornot ¢, 4 I'y, (p; 4 I'; is defined above). Take
(ry,....17,) = (I'1,...,T'y). Then, by assumption, (I'y,...,I',,I'h1) ¢ Ry and
o1 dI'yand ... and ;1 4 I'j_1 and @41 b I'j41 and ... and ¢, 4 I'y. Therefore,
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Tj®(901,...,gon)el“j.

eCase ® = (0,+,(V,(-,...,—))). Then, 7;® = (750, %, (¥, (-,...,-))).

Assume that (I'y,...,Tp41) € Ry, ice. forall py,...,0n € Lo, if ®(¢1,...,¢n) €
I'ye1 and 1 € 'y and ...and ¢, € T'), then ¢; ¢ I'; (2). We are going to show that
Ty, Tr) € RE%, e Ty, Doy, T, Ty) € RS e, forall . 0 €
Lcif1i® (p1,...,0n) €l'jand p1 €'y and ... and ¢, € I';, then ¢; ¢ I'y,,1. Assume
that 7; ® (¢1,...,¢n) €T'j (3) and 7 € T'; and ... and ¢, € I';,. We want to prove that
Pj ¢Fn+1-

Assume towards a contradiction that ¢; € I', 1. Then, by Expression (15) and
the cut lemma, ®(¢1,...,7 ® (¥1,.--,¢n),---,¢n) € Iny1. Now, ¢ € I'y and

.and ¢;1 € I'j.1 and @41 € I'j4y and ... and ¢, € I';. So, by (2), because
(T'1,...,Tns1) ¢ Rg’, we have that 7; ® (¢1,...,¢,) ¢ I';. This contradicts (3).

Second, we prove that Rg = R_g. Again, it suffices to prove that Rg € R_g.

e Case ® = (0,+,(3,(£1,...,£,)). Then, -® = (0, —=, (¥, (=1, ..., —%,))).
(T'y,...,Tns1) € RE iff for all 1,..., ¢ € Lo if 1 4 Ty and ... and @, 4 T
pjel’y if+;=+
0 T, if+;=-
that (I'1,...,Ipi1) € REg, ie. (I'1,...,Th41) ¢ RZG7 ie. forall 1,...,0, € Lg,
if —® (o1,...,¢n) € Tyiq then 1 4" Tyor ... or ¢, 4" IT'y, (1) where p; 4 T =
pjel’y if —%; =+

then ®(p1,...,¢n) € Ips1 where ; 4T = { . We are going to show

) . So, for all j, ¢; 4" I'; is (not ; 4 I';). Therefore, (1) holds iff if
P ¢Fj lf—:l:j = —

®(p1,...,¢n) ¢nr1and o1 'y and ... and ¢, 4 I'), then not p; 4 I';
iffif o1 4Ty and ... and p,, 4 'y, then ®(p1,...,0n) € Tntt
iff (I'1,...,T'h41) € Rg” which holds by assumption.

e Case ® = (0,+,(V,(£1,...,+,)). Itis proved like the previous case. O

Proof: (Completeness proof) We prove that for all sets I' € Sg and all S = |- € Sg,
if T' |- S holds then S is provable from I' in GGLg. We reason by contraposition.
Assume that S is not provable from I' in GGL¢g. That is, there is no proof of ¢ |- v
in GGL¢ from T'. Thus, it is not the case that (¢ , —) |~ is provable in GGLg u T
by Expression (13). Hence, {¢, -} is GGLg u I'—consistent (we can naturally adapt
the definition of GGLg—consistency to define the notion of GGLg u I'—consistency).
So, by Lemma 62 (where GGLg—consistency is replaced by GGL¢ u I'—consistency),
it can be extended into a maximal GGL¢ U I'—consistent set I such that {¢, -} c TV,
Now, IV is also GGLg—consistent, so it is a state of the canonical model M€. Then,
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by the truth Lemma 66, we have that (M T’) |- ¢ and (M T") |- =, so it is
not the case that (M T") |- S. Moreover, by the cut Lemma 61 and because I''
is also GGL¢g u T'—consistent, we also have that (M¢,T”) |- . Hence, we have
found a pointed model (M€ T"), which is indeed a C-model according to Lemma
68, such that (M€, T”) |- T but not (M¢,T”) |- S. That s, it is not the case that T' |- S. O

C Proofs of theorems 49, 53 and 57

Theorem 49 (Cut—climination). Let C ¢ C. The calculus GGL¢ is cut—eliminable: it is
possible to eliminate all occurrences of the cut rule from a given proof in order to obtain
a cut-free proof of the same consecution.

Proof:  Since GGLg is a display calculus in the general sense of Ciabattoni & Ra-
manayake [9], we only need to prove that it satisfies the conditions (C2)—(C8) spelled
out in [9] as proved by Belnap [6]. Note that condition (C'1) is not needed in Belnap’s
proof [6]. The conditions (C2)—(C7) are easily checked on each rule of GGLg. It
remains to prove condition (C8). It has already been proved in the literature for the
Boolean connectives so we only prove it for the gaggle connectives. Instead of proving
it in the general case, we prove it for n = 2 with ® = (o, +, (3, (+,-))). This should pro-
vide the reader with the main ideas underlying the proof in the general case. Basically,
we display each subformula of the cut formula using the display rule (dr;) and we apply
the cut rule on each subformula.

XiFp1 oo X e [®] (p1,02) FU
[©] (X1, X2) - ® (¢1,¢02) ®(p1,92) U
[®] (X1, X2) |- U

(®+)
cut (&(p1,92))

[®] (p1.902) U

Xibo b (nel @) )
X1 |- [r®] (U, ¢2) (dn) !
is transformed into [®] (X1,02) U (drl)
[r2®] (X1,U) |- o ! w2 |- X2 £ (2)
[r28] (X1, U) |- X, o
(drl)

[®] (X1, X2) - U

We proceed similarly for the rules concerning the Boolean connectives —, A, v using the
Boolean display rule (drs). O
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Theorem 53 (Soundness and strong completeness). Let C ¢ C. The calculus GGLOC is
sound and strongly complete for the basic gaggle logic (S%, M, ).

Proof: We are going to perform a backward proof search and analyze the structure of
a cut-free proof in GGL¢ which ends up in a consecution of the following form, where
Olyeee s Pl Plsee P € [,% do not contain Boolean connectives:

®(g017'-'7§0k)|_ ®, (gp’l,,gpg)

Our aim is, via that analysis, to transfom the proof in GGL¢ of the above consecution
into a proof in GGLE of the same consecution. This will prove the theorem.

Before proceeding further, note that the following rules are particular instances of
(K+) and (+ K) (with X empty):

-U :
YEU (K+)

s

ULY

(-K)'

Since the proof is cut-free and the final consecution does not contain Boolean con-
nectives, the Boolean rules (A +), (- A), (VF), (- V), (=) and (- +) have not been
applied in the proof. Indeed, a property of our cut-free calculus GGL¢ is that once a
(Boolean) connective is introduced in a proof it stays present in the proof. Because the
conclusion of our proof does not contain Boolean connective, this entails that the Boolean
rules have not been used.

Stage A: rules (® ) and (dr;). We start with a proof in GGLg whose conclu-
sion is of the form ®(¢1,...,0%) = & (¢],...,¢]) and we analyse its proof back-
wards and determine which rule(s) can be used as we proceed bottom—up. At the be-
gining, it is not possible to apply rule (- ®) because the antecedent and the conse-
quent of the consecution are both formulas. On the other hand, it is possible to apply
rule (dry) or (WI+) right at the beginning and in that case we go directly to stage
B. Otherwise, it is also possible to apply the rules (® +) and (dry) (possibly itera-
tively). We then obtain an expression of the form S([®1], X1, ..., X, ®2(11,...,%n))
or S([&1],X1,..., Xm,[®2] (Y1,...,Y,)) where Xq,...,X,,,Y1,...,Y, belong to
the language £~ built up from formulas ¢, structural atoms and structural connec-
tives [®]. Hence, at the end of that stage, we have a consecution of the form
[®1] (X1, ., Xn) b @2 (1, .. .,00) (1) or @1(01,. .., 0m) - [®2](Y1,...,Y,) (2)
or [®1](X1,...,Xm) F [®2](Y1,...,Ys) (3). Without loss of generality, let us deal
with case (1) in what follows.
We can then go to stage B or to stage C.
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Stage B: rules (drs) or (Wl +) and then structural rules. If rule (drs) is applied,

we obtain
([®1] (Xla---,Xm) D) (¢177'¢n))|_ (dr2)
[@1] (Xl,...,Xm)l— @2 (¢1,.-~,¢n)
|_(®2(7/}17'--7¢n)7 >G[Q\Bl] (X17"'7Xm)) (drg)

[®1] (le cee 7Xm) l_ @2 (wla e a¢n)
If rule (Cl +) is applied, we obtain

([@1] (Xl,...,Xm) , [@1] (Xl,...,Xm))l— ®9 (1#1,--.,1%)
(@11 (X1, Xm) - ®2 (W1, ,1n)

In both cases, we obtain a premise including the structural connective , . This means
that we cannot apply rules (dry), (- ®) or (@ +) for the moment. We must use the other
rules, the structural rules and (drs), in order to apply one of these rules. Indeed, for
the proof to terminate, we have to apply these rules in order to reduce the complexity of
the consecution. Since the structural rules and (drz) do not change the constituants of
a consecution, the consecutions that we can obtain as a result of applying these rules in
order to be able to apply rules (dry), (- ®) or (® +) again are the following:

1. | @ (Y1, ,00)

2. [®1] (X1,..., Xm)

Cx @ (U1, ) [Fe1] (X1, ..., X))
[®1] (X1, ., Xm) b ®2 (W1, ).

For each case, we replace the existing derivation by the following derivation:

(WI+)

W

1.
l_ ®2 (¢1,---’¢n) (K|_)l
[@1] (Xl,. .. ,Xm) l— @9 (¢1, .. ,’(pn)
2.
[®1] (Xla---,Xm)l_ (|_ K)/

[@1] (Xl,...,Xm)l— ®9 (wl,...,wn)
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* @ (Y1, hn) - [-@1] (X1,..., Xim) (dry)
[®1] (le"'aXm)l_ @2 (¢1,-~-,¢n) ?

4. We simply remove the existing derivation.

So, for all cases the Boolean display rule (dry) and the structural rules have been
eliminated. In all cases, the proof (considered so far) can be transfomed into a proof
where (dry) has been eliminated and replaced by (dr'2), (K+)"and (- K)".

In all cases, the last premise ends up to be a consecution of the form

S([®1], X1, Xon, ®2(Y1, ..., ¥n)) or @1(01,...,0m) = ®2 (¥1,...,1,) (possi-
bly with ®2(v1, ... ,,) empty). Then, we go to stage C.

Stage C: rules (dry) or (- ®). Ifrule (dry) is applied then we go back to stage A.
If rule (- ®) is applied,
U v ... UV,
S([®1] 7X17 <o 7Xn7 ®2('¢)17 <o 7wn))

then for all j € [1;n], U; |- V; are of the form X |- ; or ¢; |- X; where X € £x.
So, we apply inductively stages A, B and C to each U; - Vi.

(F®)

Hence, applying these stages recursively, we are able to eliminate all structural rules
and the Boolean display rule (drs) from the proof and replace them with the rules (drlg),
(K+)"and (- K)'.

Stage D. At this stage we have transformed our initial proof in GGL¢ into a proof
in the calculus consisting in the rules (- ®), (& +), (dry), (dr}), (K+)" and (- K)".
A requirement of rule (K+)" ((+ K)') is that the antecedent (resp. consequent) of its
premisse is empty. If we examine the other rules, we notice that an empty antecedent
can only appear in rule (- ®) if one of its premise already contains an empty antecedent
(see Expression (7)). As a matter of fact, because of our axioms (see Expressions (5)
and (6)) and the other rules, this can never happen. Hence, rules (K )" and (- K)' are
in fact never used in a proof. Therefore, the proof that we eventually obtain is actually a
proof in GGLE. O

Theorem 57 (Soundness and strong completeness). Let C € C and let G be a group
associated to C. The calculus GLOQG (GLc ) is sound and strongly complete for the

(Boolean) basic gaggle logic (S, M¢, |- ) (resp. (Sg, M¢, |F)).
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Proof: We assume that we have a proof of a consecution ®1(¢1,-..,0m) F ®2
(P1,...,0p) € 88 in GG L% and we show that we can transform this proof into a proof of
the same consecution in GLOC,G. For that, we analyse the proof and perform a backward
proof search. The first rule that we can apply (backwards) is (® +) and we arrive at a
consecution of the form S([®],¢1,...,¥n,U). Then, we can directly apply (& +) or a
sequence of display rules in order to apply (@ +). In both cases, we arrive at a conse-
cution of the form S([®'], X1,..., X, ®(¢1,...,¢n)) with & € C (in order to apply
(+ ®)). Since both ® € C and & € C, the sequence of display rules is equivalent to a
single application of rule (dr3) and it suffices to replace this sequence by a single appli-
cation of rule (dr3) to obtain a proof in GL%’G. Then, we repeat this process inductively
to the premises of the instance of the rule (+ ®) applied. Hence, we obtain the result for
GLE -

As for GLg ¢, it suffices to observe that (dr3) is derivable from (dr;) and (drz) and
that, vice versa, (dry) is derivable from (drs). O
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