
HAL Id: hal-03498931
https://hal.science/hal-03498931

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards real-time simulation of physically realistic
pressure applied to submerged bodies using explicit and

semi-implicit SPH algorithms
Nicolas Gartner, Niels Montanari, M. Richier, Vincent Hugel, Ramprasad

Sampath

To cite this version:
Nicolas Gartner, Niels Montanari, M. Richier, Vincent Hugel, Ramprasad Sampath. Towards
real-time simulation of physically realistic pressure applied to submerged bodies using explicit
and semi-implicit SPH algorithms. OCEANS 2019 - Marseille, Jun 2019, Marseille, France.
�10.1109/OCEANSE.2019.8867480�. �hal-03498931�

https://hal.science/hal-03498931
https://hal.archives-ouvertes.fr

HAL Id: hal-03498931
https://hal.archives-ouvertes.fr/hal-03498931

Submitted on 21 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards real-time simulation of physically realistic
pressure applied to submerged bodies using explicit and

semi-implicit SPH algorithms
M. Richier, Nicolas Gartner, Niels Montanari, Vincent Hugel, Ramprasad

Sampath

To cite this version:
M. Richier, Nicolas Gartner, Niels Montanari, Vincent Hugel, Ramprasad Sampath. Towards real-
time simulation of physically realistic pressure applied to submerged bodies using explicit and
semi-implicit SPH algorithms. OCEANS 2019 - Marseille, Jun 2019, Marseille, France. pp.1-10,
�10.1109/OCEANSE.2019.8867480�. �hal-03498931�

https://hal.archives-ouvertes.fr/hal-03498931
https://hal.archives-ouvertes.fr

Towards real-time simulation of physically realistic pressure applied
to submerged bodies using explicit and semi-implicit SPH algorithms

Nicolas Gartner1 Niels Montanari2 Mathieu Richier1 Vincent Hugel1 Ramprasad Sampath2

Abstract—This paper compares different algorithms using
the Smoothed Particle Hydrodynamics (SPH) discretization to
provide realistic simulations of submerged bodies in water.
Two different techniques for handling fluid-solid boundaries
(mirroring and Shepard extrapolation) and two different pressure
calculation methods (pressure projection and state equation) are
investigated. The first contribution of this paper is to propose a
test case with a submerged sphere in a water tank, in which the
evolution of fluid pressure over depth is watched to compare the
accuracy of the boundary handling techniques and the pressure
calculations methods. The second contribution of this paper is to
evaluate the accuracy of the solvers in dynamic cases, looking at
the evolution of the pressure over time, the evolution of sphere
speed over time and comparing with an analytical falling speed
based on added mass and/or velocity damping. Third contribution
of this paper is to evaluate the solvers using performance metrics
based on computational time and time step counts. The results
showed that the solver using pressure projection and Shepard
extrapolation have reliable accuracy and good computational
efficiency and might be a favored approach towards achieving
accurate real-time simulation of underwater vehicles.

I. INTRODUCTION

Realistic simulation of movements of submerged bodies like

Autonomous Underwater Vehicles (AUVs) or Remotely

Operated Vehicles (ROVs) in near real-time is a challenging

issue. It could have interesting applications in the design of

vehicles shape or the evaluation of the performance of vehicles

capable of reconfiguring their structure during a mission.

A first method consists of using the rigid body model like

the one described in Fossen [1] to update the vehicle dynamics,

with the major drawback of requiring the identification of

hydrodynamic parameters, such as drag coefficients, which is

a costly procedure. This hydrodynamic parameter estimation

can be done by setting up a real experiment, like in Ridao

[2], where an unmanned underwater vehicles is put in a water

tank and external sensors are used to measure fluid force

and the vehicle position, or in Gartner [3], who proposed a

method to evaluate these parameters using raw data from a free

decay pendulum experiment, involving a sphere shaped object.

Many upgrades to this method were made over time, which

mainly focused on determining the hydrodynamic parameters

for more degrees of freedom, with thruster coefficient or with

fin coefficients.

Another method is based on numerically solving the Navier-

Stokes equations to obtain the force applied by water on the

hull of the vehicle. Common mesh-based techniques have

difficulties in efficiently dealing with highly dynamic flows

1Laboratoire COSMER, Université de Toulon, France Mail: gartner@univ-
tln.fr 2Centroid LAB Inc, 3877 Grand View Blvd, Los Angeles, CA 90066,
US

and fast-moving interfaces (free surface, fluid-solid interfaces).

A more recent technique, namely Smoothed Particle Hydrody-

namics (SPH), for which Violeau [4] made a state-of-the-art

review, appears to be more efficient for this purpose. This

method does not rely on a mesh but, instead, considers a set

of interacting and moving particles to simulate the fluid. SPH

solvers can be separated in different families: depending on the

time integration method, which can be explicit, semi-implicit

or implicit, and depending on the pressure calculation method.

Weakly Compressible SPH (WCSPH) solvers (Monaghan

[5]) are solvers in which pressure is calculated through a

state equation and are relatively simple to implement. In

Incompressible SPH (ISPH) solvers, it is calculated with the

pressure projection method, like in Cummins [6] or Shao

[7]. WCSPH solvers generally have small time steps but

low runtime per time step, while semi-implicit ISPH solvers

generally have large time steps but high runtime per time

step. There is no consensus on which approach is the most

favorable. Comparisons of these algorithms have been made

many times, for example in Shadloo [8] or in Lee [9], in which

the comparison was only focusing on the fluid simulation and

not on rigid-body dynamics and fluid-solid coupling, neither

compared in depth computation efficiency of the algorithms.

There are three main approaches to deal with solid bound-

aries. One is to apply artificial forces with magnitude based on

the distance to the boundary, but it is too inaccurate. Another

is to calculate boundary integrals, which provides a good

accuracy but at a too high computational cost (Violeau [4]).

A last approach is to consider fictitious particles at the other

side of the boundary. Among the variants relying on fictitious

particles, the ones that generate the solid boundary particles

only once at the beginning of the simulation are considered.

Akinci [10] proposed a pressure mirroring technique that has

the advantage of not requiring to calculate solid boundary

particles pressure. In Adami [11] the pressure of the solid

boundary particles is extrapolated from fluid particles. As

both methods involve low computation time, they are good

candidate solutions for real-time SPH simulations.

The work presented in this paper proposes to incorporate

wall boundary handling techniques and two-way fluid-solid

interaction with two SPH fluid solvers in order to enhance the

physical realism and simultaneously enhance the speed of sim-

ulations of submerged bodies. In the next section, two efficient

SPH algorithms with precomputations, stored variables and

resolution step are provided, the coupling procedure between

SPH solvers and rigid solvers is described. Section III shows

comparative tests with a static sphere that interacts with the

fluid. In section IV, the time evolution of the pressure gradient

is studied with both algorithms to explain the influence of the

modeling. The computational efficiency of both algorithms is

analyzed. A test with a dynamic rigid body is conducted, and

finally some hints for the improvement of the accuracy will

be given.

II. TWO SPH ALGORITHMS

A. SPH discretization

SPH main feature is to consider a smoothing function as

spatial convolution product for quantities. It is called ”kernel”

function W (|ra − rb| , R) = αW fW

(
|ra−rb|

R

)
= Wab and

weighs the interaction between particles a and b from their

distances. r is the position of particles. R is the radius of the

support of the kernel function. The kernel is chosen so that,

if the discretization of the spatial continuum is regular:∑
b∈Na

Wab ≈ 1 (1)

With Na the whole set of particles inside the support limit R,

particle a included.

In this paper, only 3D case is considered and the cubic B-

spline is used (Violeau [12]):

αW =
16

πR3

fW (q) =

⎧⎪⎨
⎪⎩

1
2 − 3q2(1− q) 0 ≤ q ≤ 1

2

(1− q)3 1
2 ≤ q ≤ 1

0 q ≥ 1

(2)

Figure 1 represents the cubic B-spline (Eq. 2) fW
(
ra−rb

R

)
function and its derivative, which represents the gradient. The

sign of ra − rb was taken into account for the representation

of the gradient to show the continuity at 0. The SPH gradient

is supported by the unit vector eab in the direction b → a.

This is relevant for the understanding of the behavior of the

pressure gradient that is used further on.

Fig. 1. Representation of fW (|q|) and f ′
W (|q|) sign(q) for the cubic B-

spline.

Equation 3 shows the spatial interpolation of a thermody-

namic quantity A (density, pressure, etc.) with SPH.

Aa = m

(
Aa

ρa
Waa +

∑
b∈Fa∪Sa

Ab

ρb
Wab

)
(3)

With Fa and Sa respectively the set of fluid and solid particles

inside the kernel support centered on particle a, and m the

particle mass. m = ρ0 δr
3, with δr the size of a particle

and ρ0 the rest density of the fluid. Here, the volume of a

particle is δr3, because in the initialization process, particles

are generated on a regular grid and their mass has to remain

constant. Computing Sa and Fa can be very costly, the

method developed in Ihmsen [13] is used here. This method

makes use of index sorting and ordering of particle data

along a space-filling curve, which improves the performance

by reducing cache-miss rates and avoiding data races during

parallel execution. In particular, the density of particle a can

be simply evaluated as:

ρa = m

(
Waa +

∑
b∈Fa∪Sa

Wab

)
(4)

SPH approximation is used to calculate the value of gradient

∇A, divergence ∇ · A and Laplacian ∇2A. (5, 6, 7), see

Violeau [12] (chapter 5.2 and 6.2).

∇Aa = mρa
∑

b∈Fa∪Sa

(
Aa

ρ2a
+

Ab

ρ2b

)
∇Wab (5)

∇ ·Aa = −m

ρa

∑
b∈Fa∪Sa

(Aa −Ab) ·∇Wab (6)

∇2Aa = 10m
∑

b∈Fa∪Sa

(Aa −Ab) · (ra − rb)

ρb |ra − rb|2
∇Wab (7)

B. Evaluation of the pressure gradient

Focusing on the evaluation of the gradient of pressure p,

from Eq. 5, the following notations are introduced:

ΣF
a = m

∑
b∈Fa

∇Wab and ΣS
a = m

∑
s∈Sa

∇Was (8)

Σa = ΣF
a +ΣS

a (9)

Θa = pa/ρ2
a (10)

Γa = m
∑

b∈Fa∪Sa

Θb∇Wab (11)

Γ is the acceleration coming from the sum of the contribution

of the neighboring particles and ΘΣ is the contribution of the

particle itself to the acceleration of its neighbors. Equation 12

is obtained by replacing Aa with pa in Eq. 5.

1

ρa
∇pa = m

∑
b∈Fa∪Sa

(Θa +Θb)∇Wab

= ΘaΣa + Γa (12)

C. WCSPH: Explicit Weakly Compressible SPH

Let’s consider a Newtonian fluid and neglect surface ten-

sion, the famous continuity (13) and momentum (14) Navier-

Stokes equations can be used:

dρ

dt
+ ρ∇ · v = 0 (13)

dv

dt
= −1

ρ
∇p+ ν∇2v + g (14)

With p the pressure, ρ the density, g the gravity vector, v
the velocity, ν the kinematic viscosity and d/dt the Lagrangian

2

derivative of quantity. Considering a weakly compressible flow

(Mach number Ma < 0.1), where the pressure of the fluid is

considered linked to its variation on density, Murnaghan-Tait

state equation can be applied here:

p =
ρ0c

2
s,num

γ

[(
ρ

ρ0

)γ

− 1

]
(15)

With the polytropic index γ, which has commonly for water

a value of γ = 7. A numerical speed of sound cs,num is used,

because the use of the physical speed of sound would lead to

excessively low time steps.

cs,num ≥ 10max
(
Vmax,

√
|g|H

)
(16)

With Vmax and H respectively the maximal expected speed

and fluid height. In both schemes that are presented here, the

density is interpolated using Eq. 4. The pressure is chosen

relative to atmospheric pressure. To avoid occurrences of the

tensile stability [14] and implicitly enforce the atmospheric

pressure at the free surface (here, the interface with air),

negative pressures are prevented. From Eq. 14, the acceleration

v̇ �P
a due to non pressure force is updated first:

v̇ �P
a = ν∇2va + g

=
10mμnum

ρa

∑
b∈Fa∪Sa

(va − vb).(ra − rb)

ρb|ra − rb|2 ∇Wab + g

(17)

With μnum a numerical dynamic viscosity, higher than real

dynamic viscosity, that helps for stabilizing the simulation.

For solid particle (b ∈ Sa), vs is the slip velocity, which

computation is explained in section II-E. Then, the total

acceleration of fluid particles is computed thanks to:

v̇a = v̇ �P
a − 1

ρa
∇pa

= v̇ �P
a − (ΘaΣa + Γa) (18)

Particle positions and velocities are finally updated with the

symplectic Euler scheme. The WCSPH algorithm can be found

in Appendix A.

D. ISPH: Semi-implicit Incompressible SPH
Compared to the WCSPH model, the fluid is here consid-

ered to be nearly incompressible. The continuity equation can

subsequently be also expressed as:

dρ

dt
= ∇ · v = 0

To update the fluid state n to state n+ 1, first, viscosity and

gravity force effects from Eq. 14 are considered. Velocity v �P
a

is obtained by time integration of v̇ �P
a , coming from Eq. 17

but with the physical dynamic viscosity μ. From Eq. 13 and

Eq. 6 a new value of the density of particles is computed:

ρ �Pa = ρa +mΔt

(∑
b∈Fa

(v �P
a − v �P

b) ·∇Wab +

∑
s∈Sa

(v �P
a − vW

s) ·∇Was

)
(19)

With vW
s the velocity of the wall at the particle position.

A discretization of Eq. 14, with the viscosity and gravity

terms being already accounted for in v �P
a :

vn+1
a = −Δt

ρa
∇pa + v �P

a (20)

Discretizing Eq. 13 at state n+1, using Eq. 20 and considering

that, at state n + 1 incompressibility of the fluid is being

achieved, so ρn+1
a = ρ0, we get:

ρa∇ ·
(

1

ρa
∇pa

)
=

ρ0 − ρ�Pa
Δt2

(21)

The objective is to find the pressures which enforce in-

compressibility, that we represent as the minimization of

Δρa = ρ0 − ρ∗a, with ρ∗a the density of particle a after

accounting for the pressure forces yielded by the pressures

we solved for. Here an exact pressure projection is used on

Eq. 21 for increased accuracy. Using the SPH approximations

of divergence and gradient and by simplifying the expressions,

a linear system Mp = b is obtained from the combination of

all particles:

xaa︸︷︷︸
Da

pa +
∑
b �=a

xab pb

︸ ︷︷ ︸
Ra·p

= ba (22)

ba =
ρ0−ρ �P

a

Δt2 and with, in the case of extrapolation:

Da = − (Σa)
2
+ΣF,2

a

ρ2a
(23)

Ra · p = ΘaΣ
F,2
a +Σa · Γa+

m
∑
b∈Fa

(ΘbΣb + Γb) ·∇Wab (24)

With:

ΣF,2
a = m2

∑
b∈Fa

(∇Wab)
2

(25)

The relaxed Jacobi method is chosen to solve the linear

system. This method has many advantages: there is no need

to first build the matrix M and store it in memory and the

rows of the system can be efficiently processed in parallel.

The low convergence rate is generally not problematic when

aiming only at a moderately high level of incompressiblity

enforcement (1% to 0.01% of density deviation). All diagonal

coefficients Da being strictly negative, the convergence is

guaranteed. The pressure after one iteration becomes:

pa = (1− ω) pa + ω
ba −Ra · p

Da
(26)

With ω the relaxation factor. The same principle as in WCPSH

applies here: every time a new pressure is computed, it is

replaced by p = max(p, 0). New density is:

ρ∗a = ρ�Pa +Δt2 (Dapa +Ra · p) (27)

3

Finally, the level of incompressiblity enforcement is estimated

by averaging over all fluid particles and compared to a

threshold ε. A new iteration is performed if:

avg
a∈F

(max(ρ∗a, ρ0))− ρ0

ρ0
> ε (28)

Algorithms 2 and 3 describe the ISPH algorithm used and can

be found in Appendix B.

E. Rigid bodies boundary handling
To simulate the interaction between fluid and solid, fictitious

boundary particles s are generated from the surface of the

solid shape, always on the opposite side of the fluid (Fig. 2).

A sufficient number of layers is created so that the kernel of

a fluid particle can be filled if it is close to the surface of the

solid. We ensure that the number of fictitious boundary particle

layers nlayer ≥ R/δr = αR. With αR the ratio of interaction

radius and particle size.

Fig. 2. Solid particles generated (orange) inside the solid shape (green) with
fluid particles around (blue) and the kernel radius for a particular fluid particle
(red).

Two boundary conditions are taken into account: no slip

velocity condition and non-homogeneous Neumann pressure

condition. To apply these conditions Shepard extrapolation

method, that was applied by Adami [11], is used. Equations

29, 30 and 31 show how density, pressure and velocity of the

boundary particles are computed.

ρs =

∑
b∈Fs

ρbWsb∑
b∈Fs

Wsb
(29)

ps =

∑
b∈Fs

[pb + ρb(v̇
�P
b − v̇s).(rs − rb)]Wsb∑
b∈Fs

Wsb
(30)

vs = 2vW
s −

∑
b∈Fs

vbWsb∑
b∈Fs

Wsb
(31)

These values are unique for each particle and used for the fluid

update computations. Another method that does not require

the calculation of boundary particle pressure or density a

contrario to Shepard extrapolation, introduced in Akinci [10],

is explained in section II-H.

F. Dynamics of rigid bodies

Aside from the fluid solvers, a rigid dynamic solver is used

to simulate the dynamics of rigid bodies. The principle of the

rigid solver is to compute and sum up all the external forces

applied on rigid bodies. For every solid fictitious particle,

F s = F P
s + F V

s . With F V
s the counter local viscous force

that has to be applied on walls to respect Newton’s third law:

F V
s =

10m2μ

ρs

∑
b∈Fs

(vb − vs).(rb − rs)

ρb|rb − rs|2 ∇Wsb (32)

And F P
s the local force computed from pressure (Eq. 30):

F P
s = −m2

∑
s∈S

∑
b∈Fs

(Θs +Θb)∇Wsb (33)

Then the resulting force at the center of mass (CM) is

computed as follows:

F Fluid→Solid =
∑

F s (34)

and the resulting momentum:

MFluid→Solid
CM =

∑
(rs − rCM)× F s (35)

Finally, the new velocity and position are calculated by time

integration using velocity Verlet scheme with a constant time-

step ΔtRigid.

G. Time-step conditions

In the solvers presented in this paper, a dynamic time-step

is used, like in Sampath [15]. To ensure a stable simulation,

the time step depends on the simulation state and is given by

the minimum value of these three conditions:

Δt,1 = λCFL
δr

max(cs,num, max
a∈F∪S

|va|) (36)

Δt,2 = λCFL

√√√√ 2δr

max(|g|, max
a∈F∪S

|v̇a|) (37)

Δt,3 = λdiff
δr2

ν
(38)

With λCFL and λdiff constant time-step scaling coefficients.

First and second conditions (Eq. 36, Eq. 37) are both related to

Courant-Friedrichs-Lewy (CFL) condition, to prevent particles

from moving too much at a single time step. The criterion

based on the numerical speed of sound in condition (36)

is specific to the WCSPH model. Third condition (Eq. 38)

corresponds to a diffusion time-step to avoid overshoot during

one timestep. In addition, the fluid solver and the rigid

have separate time-step, with Δt being always a multiple of

ΔtRigid.

H. Fluid-solid interaction: Pressure mirroring technique

This section explains the mirroring boundary handling tech-

nique, that is different from Shepard extrapolation, and the

changes it involves. Solid boundary particle contribution is

directly taken into account in fluid particle acceleration and the

computation of the force applied on rigid bodies. To apply this

4

method, the following changes are required: precomputation

Γa from Eq. 11 is now ΓMir
a :

ΓMir
a = m

[∑
b∈Fa

Θb∇Wab +

1

ρa

∑
b∈Sa

(v̇ �P
b − v̇s).(rs − rb)∇Was

]
(39)

The local pressure force applied on rigid bodies (Eq. 33)

for this boundary handling method is computed with:

F P
s = −m2

∑
s∈S

∑
b∈Fs

⎛
⎝Θb +

(
v̇ �P
b − v̇s

)
. (rs − rb)

ρb

⎞
⎠∇Wsb

(40)

The total acceleration from WCSPH solver given by Eq. 18

becomes:

v̇Mir
a = v̇ �P

a −
(
ΘaΣa + ΓMir

a

)
(41)

And the Matrix M (Eq. 23 & Eq. 24) from ISPH becomes

Eq. 42 and Eq. 43:

Da = − (Σa)
2
+ΣF,2

a +Σa ·ΣS
a

ρ2a
(42)

Ra · p = ΘaΣ
F,2
a +Σa · ΓMir

a +m∑
b∈Fa

(
Θb

(
Σb +ΣS

b

)
+ ΓMir

b

)
·∇Wab (43)

III. SIMULATION EXPERIMENTS AND RESULTS

A. Test scene description

For all tests, the same scene is used. Figure 3 is a view of

the test scene, which consists of a rectangular tank containing

generated fluid particles, in which a sphere of diameter 0.4m
will be dropped. This figure also shows the generated rigid

body boundary particles.

Fig. 3. Left: Simulation scene with the rigid bodies. Right: Simulation scene
with the rigid bodies boundary particles.
Tank in yellow, sphere in red and fluid particles in blue.

Our fluid is water with standard physical properties of water

at 293 K: rest density is ρ0 = 998 kg.m−3 and dynamic

viscosity is μ = 0.000998 kg.m−1.s−1 Computation time of

the trials are saved and are summed up in Tab. III.

B. Comparison of the boundary handling techniques

1) Trial description: In order to compare the accuracy

of pressure estimation resulting from the boundary handling

methods, the first series of experiments consists of checking

the hydrostatic pressure of still water inside a tank. We let the

water particles stabilize for 3 seconds of simulated time, to let

them self-rearrange and approximately satisfy the hydrostatic

condition. A column of 1.62m of water is formed with about

13k particles. Parameter used for the WCSPH solver are given

in Tab. I.

TABLE I
WCSPH ALGORITHM PARAMETERS

cs,num 80 δr 0.05m

λCFL 0.4 αR 2

λdiff = 0.125 μnum 0.01 kg.m−1.s−1

The choice of cs,num is about double the height criteria

and largely above the speed criteria that will happen in this

scene (Eq. 16). This relatively low value enables much larger

time steps than if we were to use the physical speed of sound,

the corresponding criterion in Eq. 36 being the most limiting,

while keeping the compressibility at a moderate level. The

value for δr corresponds, with respect to the tank dimensions,

to a very coarse spatial resolution, to maximize computational

performance.

2) Results: Figure 4 shows the whole pressure field ob-

tained using the mirroring technique compared with using

the extrapolation technique. The black curve represents the

analytical solution of the evolution of static pressure as a

function of depth.

Fig. 4. Evolution of pressure versus depth using extrapolation and mirroring
boundary techniques. (WCSPH)

This figure shows the excessive error made with the mir-

roring technique, which is sometimes higher than 100%. To

see the localization of these errors, two pressure field layers

at two different depths are drown on Figs 5 and 6. Pressure is

color-coded. As water should have stabilized, the theoretical

value is the hydrostatic pressure:

pth(z) = ρgz (44)

5

Fig. 5. View of the pressure field at middle depth with extrapolation and
mirroring. z = 0.81m and pth = 7931Pa. (WCSPH)

Fig. 6. View of the pressure field at the bottom of the tank with extrapolation
and mirroring. z = 1.62m and pth = 15862Pa. (WCSPH)

For the mirroring technique, the pressure at the solid

boundary is too high, especially at the corners, and it is even

worse at the bottom of the scene because of the fictitious

boundary particle influence from the bottom of the tank. This

also happens for dynamic or submerged bodies and it has a

detrimental effect on the fluid-solid pressure force interaction.

Similar results are observed using the ISPH solver. Further on,

the only technique used is Shepard extrapolation.

C. Comparison of the fluid solvers

1) Trial Description: In a second series of simulation

tests with a submerged rigid body, pressure fields using the

extrapolation method with the explicit WCSPH solver and the

semi-implicit ISPH solver are compared. Water particles are

generated and let stabilize freely for 3 seconds of simulated

time. Then, the sphere is dropped from above surface and is

stopped after reaching a certain depth. Water is then stabilized

for 3 more seconds. Same parameters as for the first serie of

tests are used for WCSPH (see Tab. I), and the parameters used

for ISPH can be found in Tab. II. Most of them are common

to both.

TABLE II
IPSH ALGORITHM PARAMETERS

λCFL 0.4 ε 0.0005

λdiff 0.125 ω 0.5

δr 0.05m Ω 0.6

αR 2 itmin 5

Incompressibility factor ε is chosen small enough to give

an accurate pressure computation but not too small to keep

computation efficient. Further study could define how precisely

pressure p can be computed with this value of ε. Relaxation

ω and Ω factors are chosen to have a resilient algorithm.

2) Results: The extrapolated pressure on a sphere inside

the water pressure field with ISPH and WCSPH is shown on

Fig. 7. The presented pressure field is instantaneous and shown

after stabilization. Green dots that represent the pressure on

the boundary particles of the sphere are within the red dots and

are close to the analytical pressure at each depth. For ISPH,

the mean absolute error for the pressure on sphere boundary

particles is 3.56% while for the fluid pressure it is 14.8%. For

WCSPH, respectively 4.69% and 8.13%.

So both algorithms have correct precision for the evaluation

of pressure on solid boundaries (< 5% error) and WCSPH

seems to have better fluid pressure evaluation precision, but

to go further, it has to be verified if this precision still holds

in dynamic cases and if this precision is not achieved at the

expense of efficiency.

IV. DISCUSSION AND EXTENSION TO DYNAMIC

SIMULATION

A. Evolution of the pressure gradient during trial

An additional study is made to verify the stability of

the algorithms to dynamic behavior. This time, the sphere

is dropped from above the surface and stopped at different

depths. Each time the sphere stops pressure is stabilized. The

evolution over time of the pressure coefficient Cp and offset

Offp is analyzed:

p(z) = Cp z + Offp (45)

From Eq. 44, Cp should be ρ g and Offp should be 0. Figure 8

displays their evolution over time for the WCSPH solver. The

black line displays the theoretical value of the coefficients.

Each time the sphere is stopped a shock happens to the

fluid, which perturbates the presssure field. The pressure offset

and coefficient stabilize and converge through time to the

theoretical value. For comparison, Fig. 9 displays the evolution

of Cp and Offp through time for the ISPH solver.

The evolution of the coefficients with this solver is quite

different from the WCSPH solver. As in ISPH the incompress-

ibility is more strictly enforced and pressures are implicitly

solved, variations in pressure are directly dissipated and it

seems to be more reliable to handle shocks. However, the

WCSPH solver converges to a more accurate static state.

ISPH solver accuracy is directly linked to the incompressibility

factor ε; reducing ε, of course, yields to a larger amount

of computation. Further investigation could determine if the

selected ε parameter gives a sufficiently accurate pressure for

our purpose.

B. Algorithm efficiency: computation time

To evaluate the algorithm efficiency, computation times on

two different machines are compared. Results from a mid-

range computer and a higher-range computer are shown to

6

Fig. 7. Extrapolated pressure on the sphere with WCSPH (left) and ISPH (right).

Fig. 8. Evolution of the coefficient of Eq. 45 through time in the case of WCSPH.

Fig. 9. Evolution of the coefficient of Eq. 45 through time in the case of semi-implicit ISPH.

demonstrate the capability of these algorithms to be used for

real-time applications, even on standard PCs. Computations

are made using C++ multi-threaded on CPU with the OpenMP

API [16]. Our mid-range computer has an Intel Core i7

6700HQ CPU, 8 threads clocked at 2.6 GHz, 6 MB cache, 16

GB RAM and a 5400 rpm hard drive. Our high-range computer

has an Intel Core i7 5820K CPU, 12 threads clocked at 3.3

GHz, 15MB cache, 32 GB RAM and a SSD hard drive. Table

III sums up the average computation time for 1 s of simulated

time with the different solvers presented in this paper. As an

addition to our study with 13k particles, experiments were

made with a twice smaller particle size, which brings the scene

to 104k fluid particles.

The gap in computation time between the two boundary

handling methods is not big, at maximum +15% when using

ISPH, and as seen before, Shepard extrapolation leads to much

more accurate simulations, especially near the solid bound-

aries. More than 5 times less computation time is required with

the ISPH solver. Although the cost per time step is higher, it

is more than compensated by the much larger time-steps. A

faster CPU clock and more available threads are making the

simulations even faster reducing computation time per second

of simulated time by 37%. Even if the real-time objective is

not achieved yet, there is significant room for optimizing more,

7

TABLE III
MEAN COMPUTATION TIME (C. TIME) IN SECONDS, MEAN TIME STEP COUNT (T.STEP CNT) AND AVERAGE COMPUTATION TIME PER TIMESTEP FOR 1 s

OF SIMULATED TIME WITH THE DIFFERENT SOLVERS.

Mid-Range High-Range

Solver B. handling Fluid Part. C. time T. step cnt. Avg. C. time / T. step C. Time T. step cnt. Avg. C. time / T. step

WCSPH
Mirroring 13k 167,13 4000,00 0,042 121,24 4000,00 0,030

Shepard 13k 184,70 4000,00 0,046 108,66 4000,00 0,027

ISPH
Mirroring 13k 17,82 199,00 0,090 10,88 198,93 0,055

Shepard 13k 20,45 196,49 0,104 12,98 196,47 0,066

WCSPH Shepard 104k 1890,87 8000,00 0,236 1372,14 8000,00 0,172

ISPH Shepard 104k 314,32 402,70 0,781 185,66 402,68 0,461

and it could be ported to a massively parallel architecture, such

as a GPU.

C. Tests with a dynamic rigid body

A test was conducted with the sphere falling in water to

check whether a correct dynamic behavior can be observed.

At the beginning of the trial, the sphere is in the tank fully

submerged and water is still, then the sphere is let fall freely.

To compare our results, a dynamic model of the sphere,

neglecting velocity damping, would be:

v̇S =
ρS − ρ0

ρS (1 + Ca)
g (46)

With Ca the added mass values and S referring to the solid

sphere. Ca were chosen to be close to the experimental values

found in Gartner [3].

Figure 10 shows the acceleration of a sphere of density

ρS = 2000 kg.m−3 during one trial. Black curve and dotted

black curves represent theoretical trajectories with two differ-

ent added mass coefficients Ca.

Fig. 10. Acceleration of the sphere during test with ISPH. Density of the
sphere 2000 kg.m−3.

At the beginning of the trial, the sphere acceleration is

in the acceleration range obtained with the theoretical added

mass coefficient. If the submerged sphere is to move with a

speed above a certain threshold, a correct dynamic behavior

cannot be observed, because the pressure field becomes noisy,

see Fig. 11. This is very problematic for simulation of rigid

bodies with densities close to water density. This might be

due to the restriction of use of non-negative pressures, which

causes disorder in the particle distribution. The incorporation

of negative pressures combined with a procedure to prevent

Fig. 11. Caption of the fall of a sphere of density 2000 kg.m−3 with noisy
pressure field.

tensile instability and to impose the atmospheric pressure at

the free surface (see Section II-C) could constitute a more

reliable solution for dynamic simulations.

To improve the accuracy of the results and obtain a better

dynamic behavior, the use of the quintic B-spline kernel, that

can be found in Violeau [12], and a higher interaction radius

R, which allows more particles to be inside the neighborhood

of a particle, are investigated. The amount of neighbor particles

in the kernel, which is linked to the interaction radius choice,

is limited by certain values for each kernel function, beyond

which the so-called pairing instability may occur. This is

explained by Dehnen [17]. Figure 12 shows the velocity of

the sphere during time, with and without taking into account

velocity damping (dotted black and black curves) in the

dynamic model of the sphere (Gartner [3]) and choosing

Ca = 0.4 which seems to be a correct average value. Equation

47 presents the dynamic model of the sphere with velocity

damping.

v̇S =
ρS − ρ0

ρS (1 + Ca)
g +

ρ0CdAS

2mS (1 + Ca)
vS

2 (47)

With Cd = 0.4 the sphere drag coefficient and AS the

projected area of the sphere.

As can be seen before having the perturbations of the noisy

pressure field, the velocity of the sphere is very close to the

8

Fig. 12. Velocity of the sphere during fall with ISPH and Shepard extrapo-
lation. Density of the sphere 2000 kg.m−3.

analytical solution of the trajectory. This is very encouraging,

taking into account that the discretization is coarse and that at

the end of the trial, the sphere is very close to the bottom of the

tank, which adds some boundary effects. The behavior of the

sphere, with the same coarse discretization, is quite enhanced

with the quintic B-spline kernel.

Figure 13 shows the absolute error between the analytical

solution taking into account velocity damping and Ca = 0.4
and the two kernels.

Fig. 13. Difference with analytical velocity. Sphere fall simulation with ISPH
and Shepard extrapolation. Density of the sphere 2000 kg.m−3.

These results could be enhanced, of course, with a less

coarse discretization, but the fact that pressures are prevented

from being negative appears to be a limiting factor. This shall

be further investigated.

V. CONCLUSION AND FURTHER WORK

In this study, the possibility to achieve a real-time suffi-

ciently accurate fluid-solid coupling simulation has been in-

vestigated. First, the Shepard extrapolation boundary handling

method from Adami [11] has proven to be more accurate than

the mirroring method from Akinci [10] without causing a big

loss in term of computation efficiency. The mirroring tech-

nique shown in this paper is too inaccurate to be used for fluid-

solid dynamic simulation, further development on this tech-

nique will not be pursued as there is no real benefit in term of

computation time. Results with a moving linear least-squares

extrapolation, like the one from Band [18], which should give

more accurate results than Shepard extrapolation, could be

compared and the gain in accuracy versus computation cost

could be also discussed. Secondly, even if the ISPH algorithm

is less precise when considering a still water and static solid

objects, it has proven to be more efficient and stable to

dynamic perturbation than the WCSPH algorithm. Therefore,

it appears to be more suitable for real-time simulations with

dynamic fluid-solid coupling. Thirdly, a dynamic simulation

has been tried with the ISPH solver, which highlighted that

the impossibility for the solver to simulate negative values

of pressure (pressure below atmospheric pressure) leads to a

noisy pressure field. It was shown that the kernel choice and

number of neighbors within the kernel support are key param-

eters to improve the simulation accuracy. Further development

of the ISPH method will be conducted to allow negative

pressure without causing instability. This is expected to enable

a correct dynamic behavior of rigid bodies in the fluid. This

would enable the identification of hydrodynamic parameters

in simulation, and also the complete simulation of underwater

vehicles missions using the SPH method and without having

to determine hydrodynamic parameters beforehand.

VI. ACKNOWLEDGMENT

This work is a result of the collaboration of CENTROID

LAB Inc. (Los Angeles, USA) which develops the Neutrino

software and the Laboratoire COSMER (Toulon, France).

This work is also partly supported by a DGA RAPID grant

in partnership with SUBSEA-TECH (Marseille, France) and

ROBOPEC (Six-Fours-les-Plages, France) and by the CARTT

of Toulon Institute of Technology. (IUT Toulon, France)

REFERENCES

[1] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control: Vademecum de Navium Motu Contra Aquas Et de Motu
Gubernando. JOHN WILEY & SONS INC, 2011.

[2] P. Ridao, A. Tiano, A. El-Fakdi, M. Carreras, and A. Zirilli, “On the
identification of non-linear models of unmanned underwater vehicles,”
Control Engineering Practice, vol. 12, pp. 1483–1499, dec 2004.

[3] N. Gartner, M. Richier, and V. Hugel, “Hydrodynamics parameter
identification of submerged bodies: numerical methods comparison and
friction model analysis,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), (Madrid, Spain), Oct. 2018.

[4] D. Violeau and B. D. Rogers, “Smoothed particle hydrodynamics (SPH)
for free-surface flows: past, present and future,” Journal of Hydraulic
Research, vol. 54, pp. 1–26, jan 2016.

[5] J. Monaghan, “Simulating free surface flows with SPH,” Journal of
Computational Physics, vol. 110, pp. 399–406, feb 1994.

[6] S. J. Cummins and M. Rudman, “An SPH projection method,” Journal
of Computational Physics, vol. 152, pp. 584–607, jul 1999.

[7] S. Shao and E. Y. Lo, “Incompressible SPH method for simulating
newtonian and non-newtonian flows with a free surface,” Advances in
Water Resources, vol. 26, pp. 787–800, jul 2003.

[8] M. S. Shadloo, A. Zainali, M. Yildiz, and A. Suleman, “A robust weakly
compressible SPH method and its comparison with an incompressible
SPH,” International Journal for Numerical Methods in Engineering,
vol. 89, pp. 939–956, oct 2011.

[9] E.-S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, and P. Stansby,
“Comparisons of weakly compressible and truly incompressible algo-
rithms for the SPH mesh free particle method,” Journal of Computa-
tional Physics, vol. 227, pp. 8417–8436, sep 2008.

[10] N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, and M. Teschner, “Ver-
satile rigid-fluid coupling for incompressible SPH,” ACM Transactions
on Graphics, vol. 31, pp. 1–8, jul 2012.

[11] S. Adami, X. Hu, and N. Adams, “A generalized wall boundary con-
dition for smoothed particle hydrodynamics,” Journal of Computational
Physics, vol. 231, pp. 7057–7075, aug 2012.

[12] D. Violeau, Fluid Mechanics and the SPH Method: Theory and Appli-
cations. OXFORD UNIV PR, 2012.

9

[13] M. Ihmsen, N. Akinci, M. Becker, and M. Teschner, “A parallel
SPH implementation on multi-core CPUs,” Computer Graphics Forum,
vol. 30, pp. 99–112, nov 2010.

[14] J. Monaghan, “SPH without a tensile instability,” Journal of Computa-
tional Physics, vol. 159, pp. 290–311, apr 2000.

[15] R. Sampath, N. Montanari, N. Akinci, S. Prescott, and C. Smith, “Large-
scale solitary wave simulation with implicit incompressible sph,” Journal
of Ocean Engineering and Marine Energy, vol. 2, pp. 313–329, Aug
2016.

[16] L. Dagum and R. Menon, “OpenMP: an industry standard API for
shared-memory programming,” IEEE Computational Science and En-
gineering, vol. 5, no. 1, pp. 46–55, 1998.

[17] W. Dehnen and H. Aly, “Improving convergence in smoothed particle
hydrodynamics simulations without pairing instability,” Monthly Notices
of the Royal Astronomical Society, vol. 425, pp. 1068–1082, aug 2012.

[18] S. Band, C. Gissler, A. Peer, and M. Teschner, “Mls pressure extrapo-
lation for the boundary handling in divergence-free sph,” 2018.

APPENDIX

A. Explicit WCSPH algorithm

Algorithm 1 WCSPH Solver

1: for each particle a ∈ F do
2: Compute domains Fa and Sa

3: Compute S∗, ∀a ∈ F (Sa ⊂ S∗)
4: Compute δt with CFL conditions

5: for each particle a ∈ F do
6: Compute ∀b ∈ Fa ∪ Sa,∇Wab = W ′

abeab
7: Compute ρa (Eq. 4)

8: Compute pa (Eq. 15)

9: Compute Θa = pa/ρ2
a

10: if using Shepard extrapolation then
11: for each particle s ∈ S∗ do
12: Extrapolate ρs and vs (Eq. 29 & Eq. 31)

13: for each particle a ∈ F do
14: Compute non-pressure acceleration v̇ �P

a (Eq. 17)

15: if using Shepard extrapolation then
16: for each particle s ∈ S∗ do
17: Compute ps (Eq. 30) and ρs using reverse (Eq. 15)

18: Compute Θs = ps/ρ2
s

19: for each solid S do
20: Compute F P

s and F V
s depending on Shepard extrap-

olation or Mirroring

21: for each particle a ∈ F do
22: Compute v̇a depending on Shepard extrapolation

(Eq. 18) or Mirroring (Eq. 41)

23: Compute va = va + δtv̇a

24: Compute ra = ra + δtva

B. Semi-Implicit ISPH algorithm

Algorithm 2 ISPH Algorithm

1: for each particle a ∈ F do
2: Compute domains Fa and Sa

3: Compute S∗, ∀a ∈ F (Sa ⊂ S∗)
4: Compute δt with CFL conditions

5: for each particle a ∈ F do

6: Compute ∀b ∈ Fa ∪ Sa,∇Wab = W ′
abeab

7: Compute ρa (Eq. 4)

8: if using Shepard extrapolation then
9: for each particle s ∈ S∗ do

10: Extrapolate ρs and vs (Eq. 29 & Eq. 31)

11: for each particle a ∈ F do
12: Compute non-pressure acceleration v̇ �P

a (Eq. 17)

13: for each particle a ∈ F do
14: v �P

a = va +Δt v̇ �P
a

15: if using Shepard extrapolation then
16: for each particle s ∈ S∗ do
17: Extrapolate pressure ps (Eq. 30)

18: Compute (pa,Θa,Σa), ∀a ∈ F and (ps,Θs), ∀s ∈ S∗

with alg. 3

19: for each solid S do
20: Compute F P

s and F V
s depending on Shepard extrap-

olation or Mirroring

21: for each particle a ∈ F do
22: Compute Γa or ΓMir

a

23: Compute v̇a depending on Shepard extrapolation

(Eq. 18) or Mirroring (Eq. 41)

24: Compute va = va + δtv̇a

25: Compute ra = ra + δtva

Algorithm 3 ISPH Pressure Solver Algorithm

1: for each particle a ∈ F do
2: Compute ρ∗a = ρ �Pa (Eq. 19)

3: ba =
ρ0−ρ �P

a

δt2

4: Compute ΣF
a Σ

F,2
a ,ΣS

a ,Σa

5: Compute Da depending on Shepard extrapolation

(Eq. 23) or Mirroring (Eq. 42)

6: pa = Ω pa, Ω < 1 (Under relaxed first guess)

7: Compute Θa

8: it = 0

9: while
avg
a∈F

(max(ρ∗
a,ρ0))−ρ0

ρ0
> ε and itmin < it do

10: for each particle a ∈ F do
11: Compute Γa or ΓMir

a

12: for each particle a ∈ F do
13: Compute Ra · p depending on Shepard extrapola-

tion (Eq. 24) or Mirroring (Eq. 43)

14: for each particle a ∈ F do
15: Compute pa (Eq. 26)

16: Compute ρ∗a (Eq. 27)

17: ba =
ρ0−ρ∗

a

Δt2

18: if using Shepard extrapolation then
19: for each particle s ∈ S∗ do
20: Extrapolate pressure ps (Eq. 30)

21: it = it+ 1

10

