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Robust Interval Observer for Systems Described by the
Fornasini-Marchesini Second Model

Thomas Chevet, Member, IEEE , Andreas Rauh, Thach Ngoc Dinh, Julien Marzat, and Tarek Raı̈ssi,
Senior Member, IEEE

Abstract— This letter proposes a novel robust interval
observer for a two-dimensional (treated as a synonym for
a double-indexed system) linear time-invariant discrete-
time system described by the Fornasini-Marchesini second
model. This system is subject to unknown but bounded
state disturbances and measurement noise. Built on recent
interval estimation strategies designed for one-dimensional
systems, the proposed observer is based on the introduc-
tion of weighting matrices which provide additional degrees
of freedom in comparison with the classical structure re-
lying on a change of coordinates. Linear matrix inequality
conditions for the exponential stability and peak-to-peak
performance of a two-dimensional system described by the
Fornasini-Marchesini second model are then proposed, and
applied to the design of a robust interval observer. Numer-
ical simulation results are provided to show the efficiency
of the proposed estimation strategy.

Index Terms— Fornasini-Marchesini second model, Inter-
val observer, Robust observer, Two-dimensional systems,
Discrete-time systems

I. INTRODUCTION

S INCE their introduction in the second half of the nine-
teen seventies, two-dimensional1 (2D) systems have been

widely studied [1]. Such systems are described by different
state-space models such as the ones introduced by Roesser [2],
Fornasini and Marchesini [3], [4] or Kurek [5]. 2D systems
can be used to represent many physical processes [6] such as
image processing [2], [7], repetitive industrial processes [8],
spatio-temporal systems of which the behavior is governed
by hyperbolic partial differential equations [9] or the task
of iterative learning control synthesis [10]. Extensive studies
of 2D system properties such as stability, controllability,
observability, etc. have been conducted [1], [6]. Finally, several
control [7], [8], [11] and estimation [7], [12]–[16] strategies
have been investigated.

In the one-dimensional, i.e., single-indexed, case, set-based
observers have been developed to compute sets guaranteed to
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1Following the majority of the literature on the subject, the name “two-
dimensional system” is used here to refer to double-indexed systems.

contain the state vector when a system is subject to bounded
disturbances and measurement noise [17]–[19]. In this context,
interval observers have been widely studied [20]–[23]. They
consist in the design of two sub-observers computing respec-
tively an upper and a lower bound to the state vector. Often, the
design of such observers is then based on combining a change
of coordinates and gain tuning methods to ensure that the
estimation error system is positive [24] and stable. However,
the change of coordinates heavily impacts the performance of
interval observers [25]. To overcome this issue, the work [22]
introduces the TNL approach (named after the notation for
the different matrices used) employing weighting matrices in
addition to the traditional observer gain. With these additional
degrees of freedom, it is easier to ensure that the error system
becomes positive without requiring a change of coordinates.

To the authors’ knowledge, interval observers for partial
differential equations have been investigated [26], [27], but
no interval observers for 2D systems have been proposed.
Therefore, this letter proposes to build a robust interval
observer for a 2D discrete-time linear time-invariant (LTI)
system described by the Fornasini-Marchesini second (FM-
II) model (defined in Section II.B). The definition of such an
observer, derived from [28] where the one-dimensional case is
studied, is based on the exponential stability of the estimation
error dynamics and the peak-to-peak performance of these
estimation errors. In [14], a filter for stochastic FM-II systems
that is asymptotically stable and peak-to-peak norm bounded
is introduced. Therefore, the proposed interval observer can be
based on the pointwise observer of [14]. However, it has been
shown in [29] that for FM-II systems, exponential stability
implies asymptotic stability while the converse is not true. It
is therefore necessary to ensure that the conditions proposed
in [14] also entail exponential stability. To do so, conditions
for the exponential stability of a 2D nonlinear FM-II system,
which requires the boundary conditions of the system to be
bounded by an exponentially decreasing function, have been
given in [30]. In the meantime, [31] proposed a definition and
a condition for exponential stability of a 2D system described
by the Roesser model which can be adapted, as shown by [29],
to 2D systems described by the FM-II model. This condition
requires that the boundary conditions of the system have a
finite infinity norm, thus relaxing the requirement of [30].

Based on what precedes, the contribution of the present
letter is twofold: (i) a Lyapunov function-based condition for
the exponential stability and peak-to-peak performance of a
2D LTI discrete-time system described by the FM-II model
with boundary conditions having finite infinity norm; (ii) the



definition and construction of a novel robust interval observer
for such a system.

The remainder of this letter is organized as follows. General
prerequisites and assumptions on the considered model are
presented in Section II. In Section III, the proposed structure
and design procedure for the interval observer as well as the
proposed stability and boundedness conditions are introduced.
Section IV proposes numerical simulation results, which assess
the efficiency of the proposed method. Finally, Section V
gathers concluding remarks and perspectives.

II. PREREQUISITES AND PROBLEM FORMULATION

A. Notations
The set of nonnegative integers, real numbers, and nonneg-

ative real numbers are denoted by N, R, and R+, respectively.
The matrices In and 0 are respectively the identity matrix of
size n ∈ N and the matrix of appropriate dimension filled
with zeros. The matrices A> and A† denote respectively the
transpose and the Moore-Penrose pseudo-inverse of a matrix
A ∈ Rn×m. Any inequality involving vectors or matrices
has to be understood elementwise. The positive or negative
definiteness (resp. semi-definiteness) of a matrix A ∈ Rn×n
are denoted by A � 0 and A ≺ 0 (resp. A � 0 and A � 0),
respectively. If x : N× N→ Rn is a 2D signal, its Euclidean
norm is ‖x(k, l)‖ =

√
x(k, l)>x(k, l) and its L∞ norm is

the supremum over the two indices of its Euclidean norm,
i.e., ‖x‖∞ = sup {‖x(k, l)‖|k, l ∈ N}. The set of all signals
x : N × N → Rn satisfying ‖x‖∞ < ∞ is denoted by Ln∞.
Finally, ? is a placeholder denoting the transpose of a term
placed symmetrically in a matrix.

B. Results on positive 2D systems
Any matrix A ∈ Rn×m can be decomposed into two

nonnegative matrices A+ = max {0, A} ≥ 0 (where the
maximum is understood elementwise) and A− = A+−A ≥ 0.
The matrix A is called nonnegative if A− = 0.

Lemma 1 ([32]). Let x ∈ Rm be a vector satisfying x ≤
x ≤ x, with x, x ∈ Rm. Let A ∈ Rn×m be a constant matrix.
Then,

A+x−A−x ≤ Ax ≤ A+x−A−x.

Now, consider a 2D LTI discrete-time system described by
the FM-II model,

x(k + 1, l + 1) = F1x(k, l + 1) + F2x(k + 1, l)

+G1υ(k, l + 1) +G2υ(k + 1, l)

y(k, l) = Hx(k, l) + Jυ(k, l),
(1)

where x ∈ Rn, υ ∈ Rm, y ∈ Rp, and F1, F2, G1, G2, H, J
are constant matrices of appropriate dimensions.

Definition 1 ([24]). The system (1) is called internally positive
if, for all boundary conditions x(k, 0), x(0, l) ∈ Rn+ and
sequences of inputs υ(k, l) ∈ Rm+ , with k, l ∈ N, x(k, l) ∈ Rn+
and y(k, l) ∈ Rp+, ∀k, l ∈ N.

Lemma 2 ([24]). The system (1) is internally positive if
F1, F2 ∈ Rn×n+ , H ∈ Rp×n+ , and x(k, 0), x(0, l) ∈ Rn+,
G1υ(k, l), G2υ(k, l) ∈ Rn+, Jυ(k, l) ∈ Rp+, ∀k, l ∈ N.

C. Problem formulation

Consider a 2D LTI discrete-time system described by the
following FM-II model affected by disturbances and measure-
ment noise

x(k + 1, l + 1) = A1x(k, l + 1) +A2x(k + 1, l)

+B1u(k, l + 1) +B2u(k + 1, l)

+D1w(k, l + 1) +D2w(k + 1, l)

y(k, l) = Cx(k, l) + Ev(k, l),
(2)

where x ∈ Rnx , y ∈ Rny , u ∈ Rnu , w ∈ Rnw ,
and v ∈ Rnv are respectively the state, output, input,
disturbance, and measurement noise vectors. The matrices
A1, A2, B1, B2, C,D1, D2, and E have appropriate dimen-
sions. The system (2) admits for boundary conditions

x(k, 0) = ψ1(k), k ∈ N, x(0, l) = ψ2(l), l ∈ N. (3)

Assumption 1. The boundary conditions ψ1 and ψ2, the
disturbance w, and the measurement noise v are unknown
but bounded and satisfy ψ

1
(k) ≤ ψ1(k) ≤ ψ1(k), ψ

2
(l) ≤

ψ2(l) ≤ ψ2(l), w(k, l) ≤ w(k, l) ≤ w(k, l), and v(k, l) ≤
v(k, l) ≤ v(k, l), ∀k, l ∈ N, with ψ

1
, ψ1, ψ2

, ψ2 ∈ Lnx∞ ,
w,w ∈ Lnw∞ , and v, v ∈ Lnv∞ .

This letter’s purpose is to define a new interval observer
based on the TNL approach of [22]. This interval observer
provides two signals x, x : N×N→ Rnx satisfying x(k, l) ≤
x(k, l) ≤ x(k, l), ∀k, l ∈ N. In addition, the proposed observer
is designed so that the ratio of the norm of the estimation
error to the norm of the disturbances and measurement noise
is lower than a prescribed value γ > 0.

III. MAIN RESULTS

This section introduces the proposed framer enclosing the
state of a 2D system described by the FM-II model subject
to disturbances and measurement noise. To compute the ob-
server’s gains and to guarantee that the framer is a robust
interval observer for the system (2), a linear matrix inequality-
based design strategy is provided.

A. Stability and robustness for 2D systems described by
the Fornasini-Marchesini second model

In the one-dimensional case, the work [28] defines an
interval observer as two signals x : N → Rnx and x : N →
Rnx satisfying x ≤ x ≤ x at all time so that the upper and
lower estimation errors e = x−x and e = x−x are input-to-
state stable. These conditions can be adapted to the 2D case.

Definition 2. Let x : N×N→ Rnx and x : N×N→ Rnx be
two 2D signals. The pair (x, x) is a robust interval observer
for system (2) with boundary conditions (3) if:
(i) (x, x) is a framer for system (2), i.e., x(k, l) ≤ x(k, l) ≤

x(k, l), ∀k, l ∈ N;
(ii) the upper and lower estimation errors e = x − x and

e = x − x are exponentially stable for zero input,
having the peak-to-peak norm bound γ > 0, under zero
boundary conditions, i.e., ‖e‖∞ ≤ γ

(∥∥φ∥∥∞ + ‖φ‖∞
)



and ‖e‖∞ ≤ γ
(∥∥φ∥∥∞ + ‖φ‖∞

)
where φ is the total

disturbance acting on (2), satisfying φ(k, l) ≤ φ(k, l) ≤
φ(k, l), ∀k, l ∈ N.

As stated in the introduction, in most works dealing with
control or estimation for 2D systems described by the FM-
II model [14], only asymptotic stability requirements are
made. However, as shown in [29], for the FM-II model with
boundary conditions given as in (3), exponential stability
implies asymptotic stability while the converse is not true.
In addition, ensuring exponential stability gives some control
over the convergence speed of the interval observer. Therefore,
it is necessary to obtain conditions guaranteeing exponential
stability of a 2D system described by the FM-II model to
propose an interval observer for such a system.

A condition for exponential stability of systems described
by the Roesser model is proposed in [31]. Then, [29] shows
that the definition of exponential stability given in [31] can be
adapted to systems described by the FM-II model. Therefore,
based on the asymptotically stable peak-to-peak norm bounded
filter introduced in [14], the following theorem gives condi-
tions for exponential stability and peak-to-peak performance
of 2D systems described by the FM-II model.

Theorem 1. If there exist scalars α ∈ (0, 1), γ ≥ 0, and
µ ≥ 0, with γ − µ ≥ 0, and two matrices P ∈ Rn×n and
Q ∈ Rn×n, with P = P> � 0, Q = Q> � 0, and P−Q � 0,
such that

V0(k + 1, l + 1) ≤ (1− α)(V1(k, l + 1) + V2(k + 1, l))

+
1

2
µ
(
‖υ(k, l + 1)‖2 + ‖υ(k + 1, l)‖2

)
, (4)

where V0(k, l) = x(k, l)>Px(k, l), V1(k, l) = x(k, l)>(P −
Q)x(k, l), and V2(k, l) = x(k, l)>Qx(k, l), then system (1)
with boundary conditions (3) is exponentially stable for zero
input, i.e., for υ ≡ 0. In addition to condition (4), if

1

2
‖x(k, l + 1)‖2 +

1

2
‖x(k + 1, l)‖2

≤ γ
(
α2
(
V1(k, l + 1) + V2(k + 1, l)

)
+

1

2
(γ − µ)

(
‖υ(k, l + 1)‖2 + ‖υ(k + 1, l)‖2

))
, (5)

system (1) satisfies ‖x‖∞ ≤ γ ‖υ‖∞ under zero boundary
conditions.

Proof. Since V0(k, l) = V1(k, l) + V2(k, l), inequality (4) can
be rewritten, when υ ≡ 0, as

V1(k + 1, l + 1) ≤ (1− α)V1(k, l + 1)

+ (1− α)V2(k + 1, l)− V2(k + 1, l + 1), (6)

which implies, as in [31], by recursively bounding V1(i, l+1),
with 0 < i ≤ k, on the right hand side of (6)

V1(k + 1, l + 1) ≤ (1− α)k+1V1(0, l + 1)

+ (1− α)W2(k, l)−W2(k, l + 1), (7)

where W2(k, l) =
∑k
i=0(1 − α)k−iV2(i + 1, l). The function

W2(k, j), with 0 < j ≤ l, can also be recursively bounded in

the same way as V1 so that

W1(k + 1, l) +W2(k, l + 1)

≤ (1− α)k+1W1(0, l) + (1− α)l+1W2(k, 0),

where W1(k, l) =
∑l
j=0(1 − α)l−jV1(k, j + 1). The term

W1(k + 1, l) + W2(k, l + 1) is a finite sum of nonnegative
terms, implying that it is greater than or equal to V1(k+1, l+
1) + V2(k + 1, l+ 1) = V0(k + 1, l+ 1). Therefore, factoring
on the right hand side by (1− α)2 and (1− α)k+l+1,

x(k + 1, l + 1)>Px(k + 1, l + 1)

≤ (1− α)k+l+3

(
k∑
i=0

V2(i+ 1, 0)

(1− α)i+2
+

l∑
j=0

V1(0, j + 1)

(1− α)j+2

)
.

Let β be the largest eigenvalue of diag(P−Q,Q) and δ be the
smallest eigenvalue of P . Remembering that 0 < 1 − α < 1,
the above inequality then implies

‖x(k + 1, l + 1)‖2

≤ β

δ
(1− α)k+l

(
k+1∑
i=1

‖ψ1(i)‖2

(1− α)i+1
+

l+1∑
j=1

‖ψ2(j)‖2

(1− α)j+1

)

≤ β

δ
(1− α)k+l

(
k+1∑
i=1

‖ψ1(i)‖
√

1− αi+1
+

l+1∑
j=1

‖ψ2(j)‖
√

1− αj+1

)2

so that

‖x(k, l)‖ ≤Mqk+l

(
k∑
i=1

‖ψ1(i)‖
qi+1

+

l∑
j=1

‖ψ2(j)‖
qj+1

)
,

where M =
√
β/δ and q =

√
1− α, which is the definition

of exponential stability for a 2D FM-II system [29].
Applying the previous recursive bounding procedure with

non-zero input and remembering that ‖υ(k, l + 1)‖2 +
‖υ(k + 1, l)‖2 ≤ 2 ‖υ‖2∞,

W1(k + 1, l) +W2(k, l + 1)

≤ (1− α)k+1W1(0, l) + (1− α)l+1W2(k, 0)

+ µ

k∑
i=0

l∑
j=0

(1− α)k−i(1− α)l−j ‖υ‖2∞ ,

or, since 0 < 1− α < 1,

V1(k + 1, l + 1) + V2(k + 1, l + 1) ≤ µ

α2
‖υ‖2∞

+ (1− α)k+1W1(0, l) + (1− α)l+1W2(k, 0). (8)

Using (8) to bound the right hand side of (5),

‖x(k + 1, l + 1)‖2 ≤ γµ ‖υ‖2∞ + γ(γ − µ) ‖υ‖2∞
+ γα2((1− α)k+1W1(0, l) + (1− α)l+1W2(k, 0)). (9)

With zero boundary conditions, inequality (9) is equivalent to
‖x(k, l)‖ ≤ γ ‖υ‖∞.

Remark 1. With non-zero boundary condition, the state vec-
tor’s norm is bounded over time by γ ‖υ‖∞ plus a vanishing
term depending on the boundary conditions. Therefore, the set
{x ∈ Rn|‖x‖ ≤ γ ‖υ‖∞} is an attractor for system (1).



B. Robust interval observer design

Inspired by the work of [22], the proposed structure for the
framer of system (2) is

x(k + 1, l + 1) = (TA1 − L1C)x(k, l + 1)

+ (TA2 − L2C)x(k + 1, l)

+ TB1u(k, l + 1) + TB2u(k + 1, l)

+ L1y(k, l + 1) + L2y(k + 1, l)

+Ny(k + 1, l + 1) + φ(k, l)

x(k + 1, l + 1) = (TA1 − L1C)x(k, l + 1)

+ (TA2 − L2C)x(k + 1, l)

+ TB1u(k, l + 1) + TB2u(k + 1, l)

+ L1y(k, l + 1) + L2y(k + 1, l)

+Ny(k + 1, l + 1) + φ(k, l),

(10)

where φ(k, l) and φ(k, l) are

φ(k, l) = (TD1)+w(k, l + 1)− (TD1)−w(k, l + 1)

+ (TD2)+w(k + 1, l)− (TD2)−w(k + 1, l)

− (L1E)+v(k, l + 1) + (L1E)−v(k, l + 1)

− (L2E)+v(k + 1, l) + (L2E)−v(k + 1, l)

− (NE)+v(k + 1, l + 1) + (NE)−v(k + 1, l + 1)

φ(k, l) = (TD1)+w(k, l + 1)− (TD1)−w(k, l + 1)

+ (TD2)+w(k + 1, l)− (TD2)−w(k + 1, l)

− (L1E)+v(k, l + 1) + (L1E)−v(k, l + 1)

− (L2E)+v(k + 1, l) + (L2E)−v(k + 1, l)

− (NE)+v(k + 1, l + 1) + (NE)−v(k + 1, l + 1),
(11)

and T ∈ Rnx×nx , N ∈ Rnx×ny , L1 ∈ Rnx×ny , and L2 ∈
Rnx×ny are design parameters of the framer, with T and N
satisfying

T +NC = Inx . (12)

Theorem 2. Let Assumption 1 hold. If there exist T ∈ Rnx×nx
and L1, L2 ∈ Rnx×ny such that TA1−L1C and TA2−L2C
are nonnegative matrices, then

x(k, l) ≤ x(k, l) ≤ x(k, l), ∀k, l ∈ N. (13)

Proof. Let e(k, l) = x(k, l) − x(k, l) and e(k, l) = x(k, l) −
x(k, l) be the upper and lower estimation errors. Let also

φ(k, l) = TD1w(k, l + 1) + TD2w(k + 1, l)

−L1Ev(k, l+1)−L2Ev(k+1, l)−NEv(k+1, l+1)

be the total disturbance. Then,

e(k + 1, l + 1) = (TA1 − L1C)e(k, l + 1)

+ (TA2 − L2C)e(k + 1, l) + φ(k, l)− φ(k, l)

and, by Lemma 1, φ(k, l) ≥ φ(k, l). Therefore, by Lemma 2,
e(k, l) ≥ 0, ∀k, l ∈ N, if TA1 − L1C and TA2 − L2C are
nonnegative matrices. With the same reasoning, e(k, l) ≥ 0,
∀k, l ∈ N, if TA1 − L1C and TA2 − L2C are nonnegative
matrices.

As noted in [22], the matrices T and N provide additional
degrees of freedom in the interval observer’s tuning. Indeed, it
might be difficult to obtain matrices Li, with i ∈ {1, 2}, such
that the matrices Ai − LiC are both nonnegative and stable
[21]. The matrix T relaxes this difficulty while allowing, in
conjuction with the matrix N , a better performance tuning.

Then, from the results of Theorem 1 and Theorem 2, it is
possible to derive linear matrix inequality conditions to ensure
that (10) is an interval observer according to Definition 2. First,
the following lemma recalls the structure of the matrices T and
N .

Lemma 3 ([33]). Given three matrices X ∈ Rn×m, Y ∈
Rm×p, and Z ∈ Rn×p, with rankY = p, the general solution
X of the equation XY = Z is

X = ZY † + Ξ
(
Im − Y Y †

)
where Ξ ∈ Rn×m is an arbitrary matrix.

With Lemma 3, T and N satisfying (12) are

T = Θ†λ1 + ΞΥλ1, N = Θ†λ2 + ΞΥλ2, (14)

where Ξ ∈ Rnx×(nx+ny) is an arbitrary matrix, Θ> =[
Inx C>

]
, Υ = Inx+ny − ΘΘ†, λ>1 =

[
Inx 0

]
, λ>2 =[

0 Iny
]
.

Theorem 3. Let Assumption 1 hold. If there exist scalars α ∈
(0, 1), γ ≥ 0, and µ ≥ 0 and matrices P ∈ Rnx×nx diagonal,
Q ∈ Rnx×nx diagonal, X1 ∈ Rnx×ny , X2 ∈ Rnx×ny , and
Y ∈ Rnx×(nx+ny), with P,Q, P −Q � 0, such that

S ≥ 0, (15)(α− 1)∆ ? ?
0 −µInφ/2 ?
S Φ −P

 � 0, (16)

α2∆ ? ?
0 (γ − µ)Inφ/2 ?
I2nx 0 2γI2nx

 � 0, (17)

where S =
[
S1 S2

]
, S1 = Πλ1A1 −X1C, S2 = Πλ1A2 −

X2C, with Π = PΘ† + YΥ, ∆ = diag(P − Q,Q), nφ =
2nw + 3nv + nx, and

Φ =
[
Πλ1D1 Πλ1D2 −X1E −X2E −Πλ2E − P

]
,

then (10) is a robust interval observer for system (1) with
L1 = P−1X1, L2 = P−1X2, and Ξ = P−1Y .

Proof. Since P � 0 and is diagonal, all its diagonal elements
are strictly positive. Defining X1 = PL1, X2 = PL2, and
Y = PΞ, condition (15) is equivalent to the positivity of
TA1 − L1C and TA2 − L2C.

Moreover, applying the Schur complement to (16) and (17),
pre-multiplying by z(k, l)> and post-multiplying by z(k, l),
where

z(k, l)> =
[
e(k, l + 1)> e(k + 1, l)> w(k, l + 1)>

w(k + 1, l)> v(k, l + 1)> v(k + 1, l)>

v(k + 1, l + 1)> φ(k, l)>
]
,



yields conditions (4) and (5) for the upper estimation error,
where the terms x and G1υ(k, l+1)+G2υ(k+1, l) appearing
in (1) are replaced by e and φ(k, l) − φ(k, l), respectively.
Then, applying the Schur complement to (16) and (17), pre-
multiplying by z(k, l)> and post-multiplying by z(k, l), where

z(k, l)> =
[
e(k, l + 1)> e(k + 1, l)> w(k, l + 1)>

w(k + 1, l)> v(k, l + 1)> v(k + 1, l)>

v(k + 1, l + 1)> φ(k, l)>
]
,

yields conditions (4) and (5) for the lower estimation error,
where the terms x and G1υ(k, l+1)+G2υ(k+1, l) appearing
in (1) are replaced by e and φ(k, l)− φ(k, l), respectively.

Therefore, with conditions (15)–(17), the upper and lower
estimation errors satisfy the conditions of Definition 2.

IV. NUMERICAL SIMULATION

Consider a numerical example of system (2) adapted from
[34], with

A1 =

[
1 −2.5

0.1 0

]
, A2 =

[
0 0.1
0 0.1

]
, B1 =

[
0.6
0.3

]
,

D1 =

[
0.1 −0.4
0.8 −0.2

]
, D2 =

[
0.2 0.6
−0.1 −0.5

]
, B2 =

[
1.2
0

]
,

C =
[
−0.5 0.2

]
, E = 0.8,

with the boundary conditions

ψ1(k) =

[
cos(k) sin(0.3k)

sin(0.5k)

]
, ψ2(l) =

[
cos(0.5l)

sin(l) cos(0.3l)

]
.

For simulation, the input signal is u(k, l) =
0.5 sin(0.01k) cos(0.01l). Moreover, the disturbance
is a uniformly distributed random vector satisfying
w ≤ w(k, l) ≤ w, with w = −w = 0.05 ·

[
1 1

]>
.

Finally, the measurement noise is a uniformly distributed
random scalar satisfying v ≤ v(k, l) ≤ v, with v = −v = 0.1.

The observer is initialized with ψ1 = ψ2 = −ψ
1

=

−ψ
2

= 3 ·
[
1 1

]>
. In addition, α = 0.9 is chosen. To obtain

γ, T,N,L1, and L2, an optimization problem minimizing γ
under the constraints (15)–(17) is solved using CVX [35],
yielding γ = µ = 3.1689 and

T =

[
0.0076 0.3970
0.0189 0.9924

]
, N =

[
−1.9849
0.0378

]
,

L1 =

[
−0.0945
−0.2363

]
, L2 =

[
0.0272
0.0604

]
.

For readability, Fig. 1 and 2 only present the evolution of
the state variables for selected values of l and k, respectively.
These figures show the efficiency of the proposed interval
observer. Indeed, the interval defined by x and x tightens in
a small number of steps, whether it be along the direction
k or the direction l. In addition, the state remains contained
between the bounds x and x.

This can also be seen in Fig. 3, showing the surface plots of
e1 and e1, respectively. Both the lower estimation error e1(k, l)
and the upper estimation error e1(k, l) remain positive for all
values of k and l, which is the desired behavior. In addition, in
less than five steps along both directions, the estimation errors
converge to bounded values.
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Fig. 1. First state variable and guaranteed bounds along the direction
k for the two values l = 1 and l = 250.
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Fig. 2. Second state variable and guaranteed bounds along the
direction l for the two values k = 1 and k = 150.
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Fig. 3. Lower (a) and upper (b) estimation errors for the first state
variable.

V. CONCLUSIONS AND FUTURE WORK

This letter proposes a novel interval observer for two-
dimensional systems described by the Fornasini-Marchesini
second model. Building on existing interval observers for one-
dimensional systems, the observer includes weighting matri-



ces, in addition to the gains, in its design. These additional
degrees of freedom are tuned along with the gain matrices
to enforce the positivity and stability of the estimation errors
and to attenuate the effect of the disturbances by considering
a peak-to-peak norm criterion. The design parameters of the
interval observer are then obtained by solving an optimiza-
tion problem under linear matrix inequality constraints. The
efficiency of the proposed estimation method is assessed by
numerical simulation results. In future work, this interval
observer can be adapted to other types of two-dimensional
systems, such as the ones described by the Roesser model
or the Fornasini-Marchesini first model. In addition, the pro-
posed observer can be employed to evaluate the robustness
of given control strategies against parameter uncertainties.
Finally, interval-based (and more generally set-based) fault
detection strategies for two-dimensional systems based on such
an interval observer will be studied.
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[17] J.-L. Gouzé, A. Rapaport, and M. Z. Hadj-Sadok, “Interval observers
for uncertain biological systems,” Ecol. Modell., vol. 133, no. 1-2, pp.
45–56, 2000.

[18] C. Combastel, “A state bounding observer based on zonotopes,” in Proc.
IEEE ECC, 2003, pp. 2589–2594.

[19] T. Alamo, J. M. Bravo, and E. F. Camacho, “Guarateed state estimation
by zonotopes,” Automatica, vol. 41, no. 6, pp. 1035–1043, 2005.

[20] F. Mazenc and O. Bernard, “Interval observers for linear time-invariant
systems with disturbances,” Automatica, vol. 47, no. 1, pp. 140–147,
2011.

[21] T. Raı̈ssi, D. Efimov, and A. Zolghadri, “Interval state estimation for a
class of nonlinear systems,” IEEE Trans. Autom. Control, vol. 57, no. 1,
pp. 260–265, 2012.

[22] Z. Wang, C.-C. Lim, and Y. Shen, “Interval observer design for uncertain
discrete-time linear systems,” Syst. Control Lett., vol. 116, pp. 41–46,
2018.

[23] Z. Wang, H. Yin, T. N. Dinh, and T. Raı̈ssi, “Interval estimation based on
the reduced-order observer and peak-to-peak analysis,” Int. J. Control,
2021.

[24] T. Kaczorek, Positive 1D and 2D Systems, ser. Communications and
Control Engineering. London, United Kingdom: Springer, 2002.

[25] E. Chambon, L. Burlion, and P. Apkarian, “Overview of linear time-
invariant interval observer design: towards a non-smooth optimisation-
based approach,” IET Control Theory Appl., vol. 10, no. 11, pp. 1258–
1268, 2016.

[26] T. Kharkovskaya, D. Efimov, A. Polyakov, and J.-P. Richard, “Design
of interval observers and controls for PDEs using finite-element approx-
imations,” Automatica, vol. 93, pp. 302–310, 2018.

[27] T. Kharkovskaia, D. Efimov, E. Fridman, A. Polyakov, and J.-P. Richard,
“Interval observer design and control of uncertain non-homogeneous
heat equations,” Automatica, vol. 111, p. 108595, 2020.

[28] T. N. Dinh, G. Marouani, T. Raı̈ssi, Z. Wang, and H. Messaoud,
“Optimal interval observers for discrete-time linear switched systems,”
Int. J. Control, vol. 93, no. 11, pp. 2613–2621, 2020.

[29] O. Bachelier, T. Cluzeau, R. David, F. J. Silva Álvarez, N. Yeganefar, and
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