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Abstract

Architected cellular materials (ACMs) with a periodic micro-structure are often em-
ployed in high-performance components obtained through additive manufacturing (AM)
technologies due to their high specific strength and stiffness. ACMs are also used in ther-
mal applications, where their high surface-to-mass ratio can be conveniently exploited to
enhance heat transfer. In this work, a numerical approach to predict the effective ther-
mal conductivity (ETC) of ACMs obtained by AM is proposed. The model is based on
a general numerical homogenisation scheme and an explicit description of the represen-
tative volume element (RVE) of the ACM. Numerical analyses have been conducted on
31 RVEs geometries: results show that the macroscopic ETC of ACMs strongly depends
on the relative density and the geometrical features of the RVE. Moreover, starting from
the database of RVEs geometries, seven configurations are chosen to design graded ACMs
through a computer-aided design-compatible topology optimisation method based on non-
uniform rational basis spline hyper-surfaces to represent the pseudo-density field, and on
the well-known solid isotropic material with penalisation (SIMP) approach. In particular,
the penalisation law used in the SIMP method is replaced by a physically-based penali-
sation scheme obtained by interpolating the results of the homogenisation for each RVE
topology and a suitable post-processing phase is developed to recover the distribution of
the graded ACM over the structure from the results of the optimisation process. The
effectiveness of the proposed approach is shown on 2D and 3D benchmark problems taken
from the literature.
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Acronyms

ACM architected cellular material
AM additive manufacturing
BK-3D 3D benchmark problem
BK-2D 2D benchmark problem
B-spline basis spline
BC boundary condition
CAD computer aided design
CNLPP constrained non-linear program-

ming problem
CP control point
DOF degree of freedom
ETC effective thermal conductivity
FE finite element
GACM graded architected cellular mate-

rial

GCMMA globally-convergent method of
moving asymptotes

LPBF laser powder bed fusion
NURBS non-uniform rational basis

spline
PBC periodic boundary condition
RVE representative volume element
SANTO SIMP and NURBS for topology

optimisation
SEHM strain energy-based homogenisa-

tion method
SIMP solid isotropic material with penal-

isation
TO topology optimisation
TPMS triply periodic minimal surface

1. Introduction

Laser powder bed fusion (LPBF) allows producing efficient solutions for heat transfer
applications. Components operating at high temperatures require efficient dissipation of
thermal energy to prevent failure. Whilst the demand on cooling systems is increasing
in the pursuit of component performance gains, the package size available for heat-sinks
and tools is decreasing due to lightness-oriented requirements. To this end, architected
cellular materials (ACMs) with a periodic micro-structure can be employed to satisfy,
concurrently, lightness and heat transfer-related requirements, including heat dissipation,
heat shielding, thermal insulation and flame arresting.

A review on the design of a particular class of ACMs, i.e., the well-known lattice materi-
als, can be found in [1]. As far as the thermal behaviour of ACMs is concerned, it depends
on several factors such as the representative volume element (RVE) topology, material
and manufacturing process characteristics, as well as loading conditions. By modifying
the RVE topology and the relative density at the microscopic/mesoscopic scale (i.e., the
scale of the RVE), one can fulfil the desired requirements at the macroscopic one (i.e., the
scale of the structure). Many works on the optimal design of ACMs focuses mainly on the
design and assessment of their macroscopic elastic properties [2–6]. Nevertheless, to the
best of the authors’ knowledge, only a limited number of investigations on the design of
ACMs for heat transfer is available in the literature [7–19], and most of them are of exper-
imental nature [7–12]. In particular, Wong et al. [7] used LPBF to manufacture pin-fin
heat exchanger made of stainless steel (316L) and aluminium alloy (6061). The geometric
shapes include circular and diamond cross-sections, as well as additional ACMs composed
of elliptical cross-sections placed at the corners of the substrate. This research was ex-
tended in [8], using a strut-type lattice, which is based on a geometric model commonly
used as a support structure for LPBF. Wadley et al. [9] compared the effective thermal
conductivity (ETC) of copper textile-based structures including random open-cell metal
foam with the one of lattice materials. They found that the overall thermal efficiency of
lattice materials is better than the one of the open-cell foams having the same relative
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density. Catchpole-Smith et al. [10] showed that the thermal conductivity of lattice ma-
terials mainly depends on material properties and relative density. They also showed that
the Schwarz RVE topology always provide the highest ETC, while the one of diamond and
gyroid RVEs topologies is slightly lower.

Nevertheless, performing experimental tests on ACMs to assess their ETC at the
macroscopic scale is an expensive and time-consuming process. Moreover, as mentioned
above, there are many factors influencing the macroscopic thermal behaviour of ACMs,
thus experimental tests should be performed for each configuration of the RVE geometry.
Therefore, before manufacturing and testing samples, it is very useful to develop a pre-
dictive multi-scale numerical model to assess the influence of each variable, characterising
the RVE geometry of the AMC, on the macroscopic thermal behaviour of the structure
and, subsequently, plan a reduced number of experimental tests for validation.
A survey on modelling strategy for lattice materials obtained through various additive
manufacturing technologies can be found in [13]. Generally speaking, in the framework
of multi-scale modelling strategy, at the mesoscopic scale, the RVE of the ACM can be
modelled, from a mechanical point of view, as a heterogeneous medium composed of two
phases, i.e., the bulk material and the void. Conversely, at the macroscopic scale, it can
be modelled as an equivalent homogeneous anisotropic continuum whose ETC is described
by a set of equivalent material properties [3, 20–22].

Many analytical models for predicting the ETC of general composite materials have
been proposed in the literature, each one being characterised by a different degree of
complexity, such as those of Schapery [23], Chamberlain [24], Chamis [25], Rosen and
Hashin [26]. However, all these analytical models have a common limitation: they do
not consider the influence of local geometrical features of the RVE on its macroscopic
behaviour. To go beyond the limitations of analytical models, numerical homogenisation
techniques have been developed in the last five decades. Finite element (FE)-based models
are very versatile, and, depending on the sophistication of the model, they can lead to a
more accurate assessment of the equivalent macroscopic behaviour of the ACM [3, 20–22].

As far as the multi-scale design of uniform ACMs and graded ACMs (GACMs) is con-
cerned, only few studies dealing with thermal applications are available in the literature
[14–18, 27–30]. For instance, in [14], a topology optimisation (TO) method based on the
solid isotropic material with penalisation (SIMP) approach is proposed to determine the
optimal topology of non-uniform lattice materials with a pre-defined RVE geometry. In
this context, the pseudo-density field of the SIMP method, defined at the macroscopic
scale, is mapped onto a non-uniform lattice material (at the lower scale). Of course, the
mapping between the pseudo-density field at the macroscopic scale and the thickness of
the struts of the lattice RVE at the lower scale is determined through a suitable FE-based
homogenization scheme. A similar approach is used in [27] and extended to the case of
GACMs whose RVE has a triply periodic minimal surface (TPMS) thin-walled topology.
In particular, the approach proposed in [27] is based on two main features: 1) a TO al-
gorithm based on a pseudo-density field and 2) a numerical homogenisation scheme to set
the link between the macroscopic pseudo-density field and the geometrical feature of the
TPMS topology of the RVE. Huang et al. [28] make use of lattice materials to optimise
the support structure required in selective laser melting process to support overhanging
regions. The goal of the methodology proposed in [28] is to maximise the macroscopic ETC
of the support structure made of lattice material in order to improve heat dissipation and
to reduce part distortion during fabrication. In [29, 30], the TO method for lattice ma-
terials is enhanced with design-dependent movable features (over which design-dependent
loading conditions are imposed) and applied to heat condution problems. The method-
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ology presented in [29, 30] is based, on the one hand, on the asymptotic homogenisation
to determine the equivalent macroscopic thermal conductivity of the lattice and, on the
other hand, on the level-set method to obtain, at each iteration, an implicit geometric de-
scription of the topology boundary where thermal boundary conditions (BCs) are applied
via an immersed boundary method.

It is noteworthy that most of the aforementioned works make use of deterministic
algorithms to update the design variables defining the topological descriptor. A sound al-
ternative, which does not require the computation of the gradient of the physical responses
involved in the problem formulation, is the hybrid cellular automaton method introduced
by Tovar et al. [31, 32]. This method makes use of a metaheuristic algorithm simulat-
ing the process of structural adaptation in bones and combines the cellular automaton
paradigm with FE analysis. Hybrid cellular automaton method proved its effectiveness in
dealing with a variety of TO problems [33, 34] including those dealing with the design of
the equivalent macroscopic properties of ACMs [35].

Taking inspiration from the aforementioned works dealing with the multi-scale design
of ACMs, this study presents a computer-aided design (CAD)-compatible TO method for
designing GACMs with an enhanced macroscopic thermal behaviour. The proposed ap-
proach makes use of: (1) a density-based TO method reformulated in the framework of
the non-uniform rational basis spline (NURBS) hyper-surfaces [36, 37] and (2) the strain
energy-based homogenisation method (SEHM) of periodic media applied to thermal prob-
lems [3, 20–22] to determine the ETC of the RVE of the ACM. In particular, for a given
RVE topology, the SEHM is used to derive the trend of the ETC at the macroscopic scale
as a function of the RVE relative density. This function is then integrated in the NURBS-
density-based TO algorithm to penalise the thermal conductivity tensor of the continuum
at the macroscopic scale.
Unlike classical density-based TO approaches [38], the NURBS-density-based TO method
separates the pseudo-density field, describing the topology of the continuum, from the
mesh of the FE model. More precisely, for general 3D problems, a 4D NURBS hyper-
surface is used as a topology descriptor, whilst for 2D problems a standard 3D NURBS
surface is employed. In this way, the topological descriptor, i.e., the pseudo-density field,
relies on a purely CAD-compatible geometric entity, i.e., the NURBS hyper-surface, and
the optimisation variables are the pseudo-density and the associated weight at each control
point (CP) . Regarding the application illustrated in this study, the thermal conductivity
matrix of the generic element is penalised through a physically-based penalty function
derived as result of the homogenisation process (for a given RVE topology).
As discussed in [36, 37], this approach is characterised by some advantages over conven-
tional density-based TO methods. Firstly, since the topological descriptor consists in a
high-level geometric parametrisation of the pseudo-density field in the form of a NURBS
entity, the optimised topology does not depend upon the quality of the mesh of the finite
element model. Secondly, unlike the classical SIMP approach, there is no need to define
a further filter zone because the NURBS local support property establishes an implicit
relationship among contiguous elements. Thirdly, when compared to the classical SIMP
approach, the number of design variables is reduced (because the number of CPs is lower
than the number of elements constituting the FE model). Fourthly, since the topology is
described through a NURBS entity, the boundary of the topology is available at each iter-
ation of the optimisation process, thus, the integration of constraints of geometric nature
[39, 40] (e.g., on the local curvature of the boundary, on the local direction of the tangent
vector, maximum member size, minimum member size, etc.) in the problem formulation
and the CAD reconstruction phase of the boundary of the optimised topology become
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easy tasks [36, 41]. Finally, some fundamental properties of the NURBS basis functions,
like the local support property, can be conveniently exploited to derive the gradient of the
physical responses with respect to the topological variables, i.e., pseudo-density at CPs
and weights.

In this study, a wide campaign of numerical analyses is conducted on 31 RVE topologies
of ACMs to determine, for each configuration, the equivalent thermal conductivity tensor
at the macroscopic scale. Among them, seven topologies have been chosen and used in the
framework of the NURBS-density-based TO method. The effectiveness of the proposed
approach is tested on both 2D and 3D benchmark problems taken from the literature.

The paper is organised as follows: Sec. 2 introduces the problem description, the ACMs
classes and the general work-flow of the design methodology proposed in this work. Sec. 3
briefly recalls the fundamental of the SEHM and the details of the numerical model of the
RVE at the lower scale. The numerical results of the SEHM are presented and discussed
in Sec. 4. Sec. 5 introduces the fundamentals of the NURBS-density-based TO algorithm
used in this work as well as the numerical strategy to recover GACMs from the results of
the TO process. Sec. 6 presents the results of the TO. Finally, Sec. 7 ends the paper with
some concluding remarks and prospects.

Notation. Upper-case bold letters and symbols are used to indicate tensors and matrices,
while lower-case bold letters and symbols indicate column vectors. Subscripts m and M
denote quantities evaluated at RVE scale and macroscopic scale, respectively.

2. Problem description

2.1. Material and geometries of the architected cellular materials

The first part of this study aims to assess and compare the macroscopic ETC of various
ACMs, which can be grouped in three main classes: the strut-based ACMs class, as shown
in Fig. 1, collecting 17 RVE geometries, the thin-walled TPMS ACMs class including eight
RVE geometries, as illustrated in Fig. 2(a), and the skeletal TPMS including six RVE
geometries, as shown in Fig. 2(b). The RVE of thin-walled TPMS ACMs is characterised
by a constant thickness and is generated by means of an implicit surface as follows:

cos(km1xm1) + cos(km2xm2) + cos(km3xm3)− tm = 0, (Schwarz), (1)

cos(km1xm1) sin(km2xm2) + cos(km2xm2) sin(km3xm3)+

+ cos(km3xm3) sin(km1m1)− tm = 0, (Gyroid),
(2)

2 [cos(km2xm2) cos(km3xm3) + cos(km1xm1) cos(km2xm2)+

+ cos(km1xm1) cos(km3xm3)]− (cos(2km1xm1) + cos(2km2xm2)+

+ cos(2km3xm3))− tm = 0, (IWP),

(3)

3 [cos(km1xm1) + cos(km2xm2) + cos(km3xm3)] +

+ 4 cos(km1xm1) cos(km2xm2) cos(km3xm3)− tm = 0, (Neovius).
(4)

In the above formulæ, xmi, (i = 1, 2, 3) are the Cartesian coordinate at the RVE scale,
whilst the parameter tm is a threshold value (or isovalue) representing the offset from the

5



zero level-set. Parameters kmi are defined as:

kmi := 2π
nmi
Lmi

, i = 1, 2, 3, (5)

where Lmi := 2ami and nmi represent the size of the RVE and number of half-waves along
the xmi axis, respectively. The skeletal TPMS ACMs are generated by using boolean
operations on RVE topologies belonging to the second class.

All the ACMs considered in this work are constituted of 6061 aluminium alloy whose
thermal conductivity and density are Km = 170 W/mK and ρm = 2700 kgm-3. Wong
et al. [7] used the same material to create multiple heat sinks with different geometries
through the selective laser melting process.

Figure 1: Strut-based ACMs [42].

Regardless of its topology, each RVE is embedded in a parallelepiped whose overall
volume is VRVE = 8am1am2am3, as illustrated in Fig. 3. In particular, in the following of
the paper, a cubic embedding domain is considered for each RVE topology, i.e., 2am1 =
2am2 = 2am3 = Lm.

2.2. General work-flow of the design methodology

The main goal of this work is to propose a general design methodology for GACMs
obtained through AM technology. The proposed method is based on the use of: a) the
SEHM to determine the macroscopic behaviour of the RVE of the ACM; b) standard
approximation techniques (i.e., curve fitting) to build the physically-based penalty schemes
for the characteristic tensors involved in the TO problem at the macroscopic scale; c)
NURBS hyper-surfaces as a descriptor of the continuum topology at the macroscopic
scale; d) a simple reconstruction technique to pass from the optimised topology to the
corresponding graded structure of the ACM at the lower scale.

The work-flow of the proposed approach is illustrated in Fig. 4. In particular, in this
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(a) Thin-walled TPMS ACMs

(b) Skeletal TPMS ACMs

Figure 2: (a) Thin-walled and (b) skeletal TPMS ACMs [42].

(a) Octet RVE (b) Gyroid RVE

Figure 3: Examples of RVE topologies and related geometric parameters: strut diameter dm and wall
thickness em [42].

work, the proposed methodology is applied to a representative design case: the minimisa-
tion of the thermal compliance of a GACM subject to a constraint on its overall volume.
The design strategy is articulated in the following six steps:

1. For each RVE topology, the FE model is generated and its geometry and mesh are
opportunely parametrised. In particular, the geometric parameters, which depend
on the RVE topology, are those illustrated in Fig. 3: in the case of strut-based
geometries, the element size is set as a fraction of the strut diameter, whilst in
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Figure 4: Work-flow of the design methodology for GACMs.

the case of TPMS the element size is chosen as a fraction of the wall thickness.
The number of elements composing the FE model is chosen as a result of a mesh
sensitivity analysis. An example of mesh for octet and gyroid topologies is shown in
Fig. 5

2. The SEHM (presented in Sec. 3) is applied to the RVE and the numerical results,
obtained for different values of the relative density ρM of the RVE, are collected in
a database.

3. A standard curve fitting technique is applied to derive the physically-based penalisa-
tion scheme φ(ρM ) to be used during TO at the macroscopic scale of the structure.

4. The penalisation function φ(ρMe) is affected to the thermal conductivity matrix
of each element composing the FE model at the macroscopic scale. In particular,
the pseudo-density field at this scale, i.e., ρM , is described by means of a NURBS
hyper-surface, as discussed in Sec. 5.

5. The TO problem is solved and the optimised solutions are available in a CAD-
compatible form as discussed in [36, 37, 41].

6. The optimised pseudo-density field at the macroscopic scale is mapped onto a GACM
at the lower scale; in particular, an automatic reconstruction strategy is used to
recover the parameters of the RVE corresponding to the local optimal value of ρM .

It is noteworthy that, ACMs with an open-cell RVE can be easily manufactured through
LPBF without adding support material because of the small RVE size. Moreover, the
intermediate density values resulting from the TO problem can be mapped to a physically-
consistent RVE. Of course, in the regions of the structure where heat must be efficiently
transferred, high relative density ACMs are expected, whilst low relative density ACMs
should occur in those regions where high insulation capability is required. This result can
be easily achieved through a TO at the macroscopic scale. The corresponding GACMs
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(a) Octet RVE (b) Gyroid RVE

Figure 5: Examples of mesh quality of the FE model of the RVE for two different topologies.

can be recovered through a proper parametrisation of the RVE of the ACM to completely
control the distribution of the material in terms of relative density for a prescribed RVE
size (Lm) and a given topology. In particular, for ACMs composed of struts, the variable
is the diameter of the strut cross-section dm, whilst for thin-walled TPMS ACMs the
parameter varying over the structure is the thickness em of the walls.

3. The strain energy-based homogenisation method

3.1. Homogenisation technique and associated boundary conditions

At the lower (i.e., mesoscopic or microscopic) scale, the RVE of the ACM can be
interpreted, from a mechanical perspective, as a heterogeneous medium composed of two
phases, i.e., the bulk material and the void. Conversely, at the macroscopic scale it can be
modelled as an equivalent homogeneous anisotropic continuum whose mechanical response
is described by a set of effective (or equivalent) material properties.

This work focuses only on the thermal behaviour of the ACM at the macroscopic scale,
thus, the macroscopic thermal conductivity tensor (represented as a matrix KM ∈ R3×3

through the Voigt’s notation) of the ACM is determined by means of the SEHM.
It is notewoerthy that the SEHM has been initially introduced to determine the equivalent
elastic properties of heterogeneous media [43]. However, this technique can be easily
extended to assess the macroscopic thermal behaviour of ACMs. For thermal problems,
the basic assumption of the SEHM is that the thermal energy of the RVE is equal to
the counterpart of the corresponding “envelope volume” of the homogeneous anisotropic
medium replacing the ACM at the macroscopic scale. The effectiveness of the SEHM has
been shown in different applications dealing with the determination of the macroscopic
properties of heterogeneous materials characterised by complex RVE topologies [3, 20–
22, 43].
To compute KM , three further hypotheses have been considered: (a) the bulk material of
the ACM has a linear thermal behaviour; (b) the thermal response of the RVE is evaluated
at steady-state regime; (c) the only heat transfer phenomenon occurring in the RVE is the
heat conduction and adiabatic BCs are applied to the internal boundary of the RVE (i.e.,
on those nodes which are not located on the RVE external faces).

To assess the components of KM , the RVE is submitted to a uniform temperature gra-
dient ∇Tmβ (that can be set by the user), (β = 1, 2, 3). The three analyses, corresponding
to the three different forms of ∇Tmβ, are executed one at time by considering the following
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set of periodic boundary conditions (PBCs) [43]:

Tm(−am1, xm2, xm3)− Tm(am1, xm2, xm3) = 2am1∇TT
mβem1, −amj ≤ xmj ≤ amj , j = 2, 3,

Tm(xm1,−am2, xm3)− Tm(xm1, am2, xm3) = 2am2∇TT
mβem2, −amj ≤ xmj ≤ amj , j = 1, 3,

Tm(xm1, xm2,−am3)− Tm(xm1, xm2, am3) = 2am3∇TT
mβem3, −amj ≤ xmj ≤ amj , j = 1, 2,

β = 1, 2, 3,

(6)

where emj is the unit vector along the xmj axis. Then, three steady-state thermal analyses
are performed on the FE model of the RVE, by considering the PBCs of Eq. (6) and the
expression of the user-defined temperature gradient reported in Tab. 1 (the value of ∆Tm
appearing in this table is arbitrary and should be set by the user).

1st load case 2nd load case 3rd load case

∇TT
m1 = ( ∆Tm

2am1
, 0, 0) ∇TT

m2 = (0, ∆Tm
2am2

, 0) ∇TT
m3 = (0, 0, ∆Tm

2am3
)

Table 1: Temperature gradient to be used in the PBCs of Eq. (6).

Once the steady-state thermal analyses are solved, the components of the average heat
flux per unit surface can be determined as:

qmi =
1

VRVE

∫
VEFF

qmi(xm1, xm2, xm3) dV, i = 1, 2, 3, (7)

where VEFF is the actual volume of the RVE. The ETC tensor components KMij can be
calculated column-wise as follows:

KMij =
qmi

∇TT
mjemj

, i, j = 1, 2, 3. (8)

Finally, the relative density of the ACM is defined as:

ρM :=
VEFF

VRVE
. (9)

3.2. Lower and upper bounds on the effective thermal conductivity

When considering a homogenisation technique, the ETC of the ACM must always fall
within appropriate bounds determined via a suitable variational method. These aspects
are briefly discussed in the following.

3.2.1. Reuss-Voigt bounds

Under the hypothesis of linear thermal behaviour, the Reuss-Voigt bounds [44, 45]
require only the knowledge of the volume fraction and of the thermal conductivity of each
phase composing the heterogeneous medium. The lower and upper bounds, i.e., KRV

MLB

and KRV
MUB, respectively, on the ETC can be derived by using the simple law of mixtures:

KRV
MLB = (

n∑
i=1

νmiK−1
mi)
−1, (10)
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and

KRV
MUB =

n∑
i=1

νmiKmi. (11)

In Eqs. (10) and (11), n is the number of constitutive phases, while νmi and Kmi are the
volume fraction and the thermal conductivity of the i-th phase. Of course, the following
relationship holds:

n∑
i=1

νmi = 1. (12)

For a material composed of two phases (e.g., void and bulk material as in the case of
ACMs) Eq. (10) and (11) read:

KRV
MLB =

Km1Km2

νm1Km2 + νm2Km1
, KRV

MUB = νm1Km1 + νm2Km2. (13)

3.2.2. Hashin-Shtrikman bounds

Calvo-Jurado and Parnell [46] derived Hashin-Shtrikman upper and lower bounds on
the ETC of composite materials. The original derivation was carried out by means of a
suitable variational method based on the minimisation of the total thermal energy of the
material. The only hypothesis at the basis of the approach used in [46] are: 1) the material
needs to be homogeneous on a scale larger than the one of any inhomogeneity (i.e., the
generic inclusion); 2) the temperature must be continuous at the interface between two
adjacent phases. For two-phases materials wherein the component with higher thermal
conductivity is indicated as component 2, i.e., Km2 > Km1, the Hashin-Shtrikman lower
and upper bounds on the ETC read:

KHS
MLB = Km1Km2+2Km2(Km1νm2+Km2νm1)

2Km2+Km1νm1+Km2νm2
,

KHS
MUB = Km1Km2+2Km1(Km1νm2+Km2νm1)

2Km1+Km1νm1+Km2νm2
.

(14)

3.3. The finite element model

The FE model of each RVE topology has been generated within the commercial FE
code ANSYS. Each FE model is built through an ad-hoc script wherein the mesh is
properly related to the relevant geometric parameters of the RVE topology at hand. The
generic RVE is modelled by means of 20-nodes solid elements (SOLID278), with one degree
of freedom (DOF) per node. A FE model made of solid elements is needed to provide
both a realistic representation of the RVE geometry and an accurate assessment of the 3D
temperature field inside the RVE.

A convergence study in terms of the average element size (not reported here for the
sake of brevity) has been conducted in order to assess its influence on the ETC of the
different RVE topologies. The mesh size has been chosen equal to 0.03 mm for a cell size
Lm = 4 mm.

As stated above, three steady-state thermal analyses are conducted on each RVE topol-
ogy with the PBCs of Eq. (6) and the imposed thermal gradient provided in Tab. 1 in
order to determine the components of the macroscopic thermal conductivity tensor KM

according to Eq. (8).
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4. Numerical results: homogenisation of the architected cellular materials and
database generation

4.1. Effective thermal conductivity calculation

A first campaign of numerical analyses has been carried out to compare the ETC of
different RVE topologies, which are summarised in Tabs. 2, 4 and 5, for strut-based,
thin-walled and skeletal ACMs, respectively, by considering a relative density ρM = 0.1.
It is noteworthy that, for each RVE topology, the characteristic length of the cubic RVE
has been set as Lm = 4 mm, while the strut diameter dm (for strut-based ACMs) and the
wall thickness em (for thin-walled ACMs) have been computed to meet the condition on
the relative density of the RVE, i.e., ρM = 0.1.

As reported in Tab. 2, ACMs belonging to the first class, i.e., strut-based ACMs, show
almost the same behaviour in terms of ETC, except for the Diamond topology, which
shows poor thermal conductivity. In particular, in agreement with the results related to
the macroscopic elastic behaviour presented in [21], all RVE topologies are characterised
by a cubic syngony behaviour, in terms of the conductivity tensor at the macroscopic scale,
which means KMii = KM (i = 1, 2, 3) and KMij = 0 (i, j = 1, 2, 3 with i 6= j). Moreover,
one can notice that for some strut-based RVE topologies (e.g., the CBCC configuration
which is a combination of CC and BCC topologies), the ETC may experience a drop.
This is due to the slight increase in the overall heat surface exchange area of the RVE vs.
the important decrease in volume (i.e., through the reduction of the strut diameter dm in
order to fulfil the condition on the imposed relative density): these details are provided in
Tab. 3.

Strut-based RVE KM [W/mK]

ACC 7.12

BCC 7.09

BFCC 7.03

CBCC 6.43

CBFCC 7.13

CC 7.16

CIC 6.65

CFCC 7.11

Diamond 4.93

FCC 7.07

FCC2+ 7.39

Hexahedral 7.19

Octet 7.09

Rhombic 7.28

Truncated-cube 6.99

Truncated-cuboctahedron 7.42

Truncated-cuboctahedron2+ 6.91

Table 2: Effective thermal conductivity of strut-based RVE topologies for ρM = 0.1 and Lm = 4 mm.

The ETC of thin-walled and skeletal RVE topologies is listed in Tabs. 4 and 5, re-
spectively. As it can be inferred from these results, strut-based and skeletal ACMs are
characterised by an ETC lower than the one of thin-walled ACMs. In particular, among the

12



RVE dm [mm] Area [mm2]

BCC 0.44 24.97

CC 0.66 17.1

CBCC 0.36 29.33

Table 3: Value of the strut diameter and heat surface exchange area of BCC, CC and CBCC RVE topologies
for ρM = 0.1 and Lm = 4 mm.

investigated thin-walled geometries, the highest ETC occurs for T-Manta and T-Neovius
configurations.

Thin-walled RVE KM [W/mK]

T-Batwing 10.66

T-BTC 10.22

T-F-RD 10.63

T-Gyroid 10.29

T-IWP 8.89

T-Manta 11.32

T-Neovius 11.21

T-Schwarz 10.43

Table 4: Effective thermal conductivity of thin-walled RVE topologies for ρM = 0.1 and Lm = 4 mm.

Skeletal RVE KM [W/mK]

S-BTC 7.19

S-Gyroid 8.04

S-iBCC 8.59

S-IWP 6.35

S-OrthoCircle 6.72

S-Schwarz 7.21

Table 5: Effective thermal conductivity of skeletal RVE topologies for ρM = 0.1 and Lm = 4 mm.

4.2. Influence of the relative density on the effective thermal conductivity

The influence of the relative density of the RVE ρM on the macroscopic thermal con-
ductivity KM is investigated in the following. For the sake of brevity, the analysis is
limited only to the best and worst RVE topologies, in terms of ETC, of each class. More
precisely, the following topologies are considered: diamond, truncated cuboctahedron, S-
IWP, S-iBCC, T-IWP, T-Gyroid, T-Manta. The ETC vs. the relative density for each
RVE topology is illustrated in Fig. 6. These curves have been obtained by launching the
homogenisation procedure discussed in Sec. 3 for ten different values of ρM in the range
[0, 1]. It is noteworthy that, numerical results provided by the FE-based homogenisation
scheme always fall within both Reuss-Voigt (VR-LB and VR-UB) and Hashin-Shtrikman
bounds (HS-LB and HS-UB).
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Figure 6: Effective thermal conductivity vs. the relative density for the best and worst RVE topologies for
each class.

The FE analyses have been carried out for each RVE topology in order to build a
database of results. Subsequently, results have been fitted through a polynomial of degree
7 as follows:

φ(ρM ) :=
KM
Km

=

7∑
i=1

ciρ
i
M , ci ∈ R, i = 1, . . . , 7, (15)

where ci are suitable coefficients calculated to minimise the distance between the approxi-
mating curve and the database of results (for a given RVE topology). The values of these
coefficients are reported in Tab. 6 for the best and worst RVE topologies of each ACM
class.

RVE topology c1 c2 c3 c4 c5 c6 c7
Diamond 0.2753 0.1338 0.1194 0.1180 0.1178 0.1178 0.1178

Truncated-cuboctahedron 0.4231 0.1236 0.0933 0.0902 0.0899 0.0899 0.0899
S-iBCC 0.4925 0.1188 0.0810 0.0772 0.0768 0.0768 0.0768
S-IWP 0.3596 0.1280 0.1045 0.1021 0.1019 0.1019 0.1019

T-Gyroid 0.5934 0.1119 0.0631 0.0583 0.0578 0.0577 0.0577
T-IWP 0.5103 0.1176 0.0778 0.0739 0.0735 0.0734 0.0734

T-Manta 0.6545 0.1077 0.0523 0.0468 0.0462 0.0462 0.0462

Table 6: Values of the coefficients ci (i = 1, . . . , 7) of Eq. (15) for the best and worst RVE topologies for
each ACM class.
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5. Design of graded architected cellular material through topology optimisa-
tion

5.1. Fundamentals of NURBS hyper-surfaces

A NURBS hyper-surface is a polynomial-based function, defined as h : RN → RM .
The mathematical formula of a generic NURBS hyper-surface reads

h(ζ1, . . . , ζN ) :=

n1∑
i1=0

· · ·
nN∑
iN=0

Ri1,...,iN (ζ1, . . . , ζN )Pi1,...,iN , (16)

where nj + 1 (j = 1, . . . , N) is the number of CPs along the ζj parametric direction,
Ri1,...,iN (ζ1, . . . , ζN ) are the piece-wise rational basis functions, which are related to the
standard Bernstein’s polynomials Nik,pk(ζk), k = 1, . . . , N through the following formula

Ri1,...,iN (ζ1, . . . , ζN ) =
ωi1,...,iN

∏N
k=1Nik,pk(ζk)∑n1

j1=0 · · ·
∑nN

jN=0

[
ωj1,...,jN

∏N
k=1Njk,pk(ζk)

] . (17)

In Eqs. (16) and (17), h(ζ1, . . . , ζN ) is a M -dimension vector-valued rational func-
tion, (ζ1, . . . , ζN ) are scalar dimensionless parameters defined in the interval [0, 1], whilst

Pi1,...,iN are the CPs coordinates. The j-th CP coordinate X
(j)
i1,...,iN

is stored in the array

X(j) ∈ R(n1+1)×···×(nN+1). The explicit expression of CPs coordinates in RM is:

Pi1,...,iN = {X(1)
i1,...,iN

, . . . , X
(M)
i1,...,iN

},

X(j) ∈ R(n1+1)×···×(nN+1), j = 1, . . . ,M.

(18)

Curves and surfaces formulæ can be easily deduced from Eq. (16). The CPs layout is
referred to as control hyper-net [36]. The total number of CPs constituting the hyper-net
is:

nCP :=
N∏
i=1

(ni + 1). (19)

The generic CP affects the shape of the NURBS entity through its coordinates. Moreover,
a weight wi1,...,iN is associated to the generic CP: the higher the weight wi1,...,iN , the more
the NURBS entity is attracted towards the related CP. For each parametric direction ζk,
k = 1, . . . , N , the Bernstein’s polynomials are of degree pk and can be generated in a
recursive way as

Nik,0(ζk) :=

{
1, if v

(k)
ik
≤ ζk < v

(k)
ik+1,

0, otherwise,
(20)

Nik,q(ζk) :=
ζk−v

(k)
ik

v
(k)
ik+q−v

(k)
ik

Nik,q−1(ζk) +
v
(k)
ik+q+1−ζk

v
(k)
ik+q+1−v

(k)
ik+1

Nik+1,q−1(ζk),

q = 1, . . . , pk,
(21)
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where each blending function is defined on the knot vector

v(k) := {0, . . . , 0︸ ︷︷ ︸
pk+1

, v
(k)
pk+1, . . . , v

(k)
mk−pk−1, 1, . . . , 1︸ ︷︷ ︸

pk+1

}, (22)

whose dimension is mk + 1, with

mk = nk + pk + 1. (23)

Each knot vector v(k) is a non-decreasing sequence of real numbers. The NURBS blending
functions are characterised by several interesting properties: the interested reader is ad-
dressed to [47] for a deeper insight into the matter. Here, only the local support property
is recalled because it is of paramount importance for the NURBS-based SIMP method
[36, 37]:

Ri1,...,iN (ζ1, . . . , ζN ) 6= 0,

if (ζ1, . . . , ζN ) ∈
[
v

(1)
i1
, v

(1)
i1+p1+1

[
× · · · ×

[
v

(N)
iN

, U
(N)
iN+pN+1

[
.

(24)

According to the above formula, the generic CP (and the associated weight) affects only
a precise zone of the NURBS parametric space, which is indicated as local support.

5.2. The NURBS-density-based topology optimisation method

The details of the formulation of the density-based TO method in the NURBS hyper-
surfaces framework are given in [36, 37]. The main features of the proposed approach are
briefly recalled here. The formulation is presented for 3D steady-state heat conduction
problems under the hypothesis that the applied thermal loads and BCs do not depend
upon the pseudo-density field (of course, this hypothesis can be easily relaxed).

5.2.1. Design variables

Consider the compact space DM ⊂ R3 in a Cartesian orthonormal frame
O(xM1, xM2, xM3) defined at the macroscopic scale:

DM := {xT
M = {xM1, xM2, xM3} ∈ R3 : xM1 ∈ [0, aM1], xM2 ∈ [0, aM2], xM3 ∈ [0, aM1]},

(25)

where aMj (j = 1, 2, 3) is a reference length defined along xMj axis. The goal of TO is to
search for the best distribution of a fictitious material satisfying the requirements of the
design problem.

In density-based TO methods, the material domain at the macroscopic scale ΩM ⊆ DM
is identified by means of a pseudo-density function ρM (xM ) ∈ [0, 1] for xM ∈ DM :
ρM (xM ) = 0 denotes absence of material, whilst ρM (xM ) = 1 indicates presence of mate-
rial. In the context of the NURBS-density-based TO method, the pseudo-density field for
a TO problem of dimension D is represented through a NURBS hyper-surface of dimension
D + 1. Therefore, for a 3D problem a 4D entity is needed and the pseudo-density field is
defined as:

ρM (ζM1, ζM2, ζM3) =

nM1∑
i1=0

nM2∑
i2=0

nM3∑
i3=0

Ri1,i2,i3(ζM1, ζM2, ζM3)ρMi1,i2,i3 . (26)
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In Eq. (26), nMCP = (nM1 + 1)(nM2 + 1)(nM3 + 1) is the total number of CPs,
ρM (ζM1, ζM2, ζM3) constitutes the fourth coordinate of the array h of Eq. (16), while
Ri1,i2,i3(ζM1, ζM2, ζM3) are the basis functions of Eq. (17). The dimensionless parameter
ζMj is defined as:

ζMj :=
xMj

aMj
, j = 1, 2, 3. (27)

It is noteworthy that, according to the methodology discussed in Sec. 2 and illustrated in
Fig. 4, the pseudo-density ρM of Eq. (26) describes the GACM distribution at the macro-
scopic scale. In the following, only the pseudo-density at CPs and the associated weights
are selected as design variables and are grouped in the vectors ξ1 and ξ2, respectively,
defined as:

ξT
1 := (ρM 0,0,0, . . . , ρMnM1,nM2,nM3

), ξT
2 := (wM 0,0,0, . . . , wMnM1,nM2,nM3

), ξ1, ξ2 ∈ RnMCP .

(28)

Therefore, in the most general case, the overall number of design variables is nvar = 2nMCP.

5.2.2. Objective function and optimisation constraints

Consider the steady-state equation of the FE model in the most general case:

K̂M ûM = f̂M ; ûM , f̂M ∈ RN̂MDOF , K̂M ∈ RN̂MDOF×N̂MDOF , (29)

where N̂MDOF represents the overall number of DOFs of the FE model at the macroscopic
scale before applying the BCs, K̂M is the non-reduced (singular) conductivity matrix of
the FE model, while f̂M and ûM are the non-reduced vectors of the external generalised
nodal thermal forces and temperatures, respectively. Using standard FE notation [48], Eq.
(29) can be rewritten as:[

KM KMBC

KT
MBC K̃M

](
uM

uMBC

)
=

(
fM
rM

)
, (30)

with:

uM , fM ∈ RNMDOF , uMBC, rM ∈ RNMBC , KM ∈ RNMDOF×NMDOF ,

KMBC ∈ RNMDOF×NMBC , K̂M ∈ RNNBC×NMBC , N̂MDOF = NMDOF +NMBC,
(31)

where NMBC represents the number of DOFs where temperature is imposed (Dirichlet’s
BC), while NMDOF is the number of unknown DOFs . In Eq. (30), uM and uMBC are
the unknown and imposed vectors of nodal temperatures, respectively. fM is the vector of
generalised external nodal thermal forces, whilst rM is the vector of (unknown) generalised
nodal thermal reactions at nodes where BCs are imposed.
KM , KMBC and K̂M are the conductivity matrices of the FE model after applying BCs.
Consider, now, the case of zero Dirichlet’s BCs and non-zero Neumann’s BCs: the thermal
compliance of the structure is defined as

CM := fT
MuM . (32)
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According to Eq. (15), the pseudo-density field ρM affects the element conductivity matrix
and, accordingly, the global conductivity matrix of the FE model as

KM :=

NMe∑
e=1

φeL
T
MeK

0
MeLMe =

NMe∑
e=1

LT
MeKMeLMe,

K0
Me, KMe ∈ RN

e
MDOF×N

e
MDOF , LMe ∈ RN

e
MDOF×NMDOF

(33)

where φe = φ(ρMe) is the function of Eq. (15) computed at the centroid of the generic
element e. NMe is the total number of elements of the FE model at the macroscopic scale
and N e

MDOF is the number of DOFs of the generic element. In Eq. (33), K0
Me and KMe

are the non-penalised and the penalised conductivity matrices of element e, expressed
in the global reference frame of the FE model, whilst LMe is the connectivity matrix of
element e. The non-penalised conductivity matrix of the element can be related to the
thermal conductivity matrix of the bulk material of the RVE Km through the following
relationship:

K0
Me :=

∫
VMe

BT
MeKmBMedV, Km ∈ R3×3, BMe ∈ R3×Ne

MDOF , (34)

where BMe is the matrix representing the product between the linear differential operator
and the shape function matrices of the generic element.

The TO problem of thermal compliance minimisation subject to an inequality con-
straint on the volume can be formulated as a constrained non-linear programming problem
(CNLPP) as follows:

min
ξ1,ξ2

CM
CM ref

, s.t. :



KMuM = fM ,

VM
VM ref

− γ ≤ 0,

ξ1k ∈ [ρMmin, ρMmax], ξ2k ∈ [wMmin, wMmax],

∀k = 1, . . . , nMCP.

(35)

In Eq. (35), VM ref is a reference volume, VM is the volume of the material domain Ω at the
macroscopic scale, while γ is the fixed volume fraction; ρmin represents the lower bound,
imposed to the density field to prevent any singularity for the solution of the equilibrium
problem. The objective function is divided by a reference compliance, CMref , to obtain a
dimensionless value. The volume of the material domain appearing in Eq. (35) is defined
as:

VM :=

NMe∑
e=1

ρMeVMe, (36)

where VMe is the volume of element e. Moreover, in Eq. (35), the linear index k has been
introduced for the sake of compactness. The relationship between k and ij , (j = 1, 2, 3)
is:

k := 1 + i1 + i2(nM1 + 1) + i3(nM1 + 1)(nM2 + 1). (37)

The other parameters involved in the definition of the NURBS entity (i.e., degrees, knot-
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vector components and number of CPs) are set a-priori at the beginning of the TO analysis
and are not optimised.

The computation of the gradient of both objective function and optimisation con-
straints with respect to the design variables is needed to perform the solution search of
the CNLPP of Eq. (35) through a deterministic algorithm. This task is achieved by ex-
ploiting the local support property of Eq. (24). For instance, the general expressions of
the gradient of both the thermal compliance (in the case uMBC = 0) and the volume read

∂CM
∂ξik

= −
∑
e∈Sk

CMe

φe

∂φe
∂ρMe

∂ρMe

∂ξik
, i = 1, 2, k = 1, . . . , nMCP, (38)

∂VM
∂ξik

=
∑
e∈Sk

VMe
∂ρMe

∂ξik
, i = 1, 2, k = 1, . . . , nMCP, (39)

with

CMe := uT
MLT

MeKMeLMeuM . (40)

In Eqs. (38) and (39), Sk is the discretised version of the local support of Eq. (24), while
∂ρMe
∂ξik

reads

∂ρMe

∂ξik
=


Rke, if i = 1,

Rke
ξ2k

(ξ1k − ρMe) , if i = 2.
(41)

The scalar quantity Rke, appearing in Eq. (41), is the NURBS rational basis function of
Eq. (17) evaluated at the element centroid. More details on the analytical passages to
derive the gradient of each response function are available in [36, 37].

5.3. Reconstruction of graded architected cellular materials topologies

Once the result of the TO are available, a post-processing phase is needed to recover
point-wise the RVE geometry corresponding to the local optimal value of the pseudo-
density field at the macroscopic scale. Although this process is quite easy for strut-based
ACMs (for which simple formulæ are available to determine the effective volume at the
RVE scale), this task reveals anything but trivial in the case of thin-walled or skeletal
TPMS ACMs. Therefore, the algorithm 1 has been implemented to recover the RVE
geometry for GACMs made of thin-walled (or skeletal) TPMS RVEs.
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Algorithm 1 Recover the GACM from TO results (case of thin-walled TPMS RVE).

1: for e ∈ [1, NMe] do
2: recover ρMe from the results of the TO
3: determine em corresponding to ρMe from the database of results
4: generate the iso-surface of the thin-walled TPMS RVE for tm = ±em/2 in Eqs.

(1)-(4)
5: fill the volume between the boundary surfaces
6: end for
7: assemble the RVEs to generate the GACM
8: generate the Standard Tessellation Language file of the GACM

Of course, a similar algorithm has been developed for skeletal TPMS RVE topologies.
An example of the result of the reconstruction phase described in algorithm 1 applied to
the case of the Gyroid topology for different values of ρM is illustrated in Fig. 7. Moreover,
two examples of GACMs with a linear variation of ρM from 0.1 to 0.5 along z axis are
shown in Fig. 8 for Schwartz and Gyroid topologies, respectively.

Remark 5.1. As illustrated in algorithm 1, the recovery operation is performed for each
element composing the macroscopic domain (in this case it is tacitly assumed that one
element at the macroscopic scale corresponds to one RVE). In particular, the value of
the pseudo-density field at the end of the optimisation process is available in the form
of a NURBS entity which can be projected over the mesh (and thus over each element
composing the design domain) at the macroscopic scale.

Remark 5.2. Depending on the characteristic size of both the RVE and of the design
domain at the macroscopic scale, each element constituting the mesh of the macroscopic
FE model can correspond to one or more RVEs. Indeed, this aspect can be easily handled by
the proposed approach because the pseudo-entity field is available in the form of a NURBS
entity at the end of the optimisation process. Therefore, the mesh used to recover the
GACM during the post-processing phase can be different from the mesh of the FE model
used to calculate the physical responses.

Remark 5.3. The discontinuities shown in Figs. 7 and 8 are only apparent since they are
due to the periodicity of the trigonometric functions used to generate TPMS geometries
(which are obtained after a threshold operation). After the assembly of all RVEs, these
discontinuities occur only on the external boundary of the macroscopic domain (due to the
periodicity of the micro-structure of the material) and can be easily removed by applying
standard Boolean operations.

(a) ρM = 0.2 (b) ρM = 0.4 (c) ρM = 0.6

Figure 7: Examples of reconstruction of the T-Gyroid RVE topology for different values of relative density.
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(a) T-Schwarz (b) T-Gyroid

Figure 8: Examples of GACMs generation with a linear variation of ρM from 0.1 to 0.5 along z axis.

6. Numerical results: topology optimisation

The effectiveness of the proposed method is illustrated on 2D and 3D benchmark
problems taken from the literature [49, 50]. For each case, the pseudo-density field and
the optimum topology are shown. The results presented here are obtained through the code
SANTO (SIMP and NURBS for topology optimisation) developed at the I2M laboratory in
Bordeaux [36, 37]. SANTO is coded in the Python® environment and can be interfaced
with any FE code. In this study, the commercial code ANSYS® is used to build the
FE model at the macroscopic scale and to assess the structural responses, i.e., nodal
temperature and thermal compliance.

Moreover, the globally-convergent method of moving asymptotes (GCMMA) algorithm
[51] is employed to carry out the solution search for the CNLPP of Eq. (35). The param-
eters governing its behaviour are listed in Table 7.

Table 7: GCMMA algorithm parameters

Parameter Value

move 0.1

albefa 0.1

Stop Criterion Value

Maximum n. of function evaluations 100× nvar

Maximum n. of iterations 1000

Tolerance on objective function 10−6

Tolerance on constraints 10−6

Tolerance on input variables change 10−6

Tolerance on Karush–Kuhn–Tucker norm 10−6

Regarding the numerical analyses, the following aspects are taken into account: (1)
the influence of the geometric entity, i.e., B-spline or NURBS, used to describe the pseudo-
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density field at the macroscopic scale on the optimised topology is studied; (2) the influence
of the RVE geometry at the lower scale on the optimised topology at the upper scale is
investigated.

As far as the design space of the CNLPP of Eq. (35) is concerned, lower and upper
bounds of design variables are set as: ρMmin = 10−3, ρMmax = 1; wMmin = 0.5, wMmax =
10. It is noteworthy that the non-trivial components of the knot-vectors in Eq. (22) are
evenly distributed in the interval [0, 1] for each benchmark problem.
Finally, according to [49, 50] the thermal conductivity of the material used for all the
considered test cases is Km = 1 Wm-1K-1.

6.1. 2D Benchmark problem

The 2D benchmark problem (BK-2D), illustrated in Fig. 9, is characterised by in-
plane dimensions aM1 = aM2 = 20 m, and a thickness tM = 1 m. Regarding the BCs, the
temperature is set equal to zero for nodes located at xM1 ∈[aM1−aMt

2 , aM1+aMt
2 ], xM2 = aM2

with aMt = 2 m, while a heating source sh = 0.001 Wm−2 is uniformly distributed over
the whole design domain. The FE model is made of NMe = 80 × 80 PLANE55 elements
(4 nodes with a single DOF per node).
The reference volume VM ref in Eq. (35) is the overall volume of the design domain, i.e.,
VM ref = aM1aM2tM . The volume fraction has been set as γ = 0.3. An initial guess
characterised by a uniform pseudo-density field ρM (ξ1, ξ2) = γ has been considered for
each analysis.

An extensive campaign of numerical tests has been conducted on BK-2D: the goal is to
assess the influence of the RVE topology and of the geometric entity (B-spline or NURBS
surface) on the optimised topology at the macroscopic scale. In particular, the CNLPP
of Eq. (35) is solved by considering the following RVE topologies: Diamond, Truncated-
cuboctahedron, S-iBCC, S-IWP, T-Gyroid, T-IWP and T-Manta. For each case, B-spline
and NURBS surfaces with blending functions degrees pj = 2 (j = 1, 2) and number of
CPs nMCP = 68×68 are employed. Moreover, a symmetry constraint with respect to axis
xM1 = aM1

2 has been considered in the CNLPP formulation of Eq. (35).
The reference value of the thermal compliance CM ref appearing in Eq. (35) corresponds to
the thermal compliance of the initial guess and is listed in Tab. 8 for each RVE topology.

Figure 9: BK-2D: geometry and boundary conditions.
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RVE CM ref [WK]

Diamond 1.52642

Truncated-cuboctahedron 1.06614

S-iBCC 0.93382

S-IWP 1.22485

T-Gyroid 0.79116

T-IWP 0.90502

T-Manta 0.72413

Table 8: BK-2D: reference thermal compliance for each RVE topology.

The optimised topology, for each RVE geometry, is illustrated in Figs. 10 and 11,
for B-spline and NURBS solutions, respectively. In each figure, results are provided in
terms of macroscopic thermal compliance CM and number of iterations Niter to achieve
convergence. For each solution, the requirement on the volume fraction is always satisfied
and the solution is located on the boundary of the feasible domain. A synthesis of the
results is illustrated in Fig. 12 where the thermal compliance characterising each optimised
topology is plotted for each RVE geometry and for both B-spline and NURBS solutions.
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(a) Diamond: CM = 0.26897 WK,

Niter = 236

(b) Truncated-cuboctahedron:

CM = 0.25154 WK, Niter = 222

(c) S-iBCC: CM = 0.24410 WK,

Niter = 246

(d) S-IWP: CM = 0.25785 WK,

Niter = 240

(e) T-Gyroid: CM = 0.23613 WK,

Niter = 288

(f) T-IWP: CM = 0.24291 WK,

Niter = 243

(g) T-Manta: CM = 0.23211 WK,

Niter = 248

Figure 10: BK-2D: sensitivity of the optimised topology to the RVE geometry using B-spline entities with
pj = 2 (j = 1, 2) and nMCP = 68 × 68.
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(a) Diamond: CM = 0.25574 WK,

Niter = 299

(b) Truncated-cuboctahedron:

CM = 0.24249 WK, Niter = 292

(c) S-iBCC: CM = 0.23646 WK,

Niter = 297

(d) S-IWP: CM = 0.24554 WK,

Niter = 293

(e) T-Gyroid: CM = 0.23034 WK,

Niter = 249

(f) T-IWP: CM = 0.23525 WK,

Niter = 293

(g) T-Manta: CM = 0.22754 WK,

Niter = 298

Figure 11: BK-2D: sensitivity of the optimised topology to the RVE geometry using NURBS entities with
pj = 2 (j = 1, 2) and nMCP = 68 × 68.

Figure 12: BK-2D: synthesis of results.

25



From the analysis of these results, one can infer the following remarks:

� For each RVE geometry, the optimised topology at the macroscopic scale obtained
through a NURBS entity is characterised by a thermal compliance lower than the
one characterising the B-spline counterpart; moreover, in agreement with the results
found in [36, 50] each NURBS solution is characterised by a boundary smoother than
the B-spline counterpart.

� In agreement with the results of the homogenization presented in Sec. 4, better
performances (in terms of thermal compliance) can be achieved when using thin-
walled TPMS RVE topologies; particularly, the best result is obtained in the case of
the Manta configuration, whilst the worst one is obtained in the case of the Diamond
topology.

� The RVE topology at the lower scale affects not only the value of the objective
function but also the number of branches (and their curvature) of the optimised
topology at the macroscopic scale.

An example of GACM recovered from the results of the TO is illustrated in Fig.
13. In particular, the optimised topology obtained with a B-spline entity related to the
Gyroid RVE geometry shown in Fig. 10 has been reconstructed by following the procedure
described in algorithm 1. It is noteworthy that the regions coloured in blue in Fig. 13
represent zones wherein the relative density ρM = 1, thus the RVE at the lower scale is
completely filled by the bulk material.

Figure 13: BK-2D: optimised GACM made of gyroid RVE reconstructed from B-spline solution of Fig. 10.

6.2. 3D Benchmark problem

The 3D benchmark problem (BK-3D) deals with the TO of a cubic domain illustrated
in Fig. 14; the geometrical parameters of BK-3D are: aM1 = aM2 = aM3 = 20 m,
aMt = 2 m. The material properties are the same as those used in the test case BK-2D.

The FE model is made of NMe = 64000 SOLID279 elements (eight nodes, one DOF per
node). The temperature is equal to zero on the nodes belonging to the heat skin located
at (xM1 ∈[aM1−aMt

2 , aM1+aMt
2 ], xM2 ∈[aM2−aMt

2 , aM2+aMt
2 ], xM3 = aM3). A heating source

sh = 0.001 Wm−3 is evenly distributed over the design domain.
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Figure 14: BK-3D: geometry and boundary conditions.

Regarding problem (35), the reference volume and the volume fraction are VM ref =
aM1aM2aM3 and γ = 0.3, respectively. An initial guess characterised by a uniform pseudo-
density field ρM (ξ1, ξ2, ξ3) = γ is considered. The reference thermal compliance CM ref

associated to the starting point is reported in Tab. 9 for each RVE considered in the
analysis. Moreover, the optimisation has been carried out by considering both B-spline
and NURBS entities characterised by the following integer parameters: pj = 2 (j = 1, 2, 3),
nMCP = 30×30×30. The CNLPP formulation of Eq. (35) has been enhanced by adding a
double orthogonal symmetry constraint with respect to planes xM1 = aM1

2 and xM2 = aM2
2 .

RVE CM ref [WK]

Diamond 128.98658

Truncated-cuboctahedron 90.09139

S-iBCC 78.91058

S-IWP 103.50328

T-Gyroid 66.85503

T-IWP 76.47695

T-Manta 61.19098

Table 9: BK-3D: reference thermal compliance for each RVE topology.

The optimised topologies are illustrated in Figs. 15 and 16, for both B-spline and
NURBS entities: numerical results are provided in terms of thermal compliance CM of
the optimised solution and number of iterations Niter to achieve convergence. For each
solution the requirement on the volume fraction is always satisfied. A synthesis of results
is reported in Fig. 17. The same remarks already done for benchmark problem BK-2D
can be repeated here.
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(a) Diamond: CM = 14.69802 WK,

Niter = 244

(b) Truncated-cuboctahedron:

CM = 14.27048 WK, Niter = 275

(c) S-iBCC: CM = 14.10750 WK,

Niter = 166

(d) S-IWP: CM = 14.43974 WK,

Niter = 228

(e) T-Gyroid: CM = 13.93192 WK,

Niter = 150

(f) T-IWP: CM = 14.08170 WK,

Niter = 165

(g) T-Manta: CM = 13.83650 WK,

Niter = 181

Figure 15: BK-3D: sensitivity of the optimised topology to the RVE geometry using B-spline entities with
pj = 2 (j = 1, 2, 3) and nMCP = 30 × 30 × 30.
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(a) Diamond: CM = 14.42457 WK,

Niter = 256

(b) Truncated-cuboctahedron:

CM = 14.09480 WK, Niter = 489

(c) S-iBCC: CM = 13.97980 WK,

Niter = 447

(d) S-IWP: CM = 14.20272 WK,

Niter = 397

(e) T-Gyroid: CM = 13.84100 WK,

Niter = 480

(f) T-IWP: CM = 13.95169 WK,

Niter = 481

(g) T-Manta: CM = 13.87567 WK,

Niter = 24

Figure 16: BK-3D: sensitivity of the optimised topology to the RVE geometry using NURBS entities with
pj = 2 (j = 1, 2, 3) and nMCP = 30 × 30 × 30.
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Figure 17: BK-3D: synthesis of results.

7. Conclusions

In this work, a general approach for the optimisation of GACMs has been presented.
In particular, the proposed methodology relies on: a) the SEHM to perform the scale
transition and determine the macroscopic properties of the RVE of the ACM; b) NURBS
hyper-surfaces to represent the topological variable at the macroscopic scale; c) a density-
based TO algorithm reformulated in the framework of NURBS hyper-surfaces; d) a general
strategy to recover the GACM pattern from the results of the TO at the macroscopic scale
of the structure. This methodology has been applied to the problem of minimising the
thermal compliance of GACMs subject to a constraint on the volume and its effectiveness
has been shown on both 2D and 3D test cases. In this context, the properties of NURBS
entities are efficiently exploited to derive the analytical expression of the gradient of the
physical responses integrated in the problem formulation.

Some features of the proposed methodology need to be highlighted.

1. The results of the homogenisation procedure show that the ETC depends upon the
relative density of the ACM. In particular, thin-walled TPMS ACMs are charac-
terised by an ETC higher than strut-based and skeletal TPMS configurations. The
T-Manta topology shows the highest ETC, while the one of the T-Nevious geometry
is slightly lower.

2. TO based on NURBS hyper-surfaces is characterised by three advantages: (a) un-
like the classical SIMP approach, the NURBS local support establishes an implicit
relationship among the pseudo-density of contiguous mesh elements, thus an explicit
filter is not required; (b) the number of design variables is reduced with respect to
the classical SIMP approach; (c) the CAD reconstruction of the boundary of the
optimised topology is an easy task.

3. A sensitivity analysis of the optimised topology at the macroscopic scale to the
RVE geometry at the lower scale has been performed. The RVE topology at the
lower scale influences not only the optimal distribution of the pseudo-density at the
macroscopic scale but also the structural response in terms of thermal compliance.
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Among the considered RVE topologies, the best results can be achieved by the T-
Manta configuration followed by the T-Gyroid and T-IWP topologies.

4. The role of NURBS weights has been assessed: by considering the same number of
CPs and the same degrees, the thermal compliance of the NURBS solution is lower
than the one of the B-spline counterpart.

5. An efficient and automatic post-processing strategy to recover GACMs patterns from
the results of the TO at the macroscopic scale has been proposed. The algorithm
makes use not only of the optimal distribution of the pseudo-density field resulting
from the TO process but also of the database of results obtained through the SEHM
before the optimisation process.

Regarding the prospects on this topic, several challenges still need to be faced. Firstly,
the transient regime should be integrated within the TO problem formulation. Secondly,
the proposed strategy should be extended to thermomechanical problems (by considering
both weak and strong couplings). Thirdly, design-dependent BCs should be integrated
into the problem formulation to deal with more realistic engineering applications, like
heat exchangers made of GACMs. Finally, a dedicated experimental campaign of tests to
measure the thermal conductivity of optimised heat exchangers obtained with the proposed
methodology is in progress. Research is ongoing on all the above aspects.
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